无信号交叉口车车冲突检测与消解算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路交叉口行车安全问题一直是世界各国面临的共同难题,一直困扰着众多学者。因为交叉口是道路交通网的重要枢纽点,连接不同方向的道路,确保道路交通网中的车辆实现自由转向,但易引发不同车流的冲突,是道路交通事故多发地。目前,针对交叉口安全问题的研究主要集中在人、车、路、交通环境等交通影响因素及其与交通事故关系分析,并以此为依据改善道路设计、加强交通管控措施等,或者在车辆上安装主被动型安全装置以此来提高道路行车安全,但这些传统的简单的道路设计、交通控制和管理技术只能在一定程度上减少交通流的冲突数或降低冲突的严重程度,并不能有效地防止事故的发生,无法达到交叉口安全效益最优,更难以在本质上解决交通问题,尤其对于提高无信号交叉口安全水平更是无济于事。
     随着全球定位技术、无线通信技术和智能车辆技术的发展,车路协同技术逐渐成为解决交通安全问题的有效手段。车与车之间、车与路之间可以实现信息共享与交互,对交叉口的车车冲突状态进行预测和评估,通过冲突消解,避免碰撞事故的发生;车辆与交通信号灯进行通信,车辆可以获知绿灯的剩余时间,通过判断自车在剩余绿灯时间内是否能安全通过交叉口,防止车辆进入信号灯“困惑区”;在路段同向行驶中,后车可快速接收到前车紧急制动信息,进而避免追尾事故发生;在换道过程中,换道车辆通过感知周围车辆的状态,确定合适的换道时机,并通过无线通信,把换道信息传递给周围车辆,从而提高换道行驶安全性。目前,车路协同技术已经成为全球智能交通领域的研究热点,将引领智能交通的发展,对于大幅度提高道路交通安全具有重要意义。
     本文针对道路交叉口行车安全问题,依托国家863计划“车车交互式协同控制系统关键技术”(课题编号:2011AA110403),以无信号交叉口为研究对象,基于车路协同思想,设计无信号交叉口两车冲突检测方法与冲突消解策略,使车车冲突在向事故演化之前实现消解,消除因冲突造成的交通事故,为实现多车协同控制提供理论基础。研究工作如下:
     (1)基于信息交互的车车冲突识别方法研究。分析了全球定位系统的定位原理和GPS坐标转换过程,解析WGS-84大地坐标系到局部平面坐标系的转换方法;分析车与车之间需要获取的信息种类,包括车辆位置(经纬度)、速度、加速度、航向角以及车辆尺寸等,结合卡尔曼滤波方法和车辆运动学方程,建立了基于卡尔曼滤波的车辆位姿预估方程;搭建了车载信息采集系统,在校园内进行了实车验证,结果表明本文建立的车辆位姿预估方程的准确性;然后建立了考虑车辆外形尺寸的两车冲突检测方法,选取TTC作为冲突危险程度指标,确定了冲突严重程度级别。
     (2)无信号交叉口通行规则库建立。选取两车道十字形交叉口为研究对象,对交叉口区域车车冲突进行了分类,进而分析了由车车冲突导致的交叉口事故特征;以道路交通安全法通行规定为基础,面向交叉口车车冲突消解,研究不同冲突状态下车辆直行、左转、右转等过程的通行规则,建立基于车车通信的交叉口车辆通行规则库。
     (3)两车冲突消解策略研究。通过对两车冲突消解进行理论分析,指出两车冲突是两车在通过交叉口时在时间和空间上彼此之间有叠加的部分,若能适当调节车辆进入交叉口的时间,则会有效避免两车碰撞事故的发生;结合现有交叉口冲突算法的不足,分别针对合流冲突和交叉冲突,根据所建立的无信号交叉口通行规则,以车辆安全通行为优化目标,建立交叉口合流冲突消解模型和交叉冲突消解模型,通过优化不同车辆通过交叉口的时间与次序,实现交叉口车车冲突的消解;将冲突消解算法转换成Simulink逻辑图进行求解,为后续仿真提供基础。
     (4)交叉口多车协同冲突消解仿真。研究了基于信息交互的多车协同问题,建立了交叉口多车协同冲突消解决策流程;使用PreScan软件搭建了多车协同仿真实验系统,包括交叉口交通环境和车辆模型的搭建;设计仿真方案,包括两车冲突消解、三车冲突消解和四车冲突消解,对车车冲突检测方法和冲突消解模型进行仿真验证,将优先级别最高的车辆运行状态作为输入,通过冲突消解模型的计算,优先级别较低的车辆均可获得本身的调速方案,且实现不停车通过交叉口,仿真结果表明了提出的车车冲突消解算法的有效性;分析了关键参数(车辆外形尺寸、车辆定位误差、信息传输迟滞等)对冲突消解策略的影响,给出了误差校正方法和冲突消解修正模型,为进一步提高冲突消解策略的可靠性奠定了基础。
Traffic safety on the road intersection has been a common challenge in various countries,and the problems of intersections has troubled many scholars. Because the intersectionscomposed by different directions of the road is an important traffic hub in a road net, and manyvehicles steer freely at the hub, which is easy to produce different traffic conflicts. So the traffichub is accident-prone area. Now, the research beased on intersection safety is focused on thetraffic impact factors, such as people, vehicle, road and transportation environment and theirrelationships with traffic accident. In order to improve the traffic safety, researchers use theanalysis results to perfect the road design, improve the traffic control measures, or install theactive/passive safety devices on the vehicles. But the traditional design, control andmanagement technology can only take effect on some problems in a certain extent, such asreducing the number and severity of traffic flow conflict, which couldn't prevent accidents,achieve the optimal safety profits, or even solve the traffic problems in essence effectively,especially have little effect to improve traffic safety at unsignalized intersections.
     With the technical development of the GPS, wireless communication and intelligentvehicle, VII (Vehicle Infrastructure Integration) has been becoming an effective means to solvethe traffic problem. Under the VII environment, information sharing and interactivity can beachieved via V2V (Vehicle to Vehicle communication) and V2I (Vehicle to Infrastructurecommunication). Multi-vehicles cooperation can accomplish risk detection and evaluation,avoiding the traffic accidents. For example, the vehicles at intersection can communicate withthe traffic lights via information sharing and interactivity can be realized via V2V and V2I, toget acknowledge whether can it passes the green-signalized intersection safely, and to get rid ofdilemma zone; The leading vehicle conveys its starting information to the following vehicle,toinduce the waiting time and increase the intersection capacity. Between the running vehicles tothe same direction, the leading vehicle conveys its braking information to the following vehicle,avoiding the rear-end accidents. In the changing line process, the vehicle determines the propertiming to change line by sensing the status of vehicles around, to increase the driving safety.Nowadays, VII has been the research focusing on global intelligent traffic field, leading thedevelopment of the intelligent traffic, and greatly improving the traffic safety.
     This dissertation, which is sponsored by the National High Technology Research andDevelopment Program (863) (No. 2011AA110403), focus on the traffic safety peoblem on road intersection. On the basis of VII, two vehicles conflict detection and resolution strategies at anunsignalized intersection are innovatived, which eliminate conflicts before they turn intoaccidents. It provides a theoretical basis for the realization of multi-vehicle cooperative control.The major research work includes the following aspects:
     (1) Vehiceles conflict identification method based on vehicle to vehicle communicationis researched. At first, vehicle appropriate positioning method and technique of GPS coordinatetransformation are analyzed. Then the problem about the coordinate transformation fromWGS84 coordinate system to the plane coordinate system is discussed.The kinds of informationthat need to get between the vehicles is determined, including vehicle location (latitude andlongitude), speed, acceleration, heading angle, and vehicle size. Kalman filtering method andvehicle kinematic equations are analysed, and a vehicle trajectory prediction equation isestablished based on Kalman filter. After vehicle information collection system is builded, realvehicle experiment is carried out. The experiment results show that accuracy of the proposedvehicle trajectory prediction equation. Then a vehicle collision detection method consideringthe vehicle’s dimension is established, and TTC (Time to collision) is selected as an indicator ofthe degree of vehicle conflict risk.
     (2) Traffic rule of unsignalized intersection is designed. The vehicles conflicts at thecrossing are classified, and then the characteristics of intersection accidents caused by thevehicles conflicts are analyzed. Based on the Road Traffic Safety Law, passage rules of theintersection when the vehicle will go straight, turn left, turn right and so on are researched. Andthen passage rules of the unsignalized intersection are designed.
     (3) Vehicle conflicts resolution models are designed. Atheoretical analysis about conflictresolution of the two vehicles is carried out. It is pointed out that the vehicle conflict, in essence,is two vehicles which will pass through the intersection at the same time, which means that theyhave the superimposed part of time and space. If one of them appropriately regulates the timeof entering the intersection, it will effectively prevent two-vehicle collision accident. Afteranalyzing disadvantages of the existing intersection collision algorithm, the confluence conflictand cross-conflict resolution model are designed according to the unsignalized intersectionrules to make sure the veihicles at intersection driving safely. These models determine the timeand sequence of passing through the intersection for different vehicles.
     (4) Simulation experiments of multi-vehicle cooperative conflict resolution atunsignalized intersection are researched. Multi-vehicle coordination problem under vehicle tovehicle wireless communication environment is reseached, and multi-vehicle cooperativeconflict resolution decision-making process at unsignalized intersection is designed. Then amulti-vehicle coordination control simulation system is built by using PreScan software and the vehicles conflict detection and conflict resolution model simulation experiment is carried out.In the simulation experiment, three cases of multi-vehicle cooperative conflict resolution aredesigned. The vehicle which has low priority should adjust its velocity according to the statusof the vehicle which has high priority to pass the intersection. The simulation results show thatall of the vehilcles can pass through the intersection without collision, which means that motionof individual vehicles can be conducted in a safer, more deterministic and smooth mannerunder cooperative conflict resolution guidance. Simulation results indicate that the proposedconflict resolution algorithms have the potential for actual applications in driving at blindcrossing. In addition, the factors (Vehicle dimensions, vehicle positioning errors, informationtransmission delay, etc.) that affect the conflict resolution strategies are analyzed, and thenfurther amendments of the conflict resolution model are researched, which provides a basis forimproving the efficiency and reliability of the conflict resolution strategies.
引文
[1] European Road Safety Observatory,“Traffic Safety Basic Facts 2006 Junctions”, SafetyNet,Project co-financed by the European Commission, January 2007.
    [2]管晓伟.基于交通冲突技术的平面交叉口安全评价研究[D].北京交通大学硕士学位论文,2007,5.
    [3]苏展图,郭云开.城市道路平面交叉口安全改善措施[J].公路与汽运,2007(1):46-48.
    [4]顾宇倩.公路平面交叉口交通安全设计[J].现代管理科学,2008,6:53-55.
    [5] Wang Yunpeng, E Wenjuan, Tian Daxin, Lu Guangquan, Yu Guizhen. Vehicleinfrastructure integration system for improving ramp merging safety[C]. Proceedings of the1st Int. Conf. on Transportation Information and Safety,2011, 7: 1205-1211.
    [6]王云鹏,易振国,夏海英,田大新.基于流行病模型的车路协同预警信息交互方法[J].北京航空航天大学学报,2011,37(5):515-518.
    [7]王笑京.智能交通与道路交通安全-发展动态及建议[J].第四届中国智能交通年会论文集,2008:15-26.
    [8] Raza H. and Ioannou P.“Vehicle following control design for automated highway systems”.Proceedings of 1997 IEEE 47th Vehicular Technology Conference, Phoenix, AZ, USA, Vol2, pp 904-908. 1997.
    [9] Bishop, R. A survey of intelligent vehicle applications worldwide[C]. Proceedings of theIEEE intelligent Vehicles Symposium 2000, 2000:25-30.
    [10]Misener, J.A.,Shladover, S.E. PATH Investigations in Vehicle-Roadside Cooperation andSafety: A Foundation for Safety and Vehicle-Infrastructure Integration Research.Proceedings of the IEEE ITSC 2006,2006:9-16.
    [11]Shladover, S. Cooperative (rather than autonomous) vehicle-highway automation systems.Intelligent Transportation Systems Magazine, IEEE,2009,9:10-19.
    [12]Arnaout, G.M., Khasawneh, M.T., Jun Zhang, Bowling, S.R. An IntelliDrive Applicationfor Reducing Traffic Congestions using Agent-Based approach. Proceedings of the 2010IEEE Systems and Information Engineering Design Symposium,2010:221-224.
    [13]http://www.intellidrive.usa.org/.
    [14]Dashtinezhad S. , Nadeem T. , Dorohonceanu B., Borcea C., Kang P., Iftode L. TrafficView:a driver assistant device for traffic monitoring based on car-to-car communication.Vehicular Technology Conference, 2004,5:2946-2950.
    [15]Shladover S.E. AHS Research at the California PATH Program and Future AHS ResearchNeeds. Proceedings of the 2008 IEEE International Conference on Vehicular Electronicsand Safety, 2008, 9:4-5.
    [16]http://www.path.berkeley.edu/Research/Safety-Ops.htm.
    [17]Tsugawa S. Inter-vehicle communications and their applications to intelligent vehicles: Anoverview. in Proc. IEEE Intell. Veh. Symp., 2002, 2:564–569.
    [18]Tamura K., Hirayama M. Toward Realization of VICS-Vehicle Information andCommunications. Proceedings Of The IEEE-IEE Vehicle Navigation And InformationSystems Conference, 1993:72-77.
    [19]Butsuen T., Yoshioka T., Okuda, K. Introduction of the Mazda Advanced Safety Vehicle.Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, 1996, 9:19-20.
    [20]Takahashi A., Asanuma N. Introduction of HONDA ASV-2(Advanced safety Vehicle-Phase2). Proceedings of the IEEE Intelligent Vehicles Symposium 2000, 2000, 10:694-701.
    [21]Kikuchi H, Kawasaki S, Nakazato G. ITS in Japan: Current status and future directions.The 7th World Congress on Intelligent Transport Systems, 2000, 3149..
    [22]李瑞敏.日本ITS的应用和实施[J].中国交通信息产业, 2005,2:62-66.
    [23]Kubota K.,Yamaguchi K., and Mashimo H. A study of system architecture for the advancedcruise-assist highway system (AHS). Proceedings of 1999 IEEE/IEEJ/JSAI InternationalConference on Intelligent Transportation Systems, 1999, 10:335-341.
    [24]Nakanishi T.,Yendo T.,Fujii T.,and Tanimoto M. Right Turn Assistance System atIntersections by Vehicle-Infrastructure Cooperation. Intelligent Vehicles Symposium 2006,2006:100-105.
    [25]唐克双.日本ITS的最新动向—改善道路交通安全的路车协调系统的开发和运用[J].城市交通,2007,5(5):97.
    [26]http://www.itsineurope.com/home/index.cfm.
    [27]http://www.esafetysupport.org.
    [28]Communication and Localization for a Cooperative eSafety-System. 4th IEEE Workshopon Intelligent Data Acquisition and Advanced Computing Systems: Technology andApplications, 2007:682-685.
    [29]http://www.prevent-ip.org/en/links/consortium/.
    [30]Amditis A., Bertolazzi E.,Bimpas M., Biral F., Bosetti P., Da Lio, M., Danielsson L.,Gallione A., Lind H., Saroldi A., Sjogren A. Holistic Approach to the Integration of SafetyApplications: The INSAFES Subproject Within the European Framework Programme 6Integrating Project PReVENT. IEEE TRANSACTIONS ON INTELLIGENTTRANSPORTATION SYSTEMS, 2010:554-566.
    [31]Kosch T., Kulp I., Bechler M., Strassberger M., Weyl B., Lasowski R. CommunicationArchitecture for Cooperative Systems in Europe. IEEE Communications Magazine,2009,47(5):116-125.
    [32]CarTalk2000 [EB/OL] http://www.cartalk2000.net. 2001.
    [33]Reichardt D., Miglietta M., Moretti L., Morsink P., Schulz W. CarTALK 2000: Safe andcomfortable driving based upon inter-vehicle-communication. IEEE Intelligent VehicleSymposium 2002, 2002,2:545-550.
    [34]Car-to-Car Communication Consortium (C2C-CC) Website; http://www.car-2-car.org/
    [35]Franck, Laurent and Gil-Castineira, Felipe. Using Delay Tolerant Networks for Car2Carcommunications. IEEE International Symposium on Industrial Electronics, 2007,7:2573-2578.
    [36]Sukuvaara T. and Nurmi P. Wireless traffic service platform for combinedvehicle-to-vehicle and vehicle-to-infrastructure communications. IEEE WirelessCommunications Magazine,2009,16(6):54-61.
    [37]孙一飞.多智能车辆系统的多车协调和协作算法仿真研究[D].上海:上海交通大学硕士学位论文,2007,6.
    [38]Hedric J.K., McMahon D.H., Swaroop D., Garg V., Gerdes J.C., etc. Longitudinal ControlDevelopment for IVHS Fully Automated and Semi-automated Systems: Phase I, Mou-101,PATH Final Report, 1994.
    [39]Li L., Wang F.. Cooperative Driving at Adjacent Blind Intersections.2005 IEEEInternational Conference on Systems, Man and Cybernetics, 2005, 1: 847.
    [40]Morioka Y.i, Sota T., Nakagawa M.. An Anti-Car Collision System Using GPS and 5.8GHzInter-Vehicle Communication at an Off-Sight Intersection [J]. IEEE VTS-Fall VTC 2000,2000,5:2019- 2024.
    [41]Miller R., Huang Q. An Adaptive Peer-to-Peer Collision Warning System. IEEE 55thVehicular Technology Conference, 2002, 1: 317-322.
    [42]Huang Q., Miller R., McNeille P., Dimeo D., and Roman G.. Development of apeer-to-peer collision warning system. Ford Techincal Journal, 2002,5(2).
    [43]Dogan A.,Korkmaz G.,Liu Y.,Ozgiiner F., Ozgiiner U., Redmill K., Takeshita O.,Tokuda K.. Evaluation of Intersection Collision Warning System Using an Inter-vehicleCommunication Simulator. 2004 IEEE Intelligent Transportallon Systems Conference,2004, 10:1103-1108.
    [44]Chan C., Bougler B.. Evaluation of CooperativeRoadside and Vehicle-Based DataCollection for Assessing Intersection Conflict. Proceedings of Intelligent VehiclesSymposium, 2005:165-170.
    [45]Bouraoui L., Petti S., Laouiti A., Fraichard T. and Parent M.. Cybercar cooperation for safeintersection. Proceedings of the IEEE ITSC 2006,2006,9:456-461.
    [46]Li Li, Fei-yue Wang. Cooperative Driving at Blind Crossings Using IntervehicleCommunication. IEEE Transactions on Vehicular Technology, 2006, 55(6):1712-1724.
    [47]Huang J., Tan H.. Vehicle Future Trajectory Prediction with a DGPS/INS-based PositioningSystem. Proceedings of the 2006 American Control Conferce, 2006,6: 5831-5836.
    [48]Huang J., Tan H.. DGPS-Based Vehicle-to-Vehicle Cooperative Collision Warning:Engineering Feasibility Viewpoint. IEEE Transactions On Intelligent TransportationSystems, 2006, 7(4): 415-428.
    [49]Huang J., Tan H.. Error Analysis and Performance Evaluation of a Future-Trajectory-BasedCooperative Collision Warning System. IEEE Transactions On Intelligent TransportationSystems, 2009, 10(1): 175-180.
    [50]Sato Y., Shimonaka Y., Maruoka T., Wada T., Okada H.. Vehicular Collision AvoidanceSupport System v2 (VCASSv2) by GPS+INS Hybrid Vehicular Positioning Method. 2007Australasian Telecommunication Networks and Applications Conference, 2007, 12:29-34.
    [51]Ueki J., Mori J.,Nakamura Y., Horii Y., Okada, H. Development of vehicular-collisionavoidance support system by inter-vehicle communications - VCASS. 2004 IEEE 59thVehicular Technology Conference, 2004,5: 2940 - 2945.
    [52]Shimonaka Y., Tasaka S., Hatta Y., Wada T., Okada H.. Accuracy Improvement ofVehicular Collision Avoidance Support System (VCASS) for the next generation ITS.IEEE Wireless Communications and Networking Conference, 2007,3:2517-2522 .
    [53]Ashil S. and Lamine M.. Cooperative Decentralized Intersection Collision AvoidanceUsing Extended Kalman Filtering. IEEE Intelligent Vehicles Symposium, 2009,6:977-982.
    [54]Ammoun S., Nashashibi F.. Real time trajectory prediction for collision risk estimationbetween vehicles. IEEE 5th International Conference on Intelligent ComputerCommunication and Processing, 2009,8:417-422.
    [55]Javier I., Stephanie L., Abdelkader M. and Sylvain R.. Vehicle to Vehicle communicationsapplied to Road Intersection Safety, Field Results.
    [56]Javier A., Vicente M., JoshuéP., Enrique O., Carlos G., Teresa de Pedro. Autonomousvehicle control systems for safe crossroads. Transportation Research Part C: EmergingTechnologies, 2011, 19 (6):1095-1110.
    [57]Javier A.. Cooperative Driving Manoeuvres Among Autonomous Vehicles. Ph.D. Thesis.Facultad de Informática, Universidad Politécnica de, December 2009.
    [58]Javier A., Vicente M., Enrique O., JoshuéP., Carlos G., Teresa de Pedro. Cartography forcooperative manoeuvres: autopia’s new cartography system for cooperative manoeuvresamong autonomous vehicles [J]. Journal of Navigation 64, 2011, 141–155.
    [59]Wang Yunpeng, E Wenjuan, Tian Daxin, Lu Guangquan, Yu Guizhen. Highway curvespeed precaution system based on VII[C]. Proceedings of the 1st Int. Conf. onTransportation Information and Safety, ICTIS 2011, 7: 1189-1196.
    [60]Tian Daxin, Wang Yunpeng,Lu Guangquan, Yu Guizhen,Liu He. A dynamic trafficinformation system based on VANETs[C]. Proceedings of the 1st Int. Conf. onTransportation Information and Safety, 2011:897-903.
    [61]Tian Daxin, Wang Yunpeng,Lu Guangquan, Yu Guizhen. A vehicular ad hoc networksintrusion detection system based on BUSNet[C]. Proceedings of the 2010 2nd InternationalConference on Future Computer and Communication, ICFCC 2010, 2010, 1:1225-1229.
    [62]王云鹏,易振国,田大新,夏海英.基于车路协同系统的安全信息交互算法[C].第六届中国交通高层论坛,北京, 2010.10:311-314.
    [63]Tian D.X., Wang Y.P., Ma K.F.. Performance Evaluation of Beaconing in DenseVANETs[C].IEEE Youth Conference on Information, Computing and Telecommunications,Beijing, China, Nov. 28-30, 2010: 97-100.
    [64]Tian D.X., Wang Y.P., Lu G.Q., Yu G.Z.. A VANETs Routing Algorithm Based onEuclidean Distance Clustering[C]. Proceedings of International Conference on FutureComputer and Communication (ICFCC), Wuhan, China, May, 2010:183-187.
    [65]刘刚.车辆间的安全距离报警和通信技术[D].清华大学硕士学位论文,2004.
    [66]王祺,胡坚明,慕春棣,王易之.一种车路协同系统微观仿真平台[J].公路交通科技,2011,28(4):118-123.
    [67]姚佼,杨晓光,朱彤,时柏营.基于全息信息环境的车路协调系统试验平台[J].公路交通科技,2009,26:39-43.
    [68]罗亮红.基于ZigBee的车路协同关键技术研究[D].华南理工大学硕士学位论文,2010,6.
    [69]彭登,徐建闽,林培群.城市车路协同系统的通信及定位技术研究[J].计算机工程与设计,2011,32(3):859-862.
    [70]王云鹏,田大新,鲁光泉,余贵珍.一种用于警示驾驶员的车路协同装置,公开号CN201749568U.
    [71]彭新荣.基于智能小车平台的多车协作研究[D].上海交通大学硕士学位论文,2010,2.
    [72]万年丰.智能车多车协作算法研究[D].上海交通大学硕士学位论文,2009,12.
    [73]黄罗毅,吴志周,杨晓光,王吟松.基于仿真的IEEE 802.11p在车路协同中的适应性研究[J].交通信息与安全,2011,29(3):123-126.
    [74]杨晓光,朱彤,姚佼,白玉,马国.道路交叉口车路协调实验系统设计与实现[J].交通信息与安全,2010,28(2): 47-51.
    [75]李江,傅晓光,李作敏.现代道路交通管理.北京:人民交通出版社,2000:22-28.
    [76]刘伯莹,姚祖康.公路设计工程师手册.北京:人民交通出版社,2002.
    [77]项乔君,卢川,吴群,陆键,马永锋.无信号控制平面交叉口交通冲突预测模型研究[J].公路交通科技,2009,26(5):132-135.
    [78]魏朗,刘浩学.汽车安全技术概论.北京:人民交通出版社,1999.
    [79]Behnam K.. Some applications of wireless communications in Intelligent Vehicle HighwaySystems. 1996 IEEE 46th Vehicular Technology Conference, 1996, 3:1796-1800.
    [80]Edwards, John. Signal Processing: The Driving Force Behind Smarter, Safer, and MoreConnected Vehicles. IEEE Signal Processing Magazine, 2011, 28(5): 8-13.
    [81]李芳.基于交通冲突技术的交叉口安全评价[J].交通科技与经济,2011,13(5).
    [82]王雷杰.陀螺仪-全球定位的汽车组合导航算法的研究[D].吉林:吉林大学, 2004.
    [83]刘振峰.浅析智能车辆的GPS定位和推算定位技术[J].科技情报开发与经济,2007,17(5):225-226.
    [84]蒋鸿龙. TD-SCDMA基站时间同步系统设计[D].宁夏大学硕士学位论文,2009.
    [85]徐绍铨,张华海,杨志强,王泽民.GPS测量原理及应用[M].武汉大学出版社,2002.
    [86]董锐.车辆监控系统中的坐标转换及数据库应用[D].哈尔滨工程大学硕士学位论文,2003,1.
    [87]屠君君.基于FPGA的GPS定位信息处理系统设计[D].江苏大学硕士学位论文,2010.
    [88]罗德安.一种车载GPS系统坐标转换公式及其应用[J]..西南交通大学学报,2001,4.
    [89]董金壮,赵渊新.高斯投影变换程序的编写[J].新疆有色金属,2003:8-10.
    [90]谢建平.基于多车协作感知的主动安全技术研究[D].上海交通大学硕士学位论文,2009.
    [91]高伟,吴文凯,袁超.高斯投影坐标变换[J].钢铁技术,2008,1:4-8.
    [92]徐绍铨,张华海,杨志强等.GPS测量原理及应用[M].武汉大学出版社,2002年.
    [93]Huang J., Tan H.. Vehicle Future Trajectory Prediction with a DGPS/INS-based PositioningSystem. Proceedings of the 2006 American Control Conference,Minneapolis, Minnesota,USA, June 14-16, 2006:5831-5836.
    [94]管欣,闫冬,高振海.基于惯性导航和实时差分全球定位系统的汽车运动状态测试系统[J].吉林大学学报(工学版),2006,36(1): 14-19.
    [95]邓自立.最优估计理论及其应用建模、滤波、信息融合估计[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [96]李延社.车载心组合导航卡尔曼滤波算法研究[D].四川大学硕士学位论文,2006,4.
    [97]秦永元.卡尔曼滤波与组合导航原理[M].西安工业大学出版社,2004:1-3,33-40.
    [98]Maruoka T., Sato Y., Nakai S., Wada T., Okada H.. An Extended Collision JudgmentAlgorithm for Vehicular Collision Avoidance Support System (VCASS) in Advanced ITS.IEEE 68th Vehicular Technology Conference, 2008:1-5.
    [99]Miller R., Huang Q.. An Adaptive Peer-to-Peer Collision Warning System. IEEE 55thVehicular Technology Conference, 2002, 1:317-321.
    [100] Salim F., Cai L., Indrawan M. and Seng Wai Loke. Road Intersections as PervasiveComputing Environments: towards a Multiagent Real-Time Collision Warning System.Sixth Annual IEEE International Conference on Pervasive Computing andCommunications, 2008, 621–626.
    [101]胡佳.交叉口汽车冲突及避撞方式有效性分析[D].湖南大学硕士学位论文,2004,10.
    [102] Bernd R., Marian A. O., Michael S., et al.. Requirements for intersection safetyapplications. INTERSAFE Deliverable D40.4, 28 Oct. 2005.
    [103]中华人民共和国道路交通安全法(2011修正).
    [104]李江等,交通工程学[M].北京:人民交通出版社. 2002. 108-109.
    [105]高海龙,王炜,常玉林,项乔君.无信号交叉口临界间隙的理论计算模型[J].中国公路学报,2001,14(2):78-80.
    [106] Liu xiaoming, Zheng shuhui. Study of Vehicle-cross Action Model for UnsignalizedIntersection Based on Dynamic Game. Mechanic Automation and Control Engineering(MACE), 2010: 1297-130.
    [107]刘小明,王飞跃.基于Agent的无灯控交叉路口插车仿真研究[J].计算机仿真,2004,21(1):105-108.
    [108] Yang Rongji. Dynamic Cooperation: A Paradigm on Cutting-edge of Gamc Theory [M],China Market Press, 2007.
    [109]肖永剑,杨建国,王兆安.基于占先度的驾驶员冲突避碰决策模型[J].交通运输工程学报, 2009,9(5):116-120.
    [110]孙一飞,杨明,杨汝清.基于冲突表的多智能车路口协调算法及其仿真实现.计算机应用研究, 2007.
    [111]张德兆,王建强,李升波,李克强.基于风险状态预估的弯道防侧滑超速预警系统[J].公路交通科技,2009,12:44-48.
    [112] LEE Y. H., and DENG, W.. Speed Control Method for Vehicle Approaching andTravelling on a Curve.US Patent, 2007-06-28.
    [113] Wang Yunpeng, E Wenjuan,Tian Daxin, Lu Guangquan, Yu Guizhen. Highway CurveSpeed Precaution System Based on VII[C]. Proceedings of the 1st Int. Conf. onTransportation Information and Safety, ICTIS 2011, 7: 1189-1196.
    [114]许洪国.汽车运用工程[M].人民交通出版社,2009.1.
    [115]王世锦,隋东.低空空域飞行冲突风险研究[J].西南交通大学学报,2010,45(1):116-123.
    [116]朱代武.低空空域飞行冲突避让算法[J].交通运输工程学报,2005,5(3):73-75.
    [117]谢强德.路口多车协作算法研究及硬件仿真[D].上海交通大学硕士学位论文,2011,12.
    [118]苗强,汤晓东,王大志,刘奇,Martijn,Tideman,刘学军,李佳琦,朱西产.基于PRESCAN软件的汽车主动安全系统概念设计[C]. INFATS Proceedings of the 9thInternational Forum of Automotive Traffic Safety,2011.
    [119] Gietelink O.J., Labibes K., Verburg D.J., andOostendorp A.F. Pre-Crash SystemValidation with PRESCAN and VEHIL[C]. 2004 IEEE Intelligent Vehicles Symposium,2004:913-918.
    [120] PreScan website. Available online at: www.tno.nl/prescan.
    [121]鲍远律,海涛.车辆轨迹对数字交通地图精确性校验的研究[J].微型机与应用,2004,12:48-49.
    [122]刘艳,鲍远律,左峻疆.基于GIS的导航系统地图匹配算法[J].微型机与应用,2005,6:52-53.
    [123]董红召,陈炜烽,郭明飞,陈宁.基于车路一体化的车辆主动避撞系统关键技术的研究[J].汽车工程,2010,32(11):984-988.
    [124]马俊.高速公路行车安全距离的分析与研究[J].西安公路交通大学学报,1998,18( 4):90-94.
    [125] Fei Y., Adams M., Roy S.. V2V Wireless Communication Protocol for Rear-EndCollision Avoidance on Highways[C]. IEEE InternationalConference, 19-23May 2008:375-379.
    [126]董红召,陈炜烽,陈宁,郭明飞.车路集成环境下车辆防撞预警安全状态判别模型的研究[J].汽车工程,2011,33(9):777-781.
    [127] Ahn S., Michael J Cassidy, et al. Verification of a SimplifiedCar-following Theory[J].Transportation Research,Part B,2004,38:431-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700