鼠伤寒沙门氏菌鞭毛蛋白增强抗体应答的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     鼠伤寒沙门氏菌是周毛菌,菌体周身遍布鞭毛,鞭毛是由基础小体、钩状体和丝状体三部分构成,它不仅是沙门氏菌的运动器官,而且同时还具有特殊的抗原性,称为H抗原,H抗原是沙门氏菌鉴定分型的重要依据,而且可以激发先天性免疫系统产生应答。随着对鞭毛主要成份——鞭毛蛋白免疫作用机理的不断深入研究,逐渐发现沙门氏菌鞭毛蛋白可以通过自身激发先天性免疫系统产生应答,以启动、增强特异性免疫系统对其他与鞭毛蛋白相连接的抗原产生特异性的应答,发挥较强的免疫佐剂作用,而且可以在粘膜表面诱导以Th2型免疫反应并且伴有IgA的分泌。其强大的免疫佐剂功效随后在多种病原体疫苗的研究中获得应用,如应用于鼠疫杆菌、变异链球菌、单核细胞增生李斯特菌、甲型流感病毒、西尼罗河病毒、和间日疟原虫等多种病原体的表位多肽和抗原蛋白,甚至用于增强甲型H1N1流感病毒灭活株的免疫应答。而且在各项实验中并没有发现各种疫苗制剂因加入沙门氏菌鞭毛蛋白引起的过敏反应或其他不良反应,因此鞭毛蛋白作为疫苗佐剂是较为安全的。
     先天性免疫不仅仅是抵抗病原体侵袭的第一道屏障,而且在识别和区分病原体、启动获得性免疫中起了关键的作用,抗原递呈细胞尤其是树突状细胞在其中担负了非常重要的角色。抗原递呈细胞具有所谓的模式识别受体(pattern recognition receptor,PRR),可以识别病原体相关分子模式(pathogen associated molecular pattern,PAMP)。鞭毛蛋白是一种蛋白性的PAMP,可以被PRR主要是细胞表面Toll样受体5(Toll-likereceptor 5,TLR5)识别和区分,两者特异性结合后鞭毛蛋白即可作用于表达有TLR5的细胞,如上皮细胞、内皮细胞、粒细胞、单核细胞、T淋巴细胞、NK细胞、树突细胞等,通过激活TLR5,活化MyD88依赖的信号转导通路,调控TNF-α、IL-6和IL-12等促炎细胞因子的合成,上调协同刺激分子CD80、CD86以及MHCⅡ分子,从而使这些主要的抗原递呈细胞激活和成熟,摄取抗原能力增强,向引流淋巴结迁移能力增强,从而招引、激活和分化T辅助细胞,最终启动获得性免疫应答,实现免疫佐剂功效。而对于细胞胞质内部的鞭毛蛋白则主要依赖表达在细胞胞质中的NOD样受体(Nucleotide oligomerization domain (NOD)-like receptor, NLR)家族中的IPAF(IL-1β-converting enzyme (ICE) protease activating factor)和NAIP5(neuronal apoptosisinhibitory protein 5)受体,其中IPAF受体起主要的识别作用,而NAIP5则可与IPAF联合作用,起到增强细胞对胞质内鞭毛蛋白的识别作用。
     目前许多疾病的疫苗候选抗原都面临在人体内低免疫原性的问题,例如恶性疟原虫裂殖子顶端膜抗原1(apical membrane antigen 1,AMA-1)蛋白,临床试验表明使用铝佐剂或Montanide ISA720佐剂都不能使AMA1在绝大多数受试者中激发出有效水平的抗体滴度,当在铝佐剂中添加了Toll样受体9(TLR9)的激动剂CpG ODN后,在受试者中抗AMA1的抗体水平得到了极大提高,并且高滴度的免疫血清在疟原虫体外抑制试验中的抑制率可达到90%以上,最高者达到96%。然而,由于在临床试验中发现1例由CpG ODN产生的副反应,所以CpG ODN的安全性已成为这种AMA1疫苗制剂在临床试验中进一步推进的重要障碍。
     本研究工作将以作为TLR5激动剂的纯化沙门氏菌鞭毛蛋白(flagella filamentprotein,FliC)替代作为TLR9激动剂的CpG ODN1826,加入到模型抗原——卵清蛋白(Ovalbumin,OVA)和氢氧化铝佐剂的疫苗制剂中,免疫实验小鼠,观察和比较添加鞭毛蛋白的疫苗制剂所激发的免疫应答,为鞭毛蛋白作为佐剂增强剂应用于以各种低免疫原性候选抗原的疫苗提供实验数据。
     二、研究目的
     本实验拟通过大样本随机对照的研究方法,在BALB/c小鼠中,研究鼠伤寒沙门氏菌鞭毛蛋白增强抗原特异性抗体应答的佐剂增强剂功效及其机制,同时与CpGODN进行比较,观察两者佐剂增强剂功效的差别,以及采用不同免疫方式对鞭毛蛋白作为佐剂增强剂的影响。
     三、研究方法
     1、采用酶联免疫吸附法(Enzyme Linked Immunosorbent Assay,ELISA)测定血浆中特异性抗OVA的IgG抗体滴度,以及各种IgG分型抗体(IgG1、IgG2a、IgG2b、IgG3)的滴度。
     2、采用ELISA法测定小鼠脾细胞体外刺激上清中干扰素gamma(Interferonγ,IFN-γ)和白介素4(Interleukin-4,IL-4)的含量。
     3、采用TurboFect体外转染试剂构建稳定表达pUNO-hTLR5质粒的小鼠单核巨噬细胞RAW264.7细胞株。
     四、研究结果
     1、采用肌肉注射免疫方式联合应用鞭毛蛋白的卵清蛋白/氢氧化铝佐剂(OVA+Alhydrogel+Flagellin)组诱导产生特异性抗OVA抗体滴度显著高于OVA+ Alhydrogel组,低于联合应用CpG ODN组,但随着免疫时间的延长,联合应用鞭毛蛋白组特异性抗体滴度逐渐高于联合应用CpG ODN组。整个免疫过程中,鞭毛蛋白显示出与CpG ODN相当的免疫佐剂功效。
     2、肌肉免疫方式中添加鞭毛蛋白组特异性抗体亚型中IgG2a和IgG2b比例较单纯铝佐剂组升高。体外刺激添加鞭毛蛋白组小鼠脾脏细胞培养基上清中检测到较单纯铝佐剂组高水平的IFN-γ和低水平的IL-4,考虑由鼠沙门氏菌鞭毛蛋白诱导的免疫应答是Th1/Th2混合型,但以Th1型为主,且可通过经典途径活化补体系统,全面提高机体对外源性抗原的特异性体液免疫反应及细胞免疫反应。
     3、采用皮下注射免疫和腹腔注射免疫方式,整个免疫过程中添加鞭毛蛋白或者CpGODN组特异性抗体滴度都显著高于单纯应用铝佐剂组,且添加CpG ODN组升高更为明显。
     4、皮下注射免疫和腹腔注射免疫方式中鞭毛蛋白诱导的免疫应答机制与肌肉免疫方式中一致,只是采用皮下免疫后特异性抗体IgG2b比例未见明显升高,考虑此种免疫方式下鞭毛蛋白不能有效活化补体系统。
     5、成功构建稳定表达pUNO-hTLR5质粒的小鼠单核巨噬细胞RAW264.7转染细胞株。
     五、研究结论
     本研究首次采用铝佐剂的吸附作用,选取新型免疫佐剂鞭毛蛋白,体外将鼠伤寒沙门氏菌鞭毛蛋白和OVA的氢氧化铝胶制剂(Alhydrogel)直接混合构成复合体,采用肌肉注射免疫方式,并诱导以Th1为主的Th1/2混合型免疫应答,同时有一定的诱导补体系统活化功能,在BALB/c小鼠体内全面显著增强OVA特异性的体液及细胞免疫应答,表现出CpG ODN相当的佐剂增强剂功效,为新型人用疫苗的研发提供更安全有效的佐剂选择。
1. Research Background
     As one kind of peritrichate, the flagella of Salmonella typhimurium, which is composed ofa basal body, hook, motor, and filament, plays a major role in its motility and specialantigenicity[1, 2] . The special antigen, H antigen, is not only the systematical standards, butalso a potent inducer of innate immunity. Flagellin is a highly conserved bacterial proteinwhich is the most important part of the flagella and elicits TLR5 dependent inflammatoryresponses in both animals and plants [3, 4] and plays an significant role in bacterialpathogenicity by facilitating motility and adhesion to host mucosal tissues [5-8]. Recentstudies have shown that flagellin is associated with strong adaptive immune responses,mainly Th2-type, with the production of mucosal [9-12] and systemic IgA.Flagellin caninduce the antigen-special response which is combined with flagellin through the innateimmunology induced by it. Accordingly they have the profound significance as adjuvants,and recombinant flagellin in a soluble or fused form has been reported to play an importantrole as adjuvant for novel vaccines against epitope-based influenza vaccines [13], Yersiniapestis [8, 14], Plasmodium falciparum [15] , Tetanus toxoid [10], West Nile virus (WNV) [16]and inactivated influenza virus (A/PR/8/34, HIN1 subtype) [17] . The safety of flagellin usedas adjuvant is without doublts, because there are no seriously adverse reactions during allof the experiments.
     In view of the established role of the innate immune response in the development ofadaptive immunity, the strong innate response to flagellin may be the reason why flagellinpresents as an effective adjuvant. The innate immue is the firstline defense againstmicrobial pathogen. It can recognize and discriminate the different pathogen and as theinitiator of the events that are essential for the developent of an adaptive immune response,in which antigen presenting cells play the important role. Pattern recognition receptorexpressed on antigen presenting cells can recognize the corresponding pathogen associatedmolecular pattern expressed on pathogen [18-20]. Flagellin is a proteinic pathogen associatedmolecular pattern which can be recognized by pattern recognition receptor, Toll-likereceptor 5 mainly [21-23]. The direct binding of flagellin to the TLR5 expressed on cells suchas endothelial and epithelial cells, monocytes, macrophages, and immature dendritic cellsinitiates the MyD88 depended signal passway, products proinflammatory cytokines such as TNF-α、IL-6 and IL-12, and up-regulate some costimulatory molecule, CD80, CD86, MHCet al [24], then stimulate cells maturation, enhance the ability of presenting antigen, andmigrate to secondary lymphoid sites . Accordingly Th cells are attracted, stimulated,differentiated to another typical cell and finally initiate the adaptive immunity. Meanwhile,the flagellin within the cytosol of macrophages is detected through the Nod-like receptot(NLR) IPAF and NAIP5. IPAF is the mainly cytosol receptor, however, NAIP5 justenhance the detection of the flagellin with IPAF.
     Failing to enhance the immunogenicities of antigens to obtaina protective and sustainedresponse in humans is, so far, still a formidable problem with which many vaccines todayhave confronted including the blood-stage antigen apical membrane antigen 1 (AMA1)which is the leading malarial vaccine candidate of Plasmodium falciparum. [25,26] Despite ofthe conjugation of Alhydrogel or Montanide ISA720, the special antibody in human bodyto AMA1 still remained a low level. The addition of the TLR9 agonist CpG ODN to theAMA1/Alhydrogel formulation greatly increased the functional antibody responses inhuman, and the GIA can averagely reach 90%, in which 96% is the highest. However,along with the side effect associated with CpG ODN in an adult phase III trail, thepotential safety hazard became the biggest obstacle to the application of CpG ODN.
     This research focused on the immunopotention of flagellin which is conjugated withOVA/Alhydrogel formulation instead of CpG ODN. All the results has provided theevidence that the Salmonella flagellin is a potent immunopotentiator of specific immunityin mice immunized with ovalbumin .
     2. Objectives
     This study tries to research the ability of flagellin as a immunopotentiator among BALB/cmice, through comparing the special antibodies in the serum during a randomizedcontrolled trial.
     3. Methods
     3.1 Analyzing the quantity of antibody to OVA from immunized BALB/c mice, includingIgG/IgG2a/IgG2b/IgG3, by EILSA.
     3.2 Analyzing the concentration of IL-4 and IFN-γin supernatant of splenocytes whichwere isolated from immunized mice sacrificed after 14 days post-boost and stimulated byOVA and PMA.
     3.3 Contract TLR5-specific bioactivity assay: transfect the RAW264.7 cell strain withplasmid pUNO-hTLR5 expressing the human TLR5 through the TurboFect agent.
     4. Results
     4.1 The vaccine formulations of OVA+Alhydrogel+Flagellin administered intramuscularlyinduced significantly higher antibody titers comparing to OVA+Alhydrogel, meanwhile nostatistically significant difference in serum IgG titers were detected between mice injectedwith flagellin and CpG ODN. Moreover, the period of higer antibody titers is longer in thegroup co-administered with flagellin than those with CpG ODN. In the whole experiment,the immunological enhancement of flagellin is comparable to CpG ODN's.
     4.2 The flagellin coadminisered intramuscularly induced higher IgG2a and IgG2b ratio ofspecial antibody, and produced higer IFN-γand less IL-4 than the other group. Based onthe above results detected with the doses tested, we found that flagellin enhanced both theTh1 and Th2 responses, Th1-biased. On the other hand the increased IgG2b levels activatecomplement via the classical pathway. It has been suggested that the classical pathway isthe most effective immune defense against microorganisms, and flagellin may thereforehave some advantages as an adjuvant for enhancing the humoral immunity againstinfection.
     4.3 When Vaccine formulations were administered subcutaneously and intraperitoneally,the group coadministered with flagellin induced significantly higher special antibody titersthan the group injected only with Alhydrogel and significantly lower than the ones withCpG ODN.
     4.4 The immune response generanted in mice with each vaccine formulationadministratered subcutaneously and intraperitoneally is the same as the results of groupsimmunized intramuscularly. Howerve, there is no higer ratio of IgG2b in groupsimmunized subcutaneously, It supposed that the administrer’s way is not suitable foractivating complement system.
     4.5 Get the RAW264.7 cell line which expresses TLR5 consistently.
     5. Conclusions
     Flagellin is a promising candidate immunopotentiator which can induce the comparableimmunological enhancement as CpG ODN does. Co-administration of flagellin with OVAand Alhydrogel induces enhanced humoral and cellular immune responses, and induces themix Th1/Th2 humoral respons, Th1 mainly.
引文
[1]Iino T. Genetics of structure and function of bacterial flagella. Ann Rev Genetics, 1977,11:161–182.
    [2]Macnab RM. How bacteria assemble flagella. Ann Rev Microbiology, 2003, 57:77–100.
    [3]Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for themost conserved domain of bacterial flagellin. Plant J, 1999, 18(May (3)):265–76.
    [4]Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5stimulus bacterial flagellin induces maturation and chemokine production in humandendritic cells. J Immunol, 2003, 170(10):5165–75.
    [5]Reichhart JM. TLR5 takes aim at bacterial propeller. Nat Immunol, 2003, 4(December(12)):1159–60. 607.
    [6]Hackett J, Attridge S, Rowley D. Oral immunization with live, avirulent flastrains ofSalmonella protects mice against subsequent oral challenge with Salmonellatyphimurium. J Infect Dis, 1988, 157(January (1)):78–84. 610.
    [7]McSorley SJ, Cookson BT, Jenkins MK. Characterization of CD4+T cell responsesduring natural infection with Salmonella typhimurium. J Immunol, 2000, 164(January(2)):986–93. 613.
    [8]Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant forimmunization against lethal respiratory challenge with Yersinia pestis. Infect Immun,2006, 74(February (2)):1113–20.
    [9]Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, Carlsen H, et al.Flagellinpromotes myeloid differentiation factor 88-dependent development of Th2-typeresponse. J Immunol, 2004, 172(June (11)):6922–30. 619.
    [10]Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS, et al. A bacterial flagellin,Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protectiveimmunity. Infect Immun, 2006, 74(January (1)):694–702. 622.
    [11]Honko AN, Mizel SB. Mucosal administration of flagellin induces innate imm unity inthe mouse lung. Infect Immun, 2004, 72(November (11)):6676–9. 624.
    [12]Cunningham AF, Khan M, Ball J, Toellner KM, Serre K, Mohr E, et al. Responses tothe soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1.Eur J Immunol, 2004, 34(November (11)):2986–95.
    [13]Ben-Yedidia T, Arnon R. Epitope-based vaccine against influenza. Expert RevVaccines, 2007, 6(December (6)):939–48.
    [14]Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, et al. A fusionprotein, flagellin/F1/V, is an effective plague vaccine in mice and two species ofnonhuman primates. Clin Vaccine Immunol, 2008, (November): 1521-29.
    [15]Bargieri DY, Rosa DS, Braga CJ, Carvalho BO, Costa FT, Espindola NM, et al. Newmalaria vaccine candidates based on the Plasmodium vivax merozoite surface protein-1and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Vaccine, 2008,26(November (48)):6132–42.
    [16]McDonald WF, Huleatt JW, Foellmer HG, Hewitt D, Tang J, Desai P, et al. A WestNile virus recombinant protein vaccine that coactivates innate and adaptive immunity. JInfect Dis, 2007, 195(June (11)):1607–17.
    [17]Ioanna Skountzou, Maria del Pilar Martin, Baozhong Wang, Ling Ye, et al. Salmonellaflagellins are potent adjuvants for intranasally administered whole inactivated influenzavaccine. Vaccine, 2009, 10(1016): 058-068.
    [18]Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immuneresponse. Nature, 2000, 406:782–787.
    [19]Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001,1:135–145.
    [20]Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. ClinMicrobiol Rev, 2003, 16:637–646.
    [21]Sebastiani G, Leveque G, Larivière L, et al. Cloning and characterization of the murineToll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies inSalmonella-susceptible MOLF/Ei mice. Genomics, 2000, 64:230–240.
    [22]Didierlaurent A, et al. Flagellin promotes myeloid differentiation factor 88-dependentdevelopment of Th2-type response. J Immunol, 2004, 172:6922-30.
    [23]Sanders CJ, et al. Humoral immune response to flagellin requires T cells and activationof innate immunity. J Immunol, 2006, 177:2810-8.
    [24]Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5stimulus bacterial flagellin induces maturation and chemokine production in humandendritic cells. J Immunol, 2003, 170:5165–5175.
    [25]Epstein JE, Giersing B, Mullen G, Moorthy V, Richie TL. Malaria vaccines: are wegetting closer? Curr Opin Mol Ther, 2007;9(1):12—24.
    [26]Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research anddevelopment: malaria. Vaccine, 2007;25(9):1567—80.
    [14]Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, et al. A fusionprotein, flagellin/F1/V, is an effective plague vaccine in mice and two species ofnonhuman primates. Clin Vaccine Immunol, 2008, (November): 1521-29.
    [15]Bargieri DY, Rosa DS, Braga CJ, Carvalho BO, Costa FT, Espindola NM, et al. Newmalaria vaccine candidates based on the Plasmodium vivax merozoite surface protein-1and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Vaccine, 2008,26(November (48)):6132–42.
    [16]McDonald WF, Huleatt JW, Foellmer HG, Hewitt D, Tang J, Desai P, et al. A WestNile virus recombinant protein vaccine that coactivates innate and adaptive immunity. JInfect Dis, 2007, 195(June (11)):1607–17.
    [17]Ioanna Skountzou, Maria del Pilar Martin, Baozhong Wang, Ling Ye, et al. Salmonellaflagellins are potent adjuvants for intranasally administered whole inactivated influenzavaccine. Vaccine, 2009, 10(1016): 058-068.
    [18]Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immuneresponse. Nature, 2000, 406:782–787.
    [19]Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol, 2001,1:135–145.
    [20]Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. ClinMicrobiol Rev, 2003, 16:637–646.
    [21]Sebastiani G, Leveque G, Larivière L, et al. Cloning and characterization of the murineToll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies inSalmonella-susceptible MOLF/Ei mice. Genomics, 2000, 64:230–240.
    [22]Didierlaurent A, et al. Flagellin promotes myeloid differentiation factor 88-dependentdevelopment of Th2-type response. J Immunol, 2004, 172:6922-30.
    [23]Sanders CJ, et al. Humoral immune response to flagellin requires T cells and activationof innate immunity. J Immunol, 2006, 177:2810-8.
    [24]Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5stimulus bacterial flagellin induces maturation and chemokine production in humandendritic cells. J Immunol, 2003, 170:5165–5175.
    [25]Epstein JE, Giersing B, Mullen G, Moorthy V, Richie TL. Malaria vaccines: are wegetting closer? Curr Opin Mol Ther, 2007;9(1):12—24.
    [26]Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research anddevelopment: malaria. Vaccine, 2007;25(9):1567—80.Flagellin-F1-V Fusion Protein Is an Effective Plague Vaccine in Mice and Two Speciesof Nonhuman Primates. Clinical and Vaccine Immunology, 2009,16(1): 21–28.
    [39]Abdus Faham, Joseph G. Altin. Antigen-Containing Liposomes Engrafted withFlagellin-Related Peptides Are Effective Vaccines That Can Induce Potent AntitumorImmunity and Immunotherapeutic Effect. The Journal of Immunology, 2010, 85:1744-1754.
    [40]Ayaid Khadem Zgair, Sanjay Chhibber. Stenotrophomonas maltophilia flagellininduces a compartmentalized innate immune response in mouse lung. Journal of MedicalMicrobiology, 2010, 59: 913-919.
    [41]Matam Vijay-Kumar, Frederic A. Carvalho, Jesse D. Aitken, Nimita H. Fifadara,Andrew T. Gewirtz. Eur. J. Immunol, 2010, 40:3528-3534.
    [42]Huleatt JW, Jacobs AR, Tang J, Desai P, Kopp EB, et al. Vaccination withrecombinant fusion proteins incorporating Toll-like receptor ligands induces rapidcellular and humoral immunity. Vaccine , 2007, 25:763–775.
    [43]Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D. Potent immunogenicity andefficacy of a universal influenza vaccine candidate comprising a recombinant fusionprotein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 2008,26: 201–214.
    [44]James W. Huleatt, Andrea R. Jacobs, Jie Tang, Priyanka Desai. Vaccination withrecombinant fusion proteins incorporating Toll-like receptor ligands induces rapidcellular and humoral immunity. Vaccine, 2007, 25: 763-775.
    [45]Langzhou Song, Valerian Nakaar, Uma Kavita, Albert Price, Jim Huleatt, Jie Tang.Efficacious Recombinant Influenza Vaccines Produced by High Yield BacterialExpression: A Solution to Global Pandemic and Seasonal Needs. PLoS ONE, 2008, 3(5):2257-2264.
    [46]Akinobu Kajikawa, Shizunobu Igimi. Innate and acquired immune responses inducedby recombinant Lactobacillus casei displaying flagellin-fusion antigen on thecell-surface. Vaccine, 2010, 28:3409-3415.
    [47]Saeeda Bobat, Adriana Flores-Langarica, Jessica Hitchcock, Jennifer L Marshall, Robert A Kingsley.Soluble flagellin, FliC, induces an Ag-specific Th2 response,yet promotes T-bet-regulated Th1 clearance of Salmonella Typhimurium infection.European Journal of Immunology, 2011, 10.1002.201041089.
    [48]Manderson AP, Pickering MC, Botto M, Walport MJ, Parish CR. Continuallow-level activation of the classical complement pathway. J Exp Med,2001, 194,6:747–756.
    [49]Celik I, Stover C, Botto M, Thiel S, Tzima S, Kunkel D. Role of the classical pathwayof complement activation in experimentally induced polymicrobial peritonitis. InfectImmun , 2001,69,12:7304–7309.
    [50]Pertmer TM, Roberts TR, Haynes JR. Influenza virus nucleoprotein specificimmunoglobulin G subclass and cytokine responses elicited by DNA vaccination aredependent on the route of vector DNA delivery. J Virol, 1996, 70 (9) :6119-6125.
    [51]Feltquate DM, Heaney S, Webster RG. Different T helper cell types and antibodyisotypes generated by saline and gene gun DNA immunization. J Immunol, 1997, 158(5) :2278-2284.
    [52]Hayashi F. Smith K. D, Ozinsky A., Hawn T. R, Yi E. C., Akira S., Underhill D. M.,Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-likereceptor 5. Nature,2001, 410:1099–1103.
    [53]Eaves-Pyles T. D., Wong H. R., Odoms, K., Pyles, R. B. Salmonellaflagellin-dependent proinflammatory responses are localized to the conserved amino andcarboxyl regions of the protein. J Immunol, 2001, 167:7009–7016.
    [1]Anna N Honko, Steven B Mizel. Effects of Flagellin on Innate and Adaptive Immunity.Immunologic Research,2005,33(1):83–101.
    [2]Edward A. Miao, Erica Andersen-Nissen, Sarah E. Warren, Alan Aderem. TLR5 andIpaf: dual sensors of bacterial flagellin in the innate immune system. SeminImmunopathol,2007,29: 275–288.
    [3] Chilcott G S, Hughes K.T. Coupling of flagellar gene expression to flagellar assemblyin Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol. Mol. Biol.Rev.,2000, 64: 694–708 .
    [4]Aldridge P, Hughes K T. Regulation of flagellar assembly. Curr. Opin. Microbiol.,2002,5: 160–165.
    [5] Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S,Underhill DM, Aderem A . The innate immune response to bacterial flagellin ismediated by Toll-like receptor 5. Nature,2001, 410:1099–1103.
    [6]Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, MeshinchiS, Jagirdar R, Gewirtz A, Akira S, Nunez G. Regulation of Legionella phagosomematuration and infection through flagellin and host IPAF. J Biol Chem,2006,281(46):35217–35223.
    [7]Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N,Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G. Cytosolic flagellin requires Ipafforactivation of caspase-1 and interleukin-1 beta in salmonella-infected macrophages. NatImmunol,2006,7:576–582.
    [8]Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A.Cytoplasmic flagellin activates caspase-1 and secretion of interleukin -1 beta via Ipaf.Nat Immunol,2006,7:569–575.
    [9]Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterialflagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatorygene expression. J Immunol, 2001,167:1882–1885.
    [10]Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 isessential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containingadaptor- inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. JImmunol,2004,173:2913–2917.
    [11]Khan MA, Kang J, Steiner TS. Enteroaggregative Escherichia coli flagellin-inducedinterleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinaseactivation. Immunology,2004,112:651–660.
    [12]Moors MA, Li L, Mizel SB. Activation of interleukin-1 receptor-associated kinase bygram-negative flagellin. Infect Immun,2001,69:4424–4429.
    [13]Berin MC, Darfeuille-Michaud A, Egan LJ, Miyamoto Y, Kagnoff MF. Role of EHECO157:H7 virulence factors in the activation of intestinal epithelial cell NF-kappaB andMAP kinase pathways and the upregulated expression of interleukin 8. CellMicrobiol,2002, 4:635–648.
    [14]Eaves-Pyles T, Murthy K, Liaudet L, Virag L, Ross G, Soriano FG, Szabo C, SalzmanAL. Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemicinflamma-tion: I kappa B alpha degradation, induction of nitric oxide synthase,induction of proinflammatory mediators, and cardio-vascular dysfunction. JImmunol,2001,166:1248–1260.
    [15]Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES .Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J BiolChem, 2001,276:28309–28313.
    [16]Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. ThePYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem,2002,277:21119–21122.
    [17]Damiano JS, Stehlik C, Pio F, Godzik A, Reed JC. CLAN, a novel human CED-4-likegene. Genomics,2001,75:77–83.
    [18]Geddes BJ, Wang L, Huang WJ, Lavellee M, Manji GA, Brown M, Jurman M, Cao J,Morgenstern J, Merriam S, Glucksmann MA, DiStefano PS, Bertin J. Human CARD12is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem Biophys ResCommun,2001, 284:77–82.
    [19]Masumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y, Li M, Zhu L, Katsuyama T,Sagara J, Taniguchi S, Gumucio DL, Nunez G, Inohara N. ASC is an activatingadaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys ResCommun,2003, 303:69–73.
    [20]Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J LeukocBiol,2003,73:213–224.
    [21]Mariathasan S, Newton K, Monack D M. Differential activation of the inflammasomeby caspase-1 adaptors ASC and Ipaf. Nature, 2004, 430(6996): 213-218.
    [22]Lee SH, Galan JE. Salmonella type III secretion-associated chaperones confersecretion-pathway specificity. Mol Microbiol,2004, 51:483–495.
    [23]Galan, J.E. Salmonella interactions with host cells: type III secretion at work.Annu.Rev. Cell Dev. Biol,2001,17:53–86.
    [24]Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K,Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR. The Birc1e cytosolicpattern-recognition receptor contributes to the detection and control of Legionellapneumophila infection. Nat Immunol,2006,7:318–325.
    [25]Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, SwansonMS. Cytosolic recognition of flagellin by mouse macrophages restricts Legionellapneumophila infection. J Exp Med,2006,203:1093–1104.
    [26]Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE.Flagellin-deficient Legionellamutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoSPathog,2006, 2:234-246.
    [27]Damiano JS, Oliveira V, Welsh K, Reed JC. Heterotypic interactions among NACHTdomains: implications for regulation of innate immune responses. Biochem J,2004,381:213–219.
    [28]Agrawal S, Agrawal A, Doughty B, et al. Cutting edge: different Toll-like receptoragonists instruct dendritic cells to induce distinct Th responses via differentialmodulation of extracellular signal-regulated kinase-mitogen-activated protein kinaseand c-Fos. J Immunol, 2003;171:4984–4989.
    [29]Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H,Nakanishi K, Akira S. Defective NK cell activity and Th1 response in IL-18-deficientmice. Immunity,1998,8:383–390.
    [30]Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, LeeWP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome inresponse to toxins and ATP. Nature,2006, 440:228–232 .
    [31]Ozoren N, Masumoto J, Franchi L, Kanneganti TD, Body-Malapel M, Erturk I,Jagirdar R, Zhu L, Inohara N, Bertin J,Coyle A, Grant EP, Nunez G. Distinct roles ofTLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeriamonocytogenes. J Immunol, 2006, 176:4337–4342
    [32]Liaudet L, Murthy KGK, Mabley JG, et al. Comparison of inflammation, organdamage, and oxidant stress induced by Salmonella enterica serovar Muenchen flagellinand serovar Enteritidis lipopolysaccharide.Infect Immun 2002;70:192–198.
    [33]Liaudet L, SzabóC, Evgenov OV, et al. Flagellin from Gram-negative bacteria is apotent mediator of acute pulmonary inflammation in sepsis. Shock, 2003;19:131–137.
    [34]Honko AN, Mizel SB. Mucosal administration of flagellin induces innate immunity inthe mouse lung. Infect Immun 2004;72:6676–6679.
    [35]Ciacci-Woolwine F, Kucera LS, Richardson SH, Iyer NP, Mizel SB. Salmonellaeactivate tumor necrosis factor alpha production in a human promonocytic cell line viaa released polypeptide. Infect Immun, 1997;65:4624–4633.
    [36]McDermott PF, Ciacci-Woolwine F, Snipes JA, Mizel SB. High-affinity interactionbetween Gram-negativeflagellin and a cell surface polypeptide results in humanmonocyte activation. Infect Immun, 2000;68:5525–5529.
    [37]Bergman MA, Cummings LA, Alaniz RC, Mayeda L, Fellnerova I, Cookson BT.CD4+ T-cell responses generated during murine Salmonella enterica serovarTyphimurium infection are directed towards multiple epitopes within the natural antigenFliC. Infect Immun 2005;73: 7226-7235.
    [38]Salerno-Goncalves R, Wyant TL, Pasetti MF, Fernandez-Vina M, Tacket CO, LevineMM, Sztein MB. Concomitant induction of CD4+ and CD8+ T cell responses involunteers immunized with Salmonella enterica serovar typhi strain CVD 908-htrA. JImmunol 2003;170: 2734–2741.[39McSorley SJ, Cookson BT, Jenkins MK. Characterization of CD4+ T cell responsesduring natural infection with Salmonella typhimurium. J Immunol. 2000,164(2):986-93.
    [40]Ben Yedidia T, et al. Epitope-based vaccine against influenza. Expert Rev Vaccines,2007, 6:939-48.
    [41]Wu JY, Newton S, Judd A, Stocker B, Robinson WS. Expression of immunogenicepitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strainof Salmonella. Proc Natl Acad Sci USA 1989;86:4726–4730.
    [42]Newton SM, Kotb M, Poirier T, Stocker BAD, Beachly EH: Expression andimmunogenicity of a streptococcal M protein epitope inserted in Salmonella flagellin.Infect Immun 1991;59:2158–2165.
    [43]Newton SMC, Joys TM, Anderson SA, Kennedy RC, Hovi ME, Stocker BAD.Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in theflagellar protein of a Salmonella live vaccine. Res Microbiol 1995;146:203–216.
    [44]Cattozzo EM, Stocker BAD, Radaelli A, De Giuli Morghen C, Tognon M. Expressionand immunogenicity of V 3 loop epitopes of HIV-1, isolates SC and WMJ2, inserted inSalmonella flagellin. J Biotech,1997;56:191–203.
    [45]McEwen J, Levi R, Horwitz RJ, Arnon R. Synthetic recombinant vaccine expressinginfluenza haemagglutinin epitope in Salmonella flagellin leads to partial protection inmice. Vaccine 1992;10:405–411.
    [46]Verma NK, Ziegler HK, Wilson M, et al. Delivery of class I and class IIMHC-restricted T-cell epitopes of listeriolysin of Listeria monocytogenes by attenuatedSalmonella. Vaccine 1995;13:142–150.
    [47]Ben-Yedidia T, Arnon R. Effect of pre-existing carrier immunity on the efficacy ofsynthetic influenza vaccine. Immunology Lett 1998;64:9–15.
    [48]Stephen J McSorley, Benjamin D Ehst, Yimin Yu, Andrew T Gewirtz. BacterialFlagellin Is an Effective Adjuvant for CD4+ T Cells In Vivo. The Journal ofImmunology,2002,169: 3914-3919.
    [49]Camilo Cuadros, Francisco J Lopez-Hernandez, Ana Lucia Dominguez, MichaelMcClelland, Joseph Lustgarten. Flagellin Fusion Protein as Adjuvant or VaccinesInduce Sepcific Immune Responses. Infection and Immunity,2004,72(5):2810-2816.
    [50]Arnaud Didierlaurent, Isabel Ferrero, Luc A. Otten, Bertrand Dubois, MoniqueReinhardt, Harald Carlsen, Rune Blomhoff, Shikuo Akira, Jean-Pierre Kraehenbuhl,Jean-Claude Sirard. Flagellin Promotes Myeloid Differentiation Factor 88-DependentDevelopment of Th2-Type Response.The Journal of Immunology,2004,172:6922-6930.
    [51]Gavin A. L., Hoebe K., Duong B., Ota T., Martin C., Beutler B. and Nemazee D.,Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling.Science 2006. 314: 1936–1938.
    [52]Sanders C. J., Franchi L., Yarovinsky F., Uematsu S., Akira S., Nunez G., Gewirtz A.T., Induction of adaptive immunity by fl agellin does not require robust activation ofinnate immunity. Eur. J. Immunol. 2009. 39: 359–371.
    [53]Matam Vijay-Kumar, Frederic A. Carvalho, Jesse D. Aitken, Nimita H. Fifadara,Andrew T. Gewirtz.TLR5 or NLRC4 is necessary and sufficient for promotion ofhumoral immunity by flagellin. Eur. J. Immunol. 2010. 40: 3528-3534.
    [54]Didierlaurent A, et al. Flagellin promotes myeloid differentiation factor 88-dependentdevelopment of Th2-type response. J Immunol, 2004, 172:6922-30.
    [55]Cuadros C, et al. Flagellin fusion proteins as adjuvants or vaccines induce specificimmune responses. Infect Immun, 2004, 72:2810-6.
    [56]Honko AN, et al. Flagellin is an effective adjuvant for immunization against lethalrespiratory challenge with Yersinia pestis. Infect Immun, 2006, 74:1113-20.
    [57]Mizel SB, et al. Flagellin-f1-v fusion protein is an effective plague vaccine in mice andtwo species of nonhuman primates. Clin Vaccine Immunol, 2009, 16:21-8.
    [58]Pino O, et al. Cellular mechanisms of the adjuvant activity of the flagellin componentFljB of Salmonella enterica Serovar Typhimurium to potentiate mucosal and systemicresponses. Infect Immun, 2005, 73:6763-70.
    [59]Huleatt JW, et al. Vaccination with recombinant fusion proteins incorporating Toll-likereceptor ligands induces rapid cellular and humoral immunity. Vaccine, 2007,25:763-75.
    [60]Huleatt JW, et al. Potent immunogenicity and efficacy of a universal influenza vaccinecandidate comprising a recombinant fusion protein linking influenza M2e to the TLR5ligand flagellin. Vaccine, 2008, 26:201-14.
    [61]Song L, et al. Efficacious recombinant influenza vaccines produced by high yieldbacterial expression: a solution to global pandemic and seasonal needs. PLoS One, 2008,3:e2257.
    [62]McDonald WF, et al. A West Nile virus recombinant protein vaccine that coactivatesinnate and adaptive immunity. J Infect Dis, 2007, 195:1607-17.
    [63]Bargieri DY, et al. New malaria vaccine candidates based on the Plasmodium vivaxMerozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliCflagellin. Vaccine, 2008, 26:6132-6142.
    [64]Skountzou I, et al. Salmonella flagellins are potent adjuvants for intranasallyadministered whole inactivated influenza vaccine. Vaccine, 2010, 28(24):4103-4112.
    [1]Medzhitov R, Preston-Hurlburt P, Janeway JC. A human homologue of the DrosophilaToll protein signals activation of adaptive immunity. Nature,1997,388, (6640): 394—397.
    [2]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell,2006,124(4):783-801.
    [3]Akira S. Mammalian Toll-like receptors. Curr Opin Immunol, 2003,15(1): 5-11.
    [4]Akira s, Takeda K. Toll-like receptor signaling. Nat Rev Immunol, 2004,4(7): 499-451.
    [5]Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define thespecificity of TLR signaling. Mol Immunol,2004,40:861-868.
    [6]Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006,13(5):816-825.
    [7]Pasare C, Medzhitov R. Toll-like receptors:linking innate and adaptive immunity.Microbes infect, 2004,6(15):1382-1387.
    [8]O’Neill LA, Fitzgerald KA, Bowie AG. The Toll-IL1 receptor adaptor family grows tofive members. Trends Immuno1,2003,24(6):286-290.
    [9]Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O,Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in theMyD88-independent toll-like receptor signaling pathway. Science,2003, 301:640- 643.
    [10]Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, BarnesPF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT,Godowski PJ, Bloom BR, Modlin RL. Induction of direct antimicrobial activitythrough mammalian toll-like receptors. Science,2001,291:1544-1547.
    [11]Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens forpresentation by dendritic cells. Nature,2006,10:1324-1333.
    [12] Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses.Nat Immunol,2004, 5:987–995.
    [13]Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecularpattern that initiates innate immune responses. Nat Rev Immunol,2004,4: 469-478.
    [14]Brentano F, Schorr O, Gay RE, et al. RNA released from necrotic synovial fluid cellsactivates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. ArthritisRheum,2005,52: 2656–2665.
    [15]Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors.Curr Top Microbiol Immunol,2002;270:169–184.
    [16]Diebold SS, Kaisho T, Hemmi H. Innate antiviral responses by means ofTLR7-mediated recognition of single-stranded RNA. Science,2004,303:1529– 1531.
    [17]Hemmi H, Takeuchi O, Kawai T. A Toll-like receptor recognizes bacterial DNA.Nature 2000; 408:740–745.
    [18]Yasuda K, Richez C, Uccellini MB, et al. Requirement for DNA CpG content inTLR9-dependent dendritic cell activation induced by DNA-containing immunecomplexes. J Immunol, 2009;183:3109–3117.
    [19]Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role oftoll-like receptors in the development of chronic inflammatory disease. Annu RevImmunol, 2007;25:419–441.
    [20]Yi AK, Klinman DM, Martin TL, Matson S, Krieg AM. Rapid immune activation byCpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through anantioxidant sensitive pathway. J Immunol,1996,157:5394–5402.
    [21]Lenert P, Brummel R, Field EH, Ashman RF. TLR-9 activation of marginal zone Bcells in lupus mice regulates immunity through increased IL-10 production. J ClinImmunol,2005, 25:29–40.
    [22]Han SS, Chung ST, Robertson DA, Chelvarajan RL, Bondada S . CpGoligodeoxynucleotides rescue BKS-2 immature B cell lymphoma fromanti-IgM-mediated growth inhibition by upregulation of egr-1. IntImmunol,1999,11:871–879.
    [23]Yi AK, Chang M, Peckham DW, Krieg AM, Ashman RF. CpGoligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis andpromote cell cycle entry. J Immunol, 1998,160:5898–5906.
    [24]Lau CM, Broughton C, Tabor AS, et al. RNA-associated autoantigens activate B cellsby combined B cell antigen receptor/Toll-like receptor 7 engagement. J ExpMed,2005;202:1171–1177.
    [25]Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate Bcells by dual engagement of IgM and Toll-like receptors. Nature,2002;416:603–607.
    [26]Hannum LG, Ni D, Haberman AM. A disease-related rheumatoid factor autoantibodyis not tolerized in a normal mouse: implications for the origins of autoantibodies inautoimmune disease. J Exp Med,1996,184(04):1269-1278.
    [27]Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ,Marshak-Rothstein A.Activation of autoreactive B cells by CpG dsDNA. Immunity,2003,19:837–947.
    [28]Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupusautoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. JClin Invest,2005,115:407–417.
    [29]Bjersing JL, Tarkowski A, Lundin S, Collins LV. Synergistic action ofimmunostimulatory DNA and fcgamma receptor IIB-crosslinking on B-cell phenotypeand function. Immunobiology, 2005,210:23–32
    [30]Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficientmice results from strain-specific epistasis. Immunity,2000,13:277–285.
    [31]McGaha TL, Sorrentino B, Ravetch JV. Restoration of tolerance in lupus by targetedinhibitory receptor expression. Science,2005,307:590–593.
    [32]Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR.Toll-like receptor 9-dependent and -independent dendritic cell activation bychromatin-immunoglob-ulin G complexes. J Exp Med,2004,199:1121–1131.
    [33]Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H,Schmid RM, Bauer S, Krug A. U1 small nuclear ribonucleoprotein immune complexesinduce type I interferon in plasmacytoid dendritic cells via TLR7.Blood,2005,107:3229–3234.
    [34]Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, Akira S, Kelly KM,Reeves WH, Bauer S, Krieg AM. Immune stimulation mediated by autoantigenbinding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J ExpMed,2005,202:1575–1585.
    [35]Lande R, Gregorio J, Facchinetti V. Plasmacytoid dendritic cells sense self-DNAcoupled with antimicrobial peptide. Nature 2007;449:564–569.
    [36]Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation byDNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol2007;8:487–496.
    [37]Avalos AM, Kiefer K, Tian J. RAGE-independent autoreactive B cell activation inresponse to chromatin and HMGB1/DNA immune complexes. Autoimmunity2010;43:103–110.
    [38]Christensen SR, Kashgarian M, Alexopoulou L, et al. Toll-like receptor 9 controlsanti-DNA autoantibody production in murine lupus. J Exp Med,2005;202:321–331.
    [39]Wu X, Peng SL. Toll-like receptor 9 signaling protects against murine lupus. ArthritisRheum, 2006;54:336–342.
    [40]Lartigue A, Courville P, Auquit I, et al. Role of TLR9 in anti-nucleosome andanti-DNA antibody production in lpr mutation-induced murine lupus. JImmunol,2006;177:1349–1354.
    [41]Yu P, Wellmann U, Kunder S, et al. Toll-like receptor 9-independent aggravation ofglomerulonephritis in a novel model of SLE. Int Immunol,2006;18:1211–1219.
    [42]Ehlers M, Fukuyama H, McGaha TL, et al. TLR9/MyD88 signaling is required forclass switching to pathogenic IgG2a and 2b autoantibodies in SLE. J ExpMed,2006;203:553–561.
    [43]Tao K, Fujii M, Tsukumo S, et al. Genetic variations of Toll-like receptor 9 predisposeto systemic lupus erythematosus in Japanese population. Ann RheumDis ,2007;66:905–909.
    [44]Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor 7 and TLR9 dictateautoantibody specificity and have opposing inflammatory and regulatory roles in amurine model of lupus. Immunity,2006;25:417–428.
    [45]Savarese E, Steinberg C, Pawar RD, et al. Requirement of Toll-like receptor 7 forpristane-induced production of autoantibodies and development of murine lupusnephritis. Arthritis Rheum,2008;58:1107–1115.
    [46]Lee PY, Kumagai Y, Li Y, et al. TLR7-dependent and FcgammaR-independentproduction of type I interferon in experimental mouse lupus. J ExpMed,2008;205:2995–3006.
    [47]Subramanian S, Tus K, Li QZ, et al. A Tlr7 translocation accelerates systemicautoimmunity in murine lupus. Proc Natl Acad Sci USA,2006;103:9970–9975.
    [48]Bolland S, Yim YS, Tus K, et al. Genetic modifiers of systemic lupus erythematosus inFcgammaRIIB(?/?) mice. J Exp Med,2002;195:1167–1174.
    [49]Richez C, Yasuda K, Bonegio RG, et al. IFN regulatory factor 5 is required for diseasedevelopment in the FcgammaRIIB?/?Yaa and FcgammaRIIB?/? mouse models ofsystemic lupus erythematosus. J Immunol,2010;184:796–806.
    [50]Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression isessential to restrict autoimmunity and dendritic cell proliferation.Immunity ,2007;27:801–810.
    [51]Patole PS, Grone HJ, Segerer S, et al. Viral double-stranded RNA aggravates lupusnephritis through Toll-like receptor 3 on glomerular mesangial cells andantigen-presenting cells. J Am Soc Nephrol,2005;16:1326–1338.
    [52]Hang L, Slack JH, Amundson C, et al. Induction of murine autoimmune disease bychronic polyclonal B cell activation. J Exp Med,1983;157:874–883.
    [53]Castiblanco J, Varela DC, Castano-Rodriguez N, et al. TIRAP (MAL) S180Lpolymorphism is a common protective factor against developing tuberculosis andsystemic lupus erythematosus. Infect Genet Evol,2008;8:541–544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700