几种多金属氧酸盐催化剂的低热固相合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐是一类含有氧桥的多金属氧簇化合物,因其独特的结构在催化、磁性、非线性光学性质及抗病毒活性等方面具有广阔的应用前景。从环保的角度出发,离子液体在有机化学反应中作溶剂、萃取剂或催化剂构成复合催化体系以及新型功能催化剂,有着不易燃、热稳定性好、真空压很小(不易挥发)等优点。本论文将多金属氧酸盐及离子液体的优点相结合,选取Keggin结构的杂多酸与所合成的离子液体有机配体为原料,利用低热固相化学反应法合成了系列离子液体多金属氧酸盐,并将其用于作催化一元羧酸、二元羧酸、三元羧酸及不饱和羧酸与正丁醇酯化反应的催化剂,研究其催化性能,结果表明,带有磺酸基团的离子液体多金属氧酸盐对酯化体系有较好的催化活性。
     有机酯是重要的化工中间体,酯化反应催化剂有无机酸、固体超强酸和离子液体等,这些催化剂有的对设备产生强烈腐蚀和形成大量三废,有的价格昂贵,有的难以分离和回收。本论文采用低热固相化学反应法制备的离子液体多金属氧酸盐对酯化反应具有良好的催化活性,在一些酯化反应体系中开始为均相催化剂,反应结束后又可以沉淀出来,这使其与非均相催化剂有相似之处。离子液体多金属氧酸盐催化剂结合了均相和非均相催化剂的优点,有望解决催化剂分离回收利用等问题。
Polyoxometalates, one type of well-known polynuclear metal-oxo clusters, have attracted considerable interest for their application in many materials of catalysis, magnetic materials, non-linear optical and antiviral activity owning to their unique structure. The use of room temperature ionic liquids (ILs) as solvent, catalysts, and extractive solvent for chemical reactions offers several advantages from this environmental perspective. They are non-flammable, thermally stable, exhibit negligible vapor pressure (non-volatile), and offer the potential for recyclability. We synthesize a series ionic liquid polyoxometalates (IL-polyoxometalates) for combining the advantages of polyoxometalates with ionic liquids by low-heating solid-state chemical reaction. We study the catalysis properties of the products in the esterification reaction of unitary, binary, tenary and unsaturated carboxylic acid and butanol using polyoxometalates as catalysts. The results demonstrate that IL-polyoxometalates are good catalysts for esterification reaction.
     Organic esters are important intermediates in chemical and pharmaceutical industries, and they are mostly produced by acid-catalyzed esterification reactions. Various mineral acids, solid super acid and ionic liquids, have been used as catalysts for esterification. However, these acids are extremely corrosive and contaminative and need to be neutralized at the end of the reaction. Furthermore, it is very difficult to separate and reuse the catalysts.The use of propane sulfonate (PS) functionalized IL-polyoxometalates for the esterification reaction is considered to be an effective approach. They could be used as homogeneous catalysts for many esterification reactions because of their good solubility in reaction media, and moreover, at the end of the reaction, the catalysts precipitated and could be recycled without any regeneration being required, just like a heterogeneous system. Thus, these catalysts combine the advantages of homogeneous with heterogeneous catalysis.
引文
[1] M. T. Pope, Heteropoly and isopoly oxometalates [M], Springer: Berlin, 1983.
    [2]王恩波,胡长文,许林,多酸化学导论[M],北京:化学工业出版社, 1998.
    [3] J. F. Keggin, Proc. R. Soc. [M], London 1934, 144A.
    [4] W. G. Klemperer, C. G. Wall, Polyoxoanion chemistry moves toward the future: from solids and solutions to surfaces[J], Chem. Rev. 1998, 98: 297-306.
    [5]伊万·科热夫尼科夫,精细化学品的催化合成:多酸化合物及其催化[M],唐培堃等译,北京:化学工业出版社, 2005.
    [6] Y. Izumi, K. Urabe, M. Onaka, Zeolite, clay and heteropoly acid in organic reactions[M], Kodansha/VCH: Tokyo, 1992.
    [7] M. Sadakane, E. Steckhan, Electrochemical properties of polyoxometalates as electrocatalysts[J], Chem. Rev., 1998, 98: 219-237.
    [8] M. Misono, T. Okuhara, T. Ichiki, T. Arai, Y. Kanda, Pseudoliquid behavior of heteropoly compound catalysts unusual pressure dependences of the rate and selectivity for ethanol dehydration[J], J. Am. Chem. Soc., 1987, 109: 5535-5536.
    [9] J. F. Liu, P. G. Yi, Y. S. Qi, Efficient homogeneous catalysis of heteropoly acid and its characterization through etherifications of alcohol[J], J. Mole. Catal. A: Chemical, 2001, 170: 109-115.
    [10] M. A. Barteau, J. E. Lyons, I. K. Song, Surface chemistry and catalysis on well-defined oxide surfaces nanoscale design bases for single-site heterogeneous catalysts[J], J. Catal. 2003, 216: 236-245.
    [11] H. Firouzabadi, N. Iranpoor, K. Amani, Heteropoly acid cesium salt/cetyltrimethylammonium bromide a catalytic heterogeneous system which highly controls regioselective bromination of aromatic compounds with bromine[J], J. Mole. Catal. A: Chemical, 2003, 195: 289-294.
    [12] Z. W. Xi, N. Zhou, Y. Sun, K. L. Li, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J], Science, 2001, 292: 1139-1141.
    [13]李贵贤,王建民,胡东成等. Dawson一型磷钼钒杂多酸盐相转移选择催化氧化苯甲醇合成苯甲醛反应研究[J],分子催化, 2005, 19(3): 182-186.
    [14]唐薰,夏涛,张长利,焦佩玉,催化合成丙烯酸正丁酯[J],化学试剂, 2002, 24(5): 301-302.
    [15]许招会,廖维林,王生生, Dawson型磷钨钒酸铵合成苹果酯-B的研究[J],工业催化, 2005, 13(9): 33-35.
    [16] A. S. Kelly, R. I. V. Kozhevnikov, E. V. Gusevskaya, Isomerisation of a-pinene oxide over silica supported heteropoly acid H3PW12O40[J], Appl. Catal. A: General. 2005, 294: 106-110.
    [17] A. S. Kelly,. R. D. Patricia, M. B. S. Edesia, Cyclization of (+) -citronellal to (-)-isopulegol catalyzed by H3PW12O40/SiO2[J], Catal. Commun. 2004, 5: 425-429.
    [18] A. K. Z, K. I. Kukovecz, An FT-IR study on Diels-Alder reactions catalysed by heteropoly acid containing sol±gel silica[J], J. Mole. Struct. 2001, 565-566: 121-124.
    [19] J. Kaur, K. Griffin, B. Harrison, I. V. Kozhevnikov, Friedel-Crafts acylation catalysed by heteropoly acids[J], J. Catal. 2002, 208: 448-455.
    [20]周宁,奚祖威,曹国英,范淑华,O2/EAHQ/[CsH5NC16H33]3PW4Ol6体系对苯乙烯选择性催化环氧化[J],分子催化, 2001, 15(2): 113-117.
    [21]张生军,赵公大,高爽等,醇类氧化反应中杂多酸盐催化剂的光谱研究[J],分子催化, 2007, 21(6): 499-502.
    [22]李健,奚祖威,高爽,磷钨杂多酸盐催化的氯丙烯水油两相条件下的环氧化[J],分子催化, 2006, 20(5): 395-398.
    [23]赵公大,李军,张恒耘等,磷钨杂多酸盐/SiO2可逆负载催化剂催化氯丙烯环氧化制环氧氯丙烷[J],催化学报, 2008, 29(6): 509-512.
    [24]杨小格,张生军,李萌等,合成条件对磷钨杂多酸季铵盐催化剂性能的影响[J],催化学报, 2006, 27(1): 50-54.
    [25]张爱平,高爽,徐杰等,不饱和酮的绿色环氧化[J],催化学报, 2009, 30(1): 69-72.
    [26]董镜华,王伟,杨水金,硅钨酸催化合成苯甲醛1,2-丙二醇缩醛[J],合成化学, 2005, 13(4): 408-410.
    [27]杨水金,高飞,吕宝兰,磷钨钼杂多酸掺杂聚苯胺催化合成苯甲醛乙二醇缩醛[J],精细化工, 2006, 28(8): 765-767.
    [28]周文辉,邓谦,岳明,纳米多金属氧酸盐的制备方法[J],湘潭师范学院学报(自然科学版), 2005, 27(1): 60-63.
    [29] S. W. Lin, W. L. Liu, Y. G Li, et al, Preparation of polyoxometalates in ionic liquids by ionothermal synthesis[J], Dalton Trans., 2010, 39: 1740-1744.
    [30] V. Duffort, R. Thouvenot, C. Afonso, Straightforward synthesis of new polyoxometalate-based hybridsexemplified by the covalent bonding of a polypyridyl ligand[J], Chem. Commun., 2009, 6062-6064.
    [31] P. M. A. Tavares, J. A. F. Gamelas, A. R. Gaspar, et al, A novel approach for the oxidative catalysis employing polyoxometalate-laccase system: application to the oxygen bleaching of kraft pulp[J], Catal. Commun. 2004, 5: 485-489.
    [32] Y. Goto, K. Kamata, K. Yamaguchi, Synthesis, structural characterization, and catalytic performance of dititanium-substituted -Keggin Silicotungstate[J], Inorg. Chem. 2006, 45, 2347-2356.
    [33] H. S. Liu, J. Carlos, G. Garcí, J. Peng, A Co-monosubstituted Keggin polyoxometalate with an antenna ligand and three cobalt(II) chains as counterion[J], Inorg. Chimi. Acta, 2009, 362: 1957-1962.
    [34] Q. Shi, Z. M. Zhang, Y. G. Li. A new polynuclear Fe(III) cluster based on inorganic O-donor polyoxometalate and organic N-donor ligands[J], Inorg. Chem. Commun. 2009, 12: 293-295.
    [35] J. Thiel, C. Ritchie, C. Streb, D. L. Long, L. Cronin, Heteroatom-controlled kinetics of switchable polyoxometalate frameworks[J], J. Am. Chem. Soc., 2009, 131: 4180-4181.
    [36] H. S. Liu, J. Peng, J. Q. Sha, L. X. Wang, Extended architectures based on sandwich-type polyanions and transition metal complex cations[J], J. Mole. Struct., 2009, 923: 153-161.
    [37] D. Schaming, J. Canny, K. Boubekeur, R. Thouvenot, L. Ruhlmann , An unprecedented trinuclear Dawson sandwich complex with internal lacuna: synthesis and 31P NMR spectroscopic analysis of the symmetrical [NaNi3(H2O)2(P2W15O56)2]17 and [CoNi3(H2O)2(P2W15O56)2]16 anions[J], Eur. J. Inorg. Chem., 2009, 5004-5009.
    [38] J. Ma, Y. G. Li, Z. M. Zhang, A polyethylene-glycol-functionalized ring-like isopolymolybdate cluster[J], Inorg. Chimi. Acta, 2009, 362: 2413-2417.
    [39]. L. A. Kushch, V. E. Yanov, S. Golhen, The photochromic paramagnet derived from polyoxometalate [Cr(OH)6Mo6O18]3 and ruthenium mononitrosyl complex [RuNO(en)2Cl]2+[J], Inorg. Chimi. Acta, 2009, 362: 2279-2282.
    [40] F. Chai, D. L. Li, H. B. Wu, C. L. Zhang, X. H. Wang, Fabrication of Cs2.5H0.5PW12O40three-dimensional ordered film by colloidal crystal template[J], J. Solid State Chem., 2009, 182: 1661-1665.
    [41] H. Fu, W. L Chen, E. B Wang, Jia Liu, Song Chang. Three new multidimensional organic–inorganic hybrids based on polyoxometalates and copper coordination polymers with 4,40-bipyridine ligands[J], Inorg. Chimi. Acta, 2009, 362: 1412-1420.
    [42] X. G. Cao, L. W. He, B. Z. Lin, Z. J. Chen, P. D. Liu, Synthesis and characterization of a polyoxotungstate-supported metal compound [{Cu(enMe)2(H2O)} {Cu(enMe)2}3P2W18O62]·nH2O[J], Inorg. Chimi. Acta, 2009, 362: 2505-2509.
    [43] R. Y. Wang, D. Z. Jia, L. Zhang, L. Liu, Z. P. Guo, B. Q. Li, J. X. Wang, Rapid synthesis of amino acid polyoxometalate nanotubes by one-step solid-state chemical reaction at room temperature[J], Adv. Funct. Mater., 2006, 16, 687-692.
    [44]王瑞英,刘浪,贾殿赠,骆建敏,范兆田,一步室温固相化学反应合成纳米氨基酸杂多电荷转移配合物(Hphe)3PMo12O40·2H2O[J],高等学校化学学报, 2004, 25 (12): 2208-2211.
    [45] K. R. Seddon, Ionoic liquid—a taste of the future[J], Nature materials, 2003, 2 (6): 363-365.
    [46] J. H. David, Task-specific ionic liquids[J], Chem. Lett., 2004, 33 (9): 1072-1077.
    [47] A. C. Cole, J. L. Jensen, I. Ntai, et al, Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts[J], J. Am. Chem. Soc., 2002, 124: 5962-5963.
    [48] W. L. Bao, Z. M. Wang, L. Y. Xin, Synthesis of chiral ionic liquids from natural amino acids[J], J. Org. Chem., 2003, 68: 591-593.
    [49] D. B. Zhao, Z. F. Fei, T. J. Geldbach, et al, Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reaction[J], J. Am. Chem. Soc., 2004, 126, (48): 15876-15882.
    [50] J. Huang, T. Jiang, H. X. Gao, et al, Ative and stable catalyst-Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent-free hydrogenation[J], Angew. Chem. Int. Ed., 2004, 43: 1397-1399.
    [51] L. Y. Dai, S. Y. Yu, Y. K. Shan, et al, Novel room temperature inorganic ionic liquid[J], Eur. J. Inorg. Chem., 2004, 237-241.
    [52]王均凤,张锁江,陈慧萍等,离子液体的性质及其在催化反应中的应用[J],过程工程学报, 2003,3(2): 177-185.
    [53] J. A. Dean, Lange’s handbook of chemistry (the 15th edition)[M], McGraw Hill, New York: 1999.
    [54] S. Tait, R. A. Osteryoung, Infrared study of ambient-temperature chloroluminate as a function of melt acidity[J], Inorg. Chem., 1984, 23: 4352-4360.
    [55] F. H. Hurley, T. P. Wier, Electrodeposition of metals from fused quanternary ammonium[J], Salts. Electrochem. Soc., 1951, 98: 203-208.
    [56] J. S.Wilkes, J. A.Levisky, R. A. Wilson, C. L. Hussey, Alkyl-limidazoliumchloroalumin- ate melts, a new class of room temperature ionic liquids for electrochemistry spectroscopy and systhesis[J], Inorg. Chem., 1982, 21: 1263-1268.
    [57] C. L. Hussey, Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry[J], Pure. Appl. Chem., 1988, 60: 1763-1772.
    [58] J. B. Chritopher, W. B. Duncan, R. S. Kenneth, Liquid-crystalline ionic liquid[J], Chem. Commun., 1996, 14: 1625-1628.
    [59] V. R. Koch, L. L. Mileer, R. A.Osteryoung, Electoinitiated Friedel-Crafts translkylations in a room temperature molten-salts medium[J], J. Am. Chem. Soc., 1976, 98: 5277-5280.
    [60] K. Fukumoto, M. Yoshizawa, H. Ohno, Room Temperature Ionic Liquids from 20 Natural Amino Acids[J], J. Am. Chem. Soc., 2005, 127, 2398-2399.
    [61]石家华,孙逊,杨春和,离子液体研究进展[J],化学通报, 2002, 4: 243-250.
    [62] J. Dupont, C. S. Consorti, P. A. Z. Suarez, Preparation of 1-butyl-3-metylimidazolium-based room temperature ionic liquid[J], Org. Synth., 2002, 79: 236-237.
    [63]赵正康,李娟,吕志果,离子液体的合成与应用研究进展[J],精细石油化工进展, 2009, 10(6): 36-40.
    [64]桑潇,离子液体的合成法研究[J],中国科技信息, 2008, 5: 266-267.
    [65]许丹倩,刘宝友,徐振元,室温离子液体的制备方法[P],中国, CN1521163A 75.
    [66] V. V. Namboodiri, R. S. Varma, Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent -free tetrahydropyranylation of alcohols and phenols[J], Chem. Commun., 2002, 4: 342-343.
    [67]贺建勋,杜宏德,张超等, AlCl3型季铵盐离子液体的微波法合成[J],广州化工, 2007, 37(2):74-76.
    [68] V. V. Namboodiri, R. S. Varma, Solvent-free sonochemical preparation of ionic liquids [J], Org. Lett., 2002, 18: 3161-3163.
    [69]顾彦龙,石峰,邓友全,室温离子液体:一类新型的软介质和功能材料[J],科学通报, 2004, 49(6): 515 - 521.
    [70] D. Jairton, S. Crestina, J. S. Consorti,. Room temperature molten salts: neoteric“green”solvents for chemical reactions and processes[J], J. Braz. Soc., 2000, 11(4): 337-344.
    [71] W. Peter, S. Martin, K. Wolfgang, Hydrogensulfate and tetrakis ( hydrogensulfato ) borate ionic liquids: synthesis and catalytic app lication in highly Br?nsted acid systems for Friedel-Crafts alkylation[J], Green Chem., 2002, 4: 134-138.
    [72] X. W. Sun, S. Q. Zhao, R. A. Wang. New alkylation route of benzene with ethylene catalyzed by FeCl3-[bmim]Cl ionic liquid[J], China J. Chem. Eng., 2004, 12(5): 658-661.
    [73] G. Q. Shao, Biginelli condensation assisted by microwave irradiation in ionic liquids[J], Synth. Chem., 2004, 12(4): 325-328.
    [74] H. L. Li, S .T. Yu, F. S. Liu, et al, Synthesis of dioctylphthalate using acid functionalized ionic liquid as catalyst[J], Catal. Commun., 2007, 8: 1759-1762.
    [75]岳彩波,魏运洋,吕敏杰,新型酸性离子液体[Hmim]HSO4中合成乙酸酯[J],应用化学, 2006, 23(11): 1282-1285.
    [76]岳彩波,魏运洋,功能性离子液体催化Knoevenagel缩合反应[J],精细化工, 2007, 24(2): 166-168.
    [77]李汝雄,绿色溶剂--离子液体的合成与应用[M],北京:化学工业出版社, 2004.
    [78]刘卉,陶国宏,邵元华,寇元等,功能化的离子液体在电化学中的应用[J],化学通报, 2004, 11: 795.
    [79]宋红光,马宁,离子液体应用研究进展[J],高新技术, 2009, 11: 11-13.
    [80]汪多仁,离子液体的开发与应用进展[J],聚合物与助剂, 2009, 3: 25-32.
    [81]蒋伟燕,余文轴,离子液体的分类、合成及应用[J],金属材料与冶金工程, 2008, 36(4): 51-64.
    [82]肖超贤,颜宁,寇元,准均相催化:走向绿色和高效[J],催化学报, 2009, 30(8): 753-764.
    [83] L. X. Lei, X. Q. Xin. Stepwise reaction of CuCl2?2H2O with 2,2’-bipyridyl in the solid state[J]. J. solidstate chem., 1995, 119: 299-303.
    [84] H.W. Hou, X.Q. Xin, S. Shi, Mo(W, V)-Cu(Ag)-S(Se) cluster compounds[J], Coord Chem. Rev., 1996, 153: 25-56.
    [85] W. S.You, E. B. Wang; Y. Xu, Y. G.. Li, C. W. Hu, An alkali metal-crown ether complex supported by a Keggin anion throughthe three terminal oxygen atoms in a single M3O13 triplet: synthesis and characterization of [{Na(dibenzo-18-crown-6)(MeCN)}3{PMo12O40}][J], Inorg. Chem., 2001, 40: 5468-5471.
    [86] Y.L. Song, C. Zhang, Y.X. Wang, G.Y. Fang, C.Y. Duan, S.T. Liu , X.Q. Xin, H.G. Ye, Optical nonlinearity and optical limiting properties of new metal cluster [WOS3Cu3 I(2-MePy)3][J], Opt. Commun., 1999, 168, 131-134.
    [87]贾殿赠,俞建群,忻新泉,一种固相化学反应制备纳米材料的方法[P],中国, CNP ZL98111231.5, 1998.
    [88] D. Z. Jia, J. Q. Yu, X. Xia. Synthesis of CuO nanometer powder by one step solid state reaction at room temperature[J], Chin. Sci., Bull, 1998, 43(7): 571-573.
    [89]俞建群,贾殿赠,张慧,周蓉,夏熙, CdS纳米粉体的合成新方法—一步室温固相化学反应法[J],化学通报, 1998, (2): 35-37.
    [90]俞建群,贾殿赠,郑毓峰,忻新泉,纳米氧化镍、氧化锌的合成新方法[J],无机化学学报, 1999, 15(1): 95-98.
    [91] X. R. Ye, D. Z. Jia, J. Q. Yu, X. Q. Xin, Z. L. Xue. One-step solid-state reactions at ambient temperatures—a novel approach to nanocrystal synthesis[J], Adv. Mater., 1999, 11(11): 941-942.
    [92] F. Li, H. G. Zheng, D. Z. Jia, X. Q. Xin, Z. L. Xue, Synthesis of perovskite-type composite oxides nanocrystals by solid-state reactions[J], Mater. Lett., 2002, 53: 282-286.
    [93]沈茹娟,贾殿赠,梁凯,忻新泉,王疆瑛,纳米氧化锌的固相合成及其气敏特性[J],无机化学学报, 2000, 16(6): 906-910.
    [94]沈茹娟,贾殿赠,乔永明,王疆瑛,纳米ZnO的固相合成及其气敏特性[J],无机材料学报, 2001, 16(4): 625-629.
    [95] Y. D. Huang, J. Li, D. Z. Jia, Preparation and characterization of LiMn2O4 nanorod by low heating solid state coordination method[J], Nanoparticle Res., 2004, 6: 533-538.
    [96] Z. P. Sun, L. Liu, L. Zhang, D. Z. Jia, Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties[J], Nanotechnology, 2006, 17: 2266-2270.
    [97] Zhipeng Sun, Lang Liu, Dian zeng Jia, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials[J]Sensors and Actuators B. 2007, 125: 144-148.
    [98] Yali Cao, Weiyu Pan, Ying Zong, Dianzeng Jia, Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction[J], Sensors and Actuators B, 2009, 138: 480-484.
    [99] Yali Cao, Dianzeng Jia, Yudai Huang, Ruiying Wang, et al, Facile One-Step Solid-State Chemical Synthesis and Gas-Sensing Property of ZnO Nanorods[J], Sens. Lett., 2009, 7: 1-4.
    [100] Yali Cao, Dianzeng Jia, Jie Zhou, Simple Solid-State Chemical Synthesis of ZnSnO3 Nanocubes and Their Application as Gas Sensors[J], Eur. J. Inorg. Chem., 2009, 4105-4109.
    [101].廖世军,徐斌,李志祥,固体酸催化剂催化酯化反应研究Ⅰ催化剂的制备及性能[J],分子催化, 1993, 7(6): 475-478.
    [102]许招会,熊斌,李小明,廖维林, Dawson型磷钨钒杂多酸催化合成苹果酯的研究[J],日用化学品科学, 2006, 29(2): 19-21.
    [103]杨师棣,王福民,磷钨酸/二氧化钛催化合成甲基丙烯酸丁酯的研究[J],化学试剂, 2002, 24(6): 369-370.
    [104]张福捐,盛淑玲,纳米复合钨硅酸催化合成苹果油[J],酿酒科技, 2007, 3: 20-24.
    [105]崔萍,李先红,固载杂多酸催化合成丙酸异戊酯[J],工业催化, 2006, 14(4): 52-54.
    [106] A. C. Cole, J. L. N. I. Jensen, et al, Novel Br?nsted acid ionic liquids and their use as dual solvent-catalysts[J], J. Am. Chem. Soc.,2002,124(21): 5962-5963.
    [107] Xing H B,Wang T, Zhou Z H, et al. Novel brφnsted -Acidic Ionic Liquids for Esterifications[J].Ind. Eng. Chem. Res., 2005, 44: 4147-4150.
    [108] J. S. Wilkes, Properties of ionic liquid solvents for catalysis[J], J. Mol. Cata. A: Chem., 2004, 214: 11-17.
    [109] D. Fang, X. L. Zhou, Z. W. Ye, et al, Br?nsted acid ionic liquids and their use as dual solvent-catalysts for fischer esterifications[J], Ind. Eng. Chem. Res., 2006, 45 (24): 7982-7984.
    [110]桂建舟,刘丹,张晓彤等,质子酸离子液体催化合成乙酸乙酯的研究[J],工业催化, 2006, 14(4): 36-38.
    [111]雍靓,解从霞,杨凯等,酸功能化离子液体催化合成柠檬酸三丁酯[J],分子催化, 2008, 22(2): 106-109.
    [112]资炎,虞丹,郭红云.功能化离子液体催化合成柠檬酸三丁酯的研究[J],化学研究与应用, 2008, 20(8): 1090-1094.
    [113]李建伟,酸催化酯化反应机理探讨[J],工业催化, 2006, 14: 339-340.
    [114]荣国斌,苏克曼,大学基础化学[M],上海:华东理工大学出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700