玉米耐旱QTL定位和遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料和工业原料作物。在我国它是第二大作物,每年种植面积约2400万公顷,总产量约1.15亿吨,在国民经济特别是农业生产中占有举足轻重的地位。
     干旱是玉米各生长发育期经常遇到的非生物逆境,也是当今世界玉米生产面临的首要问题。中国玉米主要分布在北方旱作区和南方山地,许多玉米产区缺少可靠的灌溉条件,每年因干旱造成玉米减产10%-15%左右,重者达20%-30%。干旱已成为我国玉米生产可持续发展的主要制约因素。选育优良的耐旱玉米杂交种是当前玉米遗传育种的重要目标之一。
     玉米耐旱性是受多基因控制的数量性状,采用传统的育种方法进行玉米耐旱育种效率较低。本研究以我国推广面积最大,并具有广泛生态适应性和较强耐旱性的优良玉米自交系X178和美国玉米带坚杆综合种类型优良自交系B73为试材,配制F_2作图群体,在干旱胁迫与非胁迫条件下,于山西临汾和海南三亚两地,调查F_3家系田间抗旱相关性状的表型,对开花期、产量以及株高和穗位高与耐旱性相关的QTL进行了定位和遗传分析,讨论了不同遗传背景的作图群体所定位玉米耐旱QTL的一致性和QTL之间的互作对耐旱性的影响。旨在定位玉米成株期与耐旱性有关的数量性状位点(QTL),分析它们的遗传效应,为玉米耐旱性状的分子标记辅助选择提供遗传学理论依据和分子标记。获得的主要结果如下:
     1.利用121对SSR引物构建了覆盖玉米基因组1379.5cM的分子标记连锁图,平均图距11.4cM,最小图距1.3cM,最大图距35.7cM。其中第1染色体有15个标记,第2染色体13个,第3染色体13个,第4染色体14个,第5染色体9个,第6染色体12个,第7染色体11个,第8染色体14个,第9染色体13个,第10染色体7个。基于分子标记排列顺序和间距的比较,本实验构建的连锁图谱与目前国际上发表的高密度的SSR图谱非常一致。
     2.多态性引物中有12.4%的引物在F_2群体中出现偏分离。找到了一些偏分离的热点区域,进一步讨论了偏分离对确定QTL的位置和效应的影响。
     3.正常灌溉条件下检测到散粉期QTL 6个,共解释46.0%的性状变片,单个QTL的
Maize is an important crop in china .Water availability is one of the major limiting factors for maize growth. In China, maize is grown mainly under drought conditions (Northern-Western China), there were about 10%-30% maize yield losses.It is a big challenge for breeders to improve and develop drought tolerance cultivars.Drought tolerance is a trait that is influenced by multiple genes. It is not very efficient to improve drought tolerance of maize hybrids by traditional methods. A population of 234 F2 plants, derived from the cross X178×B73, was used in this study. X178 is an elite inbred line widely utilized in China. Field experiments had been done in Linfen ,Shanxi and Sanya, Hainan. QTLs for flowering time, yield, plant height and ear height were identified by using SSR markers. The consensus in results of QTLs location among difference genetic background was discussed. The aim of current study was to explore genetics base on drought tolerance in maize and gain useful molecular markers for molecular-assisted slection. The results are as following.1. The linkage map including 121 SSR markers covered 1379.5 cM in length with an average marker interval of 11.4cM, minimal interval of 1.3 cM and maximal interval of 35.7cM. The order of markers in this map was identical to the order of corresponding markers in IBMmap and their bins on the chromosomes.2. Ratio of segregation distortion among SSR markers was 12.4% in F2 population. Several loci for segregation distortion were identified. Influence of segregation distortion on the result of QTL analysis.3. Under well-watered condition, Six QTLs for male flowering time, 6 QTLs for female flowering time, 4 QTLs for anthesis-silking interval, 3 QTLs for yield, 5 QTLs for one hundred kernel weight, 4 QTLs for kernel number per ear, 3 QTLs for kernel weight per ear. 3 QTLs for ear weight, 5 QTLs for ear number per plant, 16 QTLs for plant height and 11 QTLs for ear weight.4. Under water-stressed condition, 9 QTLs for male flowering time, 6 QTLs for female flowering time, 6 QTLs for anthesis-silking interval, 1 QTLs for yield, 5 QTLs for one
    hundred kernel weight, 2 QTLs for kernel number per ear, 1QTLs for kernel weight per ear, 4 QTLs for ear weight, 2 QTLs for ear number per plant, 17 QTLs for plant height and 10 QTLs for ear weight.5. It was revealed that thirty eight QTLs referred to drought tolerance in maize by comparing the difference between QTLs detected under both well-watered and water-stressed condition, of which 6 QTLs for male flowering time, 2 QTLs for female flowering time, 4 QTLs for anthesis-silking interval, 1 QTLs for yield, 4 QTLs for one hundred kernel weight, lQTLs for kernel number per ear, 1 QTLs for kernel weight per ear, 5 QTLs for cob weight per ear , 3 QTLs for ear weight, lQTLs for ear number per plant, 5 QTLs for plant height and 6 QTLs for ear weight.6. Two-way ANOVA showed that interaction between pair of marker loci contributed to phenotype of trait. It was suggested that the epistasis contributed to the phenotypic variation of plant height. 17 and 38 pairs of loci influenced significantly plant height under well-watered condition, according to field data from Linfen and Sanya respectively, 20 and 47 pairs of loci underwater-stressed condition, as well.7. It was suggested that heterozygocity played an important role in heterosis. The result showed that correlation coefficient between plant height and general heterozygocity was lower than that between plant height and specific heterozygocity.
引文
陈军,戴俊瑛.1996.干旱对不同耐性玉米品种光合作用及产量的影响.作物学报,22(6):757-762
    方宣钧.吴为人,唐纪良.2001.作物DNA标记辅助育种.北京:科学出版社
    关义新,戴俊英,徐世昌,黄成星.1997.玉米花期干旱及复水对植株补偿生长及产量的影响.作物学报,23(6):740-745
    梁宗锁,康绍忠,高俊风,张建华.2000.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响.作物学报,26(2):250-255
    宋凤斌,戴俊英,张烈,黄国坤,顾宜晴.1998.水分胁迫对玉米花粉活力和花丝受精能力的影响.作物学报,24(3):368-372
    宋凤斌,戴俊英.2000.干旱对玉米雌穗生长发育和产量的影响.吉林农业大学学报,22(1):18-22
    张宝玉,徐世昌,宋凤斌,张威,戴俊英.1996.玉米抗旱基因型鉴定方法和指标的探讨.4(3):19-22
    张世煌,白丽,郭珍,石德权.1997.玉米育种研究的发展方向.作物杂志,(5):5-8
    张敬贤,李俊明,崔四平,魏建昆.1990.玉米细胞保护酶活性对苗期干旱的反应.华北农学报,5(增):19-23。
    唐连顺,李广敏.1995.干旱对玉米杂交种及其亲本自交系幼苗膜脂过氧化及其保护酶活性的影响.作物学报,21(4):509-512
    王永锐.1995.水稻生理育种.北京:科学技术出版社,
    王泽立,张恒悦,阎先喜,及秀玲.李新征.1998.玉米抗旱品种的形态解剖学研究.西北植物学报,18(4):581-583
    王畅,林秋萍,贡冬花,李谱安,张赞平,付国占.1990.夏玉米的干旱适应性及其生理机制的研究.华北农学报,5(4):54-60
    徐世昌,戴俊英,沈秀瑛,王莲之,崔钦,朱玉伦.1995.水分胁迫对玉米光合性能及产量的影响.作物学报,21(3):356-363
    严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.2003.不同发育时期玉米株高QTL的动态分析.科学通报,48(18):1959-1964
    余四斌,李建雄,徐才国,谈移芳,高友军,李香花,张启发.1998.上位性是水稻杂种优势的 重要遗传基础.中国科学(C辑),28:333-342
    赵天宏,沈秀瑛,杨德光,马秀芬.1999.水分胁迫对玉米小花分化期叶片蛋白质的影响初探.国外农学——杂粮作物,19(5):22-25
    庄杰云,樊叶杨,吴建利,夏英武,郑康乐.2001.超显性效应对水稻杂种优势的重要作用.中国科学(C辑),31:106-113
    Abler BS, Edwards M, Stuber CW. 1991. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci., 31:267-274
    Agrama HAS, Moussa ME, 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L. ). Euphytica, 91:89-97
    Ajmone-Marsan P, Gomi C, Chitto A, Redaelli R, Vijk RV, Stam P, Motto M. 2001. Identification of QTLs for grain yield and grain-related traits of maize (Zea rnays L. ) using an AFLP map, different testers, and cofactor analysis. Theor. Appl. Genet., 102: 230-243
    Ajmone-Marsan P, Monfredini G, Brandolini A, Melchinger AE, Garay G, Motto M. 1996. Identification of QTL for grain yield in an elite hybrid of maize: Repeatability of map position and effects in independent samples derived from the same population. Maydica, 41:49-57
    Ajmone-Marsan P, Monfredini G, Ludwing WF, Meichinger AE, Franceschini P, Pagnotto G, Motto M. 1995. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor. Appl. Genet., 90:415-424
    Andrade FH, Vega C, Uhart S, Cidlo A, Cantarero M, Valentinuz O. 1999. Kernel number determination in maize. Crop Sci., 39: 453-459.
    Austin, DF and Lee, M. 1996. Comparative mapping in F-2:3 and F-6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet., 92:817-826
    Austin DF, M Lee. 1998. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and non-stress environments. Crop Sci., 38: 1296-1308
    Austin DF, Lee M, Veldboom LR. 2001. Genetic mapping in maize with hybrid progeny across tester and generations: Plant heigh and flowering. Theor. Appl. Genet., 102:163-176
    Bailey NTJ. 1949. The estimation of linkage with differential viability, Ⅱ and Ⅲ. Heredity, 3:220-228
    Banziger M, Edmeades GO, Berk D, Bellon M. 2000. Breeding for drought and nitrogen stress tolerance in maize. From theory to practice. Mexico D. F.: CIMMYT
    Beavis WD. 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Wilkinson DB (ed) Proc 49th Ann Corn and Sorghum Res Conf, ASTA, Washington, pp 250-266
    Beavis WD, Smith OS, Grant D, Fincher R .1994. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Sci., 34:882-896
    Beavis, WD, Grant D, Albertsen M, Fincher R. 1991. Quantitative trait loci for plant height in four maize populations and their association with quantitative genetic loci. Theor. Appl. Genet.,83:141-145
    Berke TG , Rocheford TR. 1995. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci., 35:1542-1549
    Betran FJ, Beck D, Banziger M, Edmeades GO. 2003. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environment in tropical maize. Crop Sci., 43:807-817
    Blum,A.1998. Plant breeding for stress environments. CRC press,Boca Raton,Florida Bolanos J, Edmeades GO. 1996, The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res., 48:65-80
    Bolanos J, Edmeades GO. 1991. Value of selection for osmotic potential in tropical maize. Agron. J., 83:948-956
    Bolafios J, Edmeades GO, L Martinez. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize: Ⅲ.Responses in drought-adaptive physiological and morphological traits. Field Crops Res., 31: 269-286
    Burnham CR .1936. Differential fertilization in the Bt-Pr linkage group of maize. J. Am. Soc. Agron.,28:968-975
    Burr B, Burr FA, Thompson KH, Albertsen CM, Stuber CW. 1988. Gene mapping with recombinant inbreds in maize. Genetics, 118: 519-526
    Cardinal AJ, Lee M, Sharopova N, Woodman-Clikeman WL, Long MJ. 2001. Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci., 41:835-845
    Chapman SC, Edmeades GO. 1999. Selection improves drought tolerance in tropical maize populations: Ⅱ .Direct and correlated responses among secondary traits. Crop Sci., 39:1315-1324
    CIMMYT Applied Molecular Genetics Laboratory. 2001. Laboratory protocols. CIMMYT, Mexico,D.F., Mexico
    Coe, EH, Hoisington DA, Neuffer MG. 1987. Linkage map of corn(maize) (Zea mays L.). Maize Genet. Coop, Newslett., 61:116-147.
    Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EHJr.1999. A Maize Map Standard With Sequenced Core Markers, Grass Genome Reference Points and 932 Expressed Sequence Tagged Sites (ESTs) in a 1736-Locus Map. Genetics, 152: 1137-1172
    Devaux P, Kilian A, Kleinhofs A. 1995. Comparative mapping of the barley genome with male and female recombination-derived, doubled-haploid populations. Mol. Gen. Genet., 249:600-608
    Doebley J, Stec A, Wendel J, Edwards M. 1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc. Natl. Acad. Sci. USA,87:9888-9892.
    Dow EW, Daynard TB, Muldoon JF, Major DJ, Thurtel GW. 1984. Resistance to drought and density stress in Canadian and European maize hybrids. Can. J. Plant Sci., 64:575-585
    Duvick DN. 1997. What is yield? In:Edmeades GO, Banziger M, Mickelson HR, Pena-Valdivia CB.(eds). Developing drought and low-N tolerant maize. El Batan, Mexico: CIMMYT,332-335.
    Duvick DN. 2001. Biotecnology in the 1930s: the development of hybrid maize. Nature Reviews of Genetics, 2: 69-72.
    Edmeades GO, Bolanos J, Lafitte HR. 1992. Progress in breeding for drought tolerance in maize.p.93-111.In: Wilkinson D. (ed.) Proceedings of the 47th Ann Corn and Sorghum Ind Res. Conf. ASTA, Washington
    Edmeades GO, Cooper M, Lafitte HR. Zinselmei C, erRibaut JM, Habben JE. Loffler C, Banziger M. 2001. Aboitic stresses and staple crops. Proceedings of the Third International Crop Science Congress, Hamburg, Germany, August 18-23, 2000.CABI
    Edmeades GO, Bolanos J, Lafitte HR. 1992. Progress in breeding for drought tolerance in maize.p.93-111.In: Wilkinson D. (ed.) Proceedings of the 47th Ann.Corn and Sorghum Ind.Res.Conf. 1992. ASTA, Washington.
    Edmeades GO. Banziger M, Ribaut JM. 1998. Maize improvement for drought-limited environments. Presented at workshop "physiological bases for maize improvement" .University of
     Buenos Aires, Sept. 8-9
    Edmeades GO, Bolanos L, Lafitte HR, Rajaram S, Pfeiffer W, Fischer RA. 1989.Traditional approached to breeding for drought resistance in cereals.In: Baker FWG(ed), Drought resisdance in cereals.ICSU and CABI,Wallingford.UK .pp.27-52
    Edwards MD, Stuber CW, Wendel JF. 1987. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I . Numbers, genomic distribution and types of gene action.Genetics, 116:113-125.
    Frova C, Krajewski P, Fonzo ND, Villa M, Sari-Gorla M. 1999. Genetic analysis of drought tolerance in maize by molecular markers I . Yield components. Theor Appl Genet 99: 280-288
    Fukai S, Cooper M. 1995. Development of drought-resistance cultivars using physio-morphological traits in rice. Field crop Res.,40:46-86.
    Gardiner J, Coe EHJr, Melia-Hancock S, Hoisington DA, Chao S. 1993. Development of a core RFLP map in maize using an Immortalized-F2 population. Genetics, 134: 917-930.
    Cardinal AJ, Lee M, Sharopova N. Woodman-Clikeman WL, Long MJ. 2001. Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci 41.835-845
    Goldman, IL, Rocheford TR, Dudley JW .1993. Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor. Appl.Genet., 87:217-224
    Goldman IL, Rocheford TR, Dudley JW. 1994. Molecular markers associated with maize kernel oil concentration in an Illinois high protein x Illinois low protein cross. Crop Sci., 34:908-915
    Graner A, Jahoor A, Schondelmaier J, Siedler H, Pollen K, Fischbeck G, Wenzel G, Herrmann RG. 1991. Construction of an RFLP map of barley. Theor. Appl. Genet., 83:250-256
    Grant RT, Jackson BS, Kiniry JR, Arkin GF. 1989. Water dificit timing effects on yield components in maize. Agron. J., 81:61 -65
    Grill E, Ziegler H. 1998. A plant dilemma. Science, 282: 252-253 .
    Guei RG . Wassom CE. 1992. Inheritance of some drought adaptive traits in maize :I .Interrelationships between yield, flowering and ear per plant. Maydica, 37: 157-164
    Hall AJ, Vilella F, Trapani N, Chimenti C. 1982. The effects of water stress and genotype on dynamics of pollen-shedding and silking in maize. Field Crops Res., 5:349-363
    Hauch B, Gay AP, Macduff J. Griffiths CM, Thomas H. 1997. Leaf senescence in a non-yellowing mutant of Festuca pratensis: implications of the stay-green mutation for photosynthesis, growth and nitrogen nutrition. Plant Cell and Env., 20:1007-1018
    Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet.,72:761-769.
    Herrero MP, Johnson RR. 1981. Drought stress and its effect on maize reproduction systems. Crop Sci., 21:105-110
    Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD. 1991. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome, 34:437-447
    Hyne,V, Kearsey MJ. 1995. QTL analysis:Further uses of marker regression. Theor. Appl. Genet,91:471-476
    Khairaliah MM, Bohn M, Jiang C, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE, Gonza -lez-De-Leon D, Hoisington DA. 1998. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant breeding, 117:309-318
    Ky C-L, Barre P, Lorieux M, Thouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M. 2000. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor. Appl. Genet., 101:669-676
    Lander ES, Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121:185—199
    Lebreton C. 1995. Identification of QTL for drought response in maize and their use in testing causal relationship between traits. J. EXP. BOT., 46: 853-865
    Leung J, Merlot S, Giraudat J. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE 2(ABI2) and AB(?) genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. Plant Cell, 9:759-771.
    Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Shefodor F, Giraudat J. 1994. Arabidopsis ABA
     response gene ABI1: Features of a calcium modulated phosphatase. Science, 264:1448-1454.
    Lin,YR, Schertz KF, Paterson A. 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics,141:391-411
    Lincoln S, Daly M, Lander E. 1992. Construction genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA
    Liu SS, Kowalsky SP, Lan TH, Feldmann KA, Peterson AH. 1996. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142: 247-258.
    Longley AE. 1945. Abnormal segregation during megasporogenesis in maize. Genetics, 30:100-113
    Lorieux M, Goffinet B, Perrier X, Gonzalez de LD, Lanaud C. 1995a. Maximum-likelihood models for mapping genetic markers with segregation distortion. 1. Backcross populations. Theor. Appl.Genet., 90:73-80
    Lorieux M, Perrier X, Goffinet B, Lanuad C, Gonzalez de L D 1995b. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor. Appl. Genet.,90:81-89
    Lu H, J Romero-Severson, R Bernardo. 2003. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor. Appl. Genet., 107:494-502
    Lu H, Romero-Severson J, Bernardo R. 2002. Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet., 105:622-628
    Lubberstedt T, Melchinger AE, Schon CC, Ulz HF, Klein D. 1997. QTL mapping in testcrosses of European flint lines of maize: I . Comparison of different testers for forage yield traits. Crop Sci.,37:921-931
    Ludlow MM, Muchow RC. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron., 43:107-153
    Mangelsdorf PC, Jones DF. 1926.The expression of Mendelian factors in the gametophyte of maize.Genetics, 11:423-455
    McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet.76:815-829
    Meyer K, Leube MP, Grill E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264: 1452-1455
    Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A. 2002. Expanding the genetic map of maize with the intermated B73 × Mol 7 (IBM) population. Plant Molecular Biology, 48:453-461
    Modarres AM, Hamilton RI,Dijak M, Dwyer LM, Stewart DW, Mather DE, Smith DL. 1998. Plant population density effects on maize inbred lines grown in short-season environments. Crop Sci.,38:104-108.
    Moss GI, Downey, LA. 1971. Influence of drought stress on female gametophyte development in com(Zea mays L.) and subsequent grain yield. Crop Sci., 11:368-372
    Motto M. 1995. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor. Appl. Genet., 90 : 415-424
    Nakagahra M. 1972. Genetic mechanism on the distorted segregation of marker genes belonging to the 11th linkage group in cultivated rice. Jpn. J. Breed., 22:232-238
    Paterson AH, Lander ES, Hewitt JD, Paterson S, Lincoln SE, Tanksley SD. 1988. Resolution of quantitative traits into Mendelian factors by using a restriction fragment length polymorphisms.Nature, 335:721-726
    Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R. 1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome, 37:236-243
    Premachandra GS, Saneok H, Kanaya M, Ogata S. 1989. Responses of relative growth rate, water relations and solute accumulation to increasing water deficits in maize. J. Plant physio.,,135:257-260
    Rhoades MM. 1942. Preferential segregation in maize. Genetics, 27:395-407
    Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. Ⅰ: flowering parameters and the anthesis-silking interval. Theor. Appl. Genet., 92:905-914
    Ribaut, J.-M., Jiang, C, Gonzalez-de-Leon, D., Edmeades, G.O.and Hoisington, D.A. 1997.
    Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94: 887-896.
    Risch NJ. 2000. Searching for genetic determinants in the new millennium. Nature, 405:847-856
    Rosiele AA, Hanblin J. 1981. Theoretical aspects of selection for yield in stress and non-stress
    ??environments.CRC Press. Boca Raton.FL.
    Saghai-Maroof MA, Soliman KM, Jorgesen RA, Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley : Mendelian inheritance .chromosomal location, and population dynamics.Proc. Natl. Acad. Sci. USA , 81:8014-8018.
    Sanguineti, MC, TuberasaR, Landi P, Salvi S, Maccaferri M, Casarini E, Conti S. 1999. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot., 50:1289-1297
    Sari-Gorla M, Krajewski P, Fonzo ND, Villa M, Frova C. 1999. Genetic analysis of drought tolerance in maize by molecular markers. Ⅱ .plant height and flowering. Theor. Appl. Genet., 99:289-295
    SAS Institute Inc. 1998. SAS language guide for personal computers. Edition 6.03, Cary, North Carolina, USA
    Sax,K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8:552-560
    Schussler JR, Westgate ME. 1995. assimilate flux determines kernel set at low water potential in maize. Crop Sci., 35:1074-1080
    Setter TM, Flamnigan BA, Melkonian. 2001. Loss of kernel set due to water deficit and shade in Maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci., 41:1530-1540
    Schon CC, MelchingerAE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG. Seitzer JF. 1994.RFLP mapping in maize - quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci., 34:378-389
    Sharopovai N, McMullen M D, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J,Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register J C, Brouwer C, Thompson R, Velasco R, Chin E, Lee M,Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G and Coe E H Jr. 2002.Development and mapping of SSR markers for maize.Plant Molecular Biology, 48:463-481
    Smart CM, Hosken SE, Thomas H, Greaves J, Blair BG, Schuch W. 1995. The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiol. Plant, 93:673-682
    Stuber CW. Lincoln SE, Wol§ DW, Helentjaris T, Lander ES. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 132 : 823-839
    Stuber CW, Edwards MD, Wendel JF. 1987. Molecular marker-facilitated investigation of quantitative trait loci in maize. Ⅱ: Factors influencing yield and its component traits. Crop Sci., 27:639-648.
    Tardieu F,Zhang J,Katerji N,Bethenod O,Patmer S,Davies WJ. 1992. Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant,Cell and Environment, 15:193-197.
    Tautz D, Trick M, Dover GA. 1986.Cryptic simplicity in DNA is a major source of genetic variation.Nature, 322:652-656.
    Tollenaar M, Wu J. 1999. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci., 39: 1597-1604.
    Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Bio., 48:697-712
    Tuberosa R, Sanguineti MC,Landi P. 1994. Abscisic acid concentration in the leaf and xylem sap,leaf water potential, and stomatal conductance in drought-stressed maize. Crop Sci., 34:1557-1563.
    Tuberosa R., Sanguineti MC, Salvi PLS, Casarini E, Conti S. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentrationin leaves of drought-stressed maize ( Zea maysL.). Theor. Appl. Genet., 97:744-755
    Turner NC. 1997. Further progress in crop water relations. Advances in agromy, 58:293-339.
    Turner NC. 1979. Drought resistance and adaptation to water deficits in crop plants,In: Mussel H,Stapes RC stress physiology in crop plants. New York,Wiley,343-372.
    Utz HF, Melchinger AE, Schon CC. 2000. Bias and Sampling Error of the Estimated Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples. Genetics, 154:1839-1849
    Veldboom LR, Lee M. 1996a Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I .Grain yield and yield components. Crop Sci., 36:1310-1319
    Veldboom LR, Lee M. 1996b. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: Ⅱ. Plant height and flowering. Crop Sci., 36:1320-1327
    Veldboom LR, M Lee. 1994. Molcular-marker-faciliated studies of morphological traits in maize. Ⅱ: Determination of QTLs for grain yield and yield components. Crop Sci., 89:451-458
    Wang SC, Basten CJ, Zeng ZB. 2003. WinqtlCart V2.0, Program in Statistical Genetics. North
    ??Carolina state University, Raleigh, NC
    Westgate ME, Boyer JS. 1985. Osmotic adjustment and the inhibition of leaf, root, stem, and silk growth at low water potentials in maize. Planta, 164:540-549
    Westgate ME, Grant DLT. 1989. Water deficits and reproduction in maize. Plant physiol., 91:862-867
    Xu Y, Zhu L, Xiao J, Huang N, McCouch SR . 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled-haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet., 253:535-545
    Zeng ZB. 1994. Precision mapping of quantitative trait loci. Genetics, 136:1457-1468
    Zhang Q, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. 1995. Molecular divergence and hybrid performance in rice. Mol Breed, 1: 133-142
    Zhang Q, Gao YJ, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. 1994. A half-diallel analysis of heterosis in elite hybrid rice based on RFLP and microsatellites. Theor. Appl. Genet., 89: 185-192
    Zhang Q, Zhou Z Q, Yang G P, Xu C G Liu K D, Saghai Maroof M A. 1996. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor. Appl. Genet., 93:1218-1224
    Zheng HG, Babu RC, Pathan MS. Ali L, Huang N, Courtois B, Nguyen HT. 2000. Quantitative trait loci for root-penetration ability and root thickness in rice: Comparison of genetic backgrounds.Genome., 43: 53-61
    Zinselmeier C,Shussler JR, Westgate ME, Jone RJ. 1995. Kernel set at low water potential does not vary with source/sink ratio in maize. Crop Sci.,35:158-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700