稀土修饰的多金属氧酸盐的配位组装与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用缺位的多金属氧酸盐作为前驱体,在常温水溶液中,通过对反应过程中溶液的pH值、温度、配体、抗衡阳离子和配料比的摸索,成功地合成了5个新型的稀土离子修饰的多金属氧酸盐。通过单晶X-射线衍射分析了化合物的结构,利用元素分析、红外、热重、紫外对其进行了表征,并对化合物在2-300K范围内的磁学性质进行了研究。
     1.以双缺位Keggin型多酸阴离子[γ-GeW_(10)O_(36)]~(8-)作为前驱体,成功地合成了两例新型的稀土取代的多金属氧酸盐: Na_(12)[Dy_4(α-GeW_(10)O_(38))_2(H_2O)_6]·36H_2O (1) Na_(12)[Er_4(α-GeW_(10)O_(38))_2(H_2O)_6]·29H_2O (2)化合物1和2属于同构的无机化合物。在该类化合物中,四个稀土离子位于两个多酸阴离子[α(1,4)-GeW_(10)O_(38)]~(12-)之间。同时,每个稀土位于缺位与五个氧原子相连,在这五个氧原子中,有四个来自于WO_6八面体,另外一个来自于GeO_4四面体。这类化合物是首例四个稀土离子位于两个双缺位的锗钨酸阴离子之间,而形成的二聚体稀土多金属氧酸盐。
     2.以三缺位Keggin型多酸阴离子[α-GeW_9O_(34)]~(10-)作为起始原料,通过调节溶液合适的pH值,成功地得到了一例1:2夹心型结构的多金属氧酸盐: (C_4H_9NO)(C_4H_(10)NO)_(13)[(GeW_(11)O_(39))_2Nd]·9H_2O (3)
     3.以单缺位Keggin型多酸阴离子[α-BW_(11)O_(39)]~(9–)作为基本建筑块,在缓冲溶液中与稀土离子的配位组装,成功地得到了两例经典夹心结构的稀土多金属氧酸盐: Na_2(C_3H_5N_2)_(12)H[(BW_(11)O_(39))_2Pr]·7H_2O (4) K_2Na_6[N(CH_3)_4]_3H_4[(BW_(11)O_(39))_2Dy]·23H_2O (5)在该类化合物中,两个单缺位Keggin型多酸阴离子[α-BW_(11)O_(39)]~(9–)分别作为四齿配体,利用缺位的四个端氧与镨离子配位,形成夹心型的结构。同时,在化合物4中,两个相邻的夹心型阴离子[(BW_(11)O_(39))_2Pr]~(15-),通过[Na_2(C_3H_5N_2)_2]~(4+)单位的连接在ab平面形成二维层状结构。
Based on vacant POMs as precursor, we explored the process of reaction condition, which includes pH in aqueous solution, temperature, ligand, counterion and ratio of mixture, and successfully synthesized five new lanthanide polyoxometalates (LnPOMs) at room temperature in aqueous solution. We analyzed the structures of these compounds through single X-ray diffraction, and characterized them via elemental analysis, IR, TG and UV. Magnetic properties of these new compounds were studied in the range from 2 to 300K.
     1. Two new lanthanide polyoxometalates based on [γ-GeW_(10)O_(36)]~(8-) were successfully synthesized: Na_(12)[Dy_4(α-GeW_(10)O_(38))_2(H_2O)_6]·36H_2O (1) Na_(12)[Er_4(α-GeW_(10)O_(38))_2(H_2O)_6]·29H_2O (2) Compound 1 is isomorphous with 2. In these two compounds, four lanthanide ions were located in the central belt between two [α(1,4)-GeW_(10)O_(38)]~(12-) units. Meanwhile, each lanthanide ion resides in the vacant site of the [α(1,4)-GeW_(10)O_(38)]~(12-) fragment through bonding to five oxygen atoms, four of which are from the WO6 octahedra, while the other one is from central GeO_4 tetrahedron group. Compounds 1 and 2 are the first two examples of LnPOMs dimeric polyoxoanions accommodating four Ln~(3+) ions between two dilacunary Keggin-type polyanion units.
     2. On the basis of trivacant Keggin-type polyoxoaion [α-GeW_9O_(34)]~(10-), a new 1:2 type structure of sandwich LnPOMs was isolated by adjusting proper pH of the reaction solution: (C_4H_9NO)(C_4H_(10)NO)_(13)[(GeW_(11)O_(39))_2Nd]·9H_2O (3)
     3. On the basis of monovacant Keggin-type polyoxoaion [α-BW_(11)O_(39)]~(9–), two classical structures of sandwich-type LnPOMs were synthesized in sodium acetate buffer solution: Na_2(C_3H_5N_2)_(12)H[(BW_(11)O_(39))_2Pr]·7H_2O (4) K_2Na_6[N(CH_3)_4]_3H_4[(BW_(11)O_(39))_2Dy]·23H_2O (5) In these two compounds, the polyanions [(BW_(11)O_(39))_2Ln]~(15-) (Ln = Pr, Dy) are classic sandwich-type structure, where the Ln~(3+) ion is sandwiched by two monolacanary polyanions [α-BW_(11)O_(39)]~(9–). Meanwhile, each monolacunary polyanion [α-BW_(11)O_(39)]~(9–) acts as an effective tetradentate coordinating with the Pr atom center through four unsaturated oxygen atoms. Furthermore, adjacent sandwich-type polyanions [(BW_(11)O_(39))_2Pr]~(15-) of compound 4 are linked by [Na_2(C_3H_5N_2)_2]~(4+) units through O-Na-O bridges into a 2D layer parallel to the ab plane.
引文
[1] Pope M T, Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin, 1983, 1–10.
    [2] Sasaki Y, Yamase T, Ohashi Y, Sasada Y. Structural retention of decatungstates upon photoreduction[J]. Bull Chem Soc Jpn, 1987, 60(12): 4285–4290.
    [3]王恩波,胡长文,许林.多酸化学导论[M].化学工业出版社出版,北京:1984, 4.
    [4] Reinoso S, Galán-Mascar?s J R. Heterometallic 3d?4f Polyoxometalate Derived from the Weakley-Type Dimeric Structure[J]. Inorg Chem, 2010, 49(2): 377–379.
    [5] Wang L S, Zhu L, Yin P C, et al. From 0D dimer to 2D Network—Supramolecular Assembly of Organic Derivatized Polyoxometalates with Remote Hydroxyl via Hydrogen Bonding [J]. Inorg Chem, 2009, 48(19): 9222–9235.
    [6] Li B, Zhao J W, Zheng S T, et al. Combination Chemistry of Hexa-Copper-Substituted Polyoxometalates Driven by the CuII?Polyhedra Distortion: From Tetramer, 1D Chain to 3D Framework[J]. Inorg Chem, 2009, 48(17): 8294–8303.
    [7] Yamase T, Abe H, Ishikawa E, et al. Structure and Magnetism of [n-BuNH_3]_(12)[Cu_4(GeW_9O_(34))_2]·14H_2O Sandwiching a Rhomblike Cu~(48+) Tetragon throughα-Keggin Linkage[J]. Inorg Chem, 2009, 48(1): 138–148.
    [8] Pradeep C P, Long D L, Streb C, Cronin L.“Bottom-Up”Meets“Top-Down”Assembly in Nanoscale Polyoxometalate Clusters: Self-Assembly of [P_4W_(52)O_(178)]~(24-) and Disassembly to [P3W39O134]19? [J]. J Am Chem Soc, 2008, 130(45): 14946–14947.
    [8] Wang J P, Ma P T, Shen Y, et al. Tetra-Transition-Metal Substituted Weakley-Type Sandwich Germanotungstates and their Derivatives Decorated by Transition-Metal Complexes[J]. Crystal Growth & Design, 2008, 8(9): 3130–3133.
    [10] Yang H. X, Lin J X, Chen J T, et al. A Novel 1D Chain Compound Constructed from Alternating Wells?Dawson Polyanions and Mixed-Valence Hexacopper Phosphate Cations[J]. Crystal Growth & Design, 2008, 8(8): 2623–2625.
    [11] Qin C, Wang X L, Yuan L, et al. Chiral Self-Threading Frameworks Based on Polyoxometalate Building Blocks Comprising Unprecedented Tri-Flexure Helix[J]. Crystal Growth & Design, 2008, 8(7): 2093–2095.
    [12] Kikukawa Y, Yamaguchi S, Tsuchida K, et al. Synthesis and Catalysis of Di- and Tetranuclear Metal Sandwich-Type Silicotungstates [(γ-SiW_(10)O_(36))2M_2(μ-OH)_2]~(10-) and [(γ-SiW_(10)O_(36))_2M_4(μ4-O)(μ-OH)_6]~(8-) (M = Zr or Hf)[J]. J Am Chem Soc, 2008, 130(16): 5472–5478.
    [13] Akutagawa T, Jin R, Tunashima R, et al. Nanoscale Assemblies of Gigantic Molecular {Mo154}-Rings: (Dimethyldioctadecylammonium)20[Mo154O462H8(H2O)70][J]. Langmuir, 2008, 24(1): 231–238.
    [14] Tan H Q, Li Y G, Zhang Z M, et al. Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures: A New Route for Synthesis of High-Dimensional Chiral Compounds[J]. J Am Chem Soc, 2007, 129(33): 10066–10067.
    [15] Botar B, Geletii Y V, K?gerler P, et al. The True Nature of the Di-iron(III)γ-Keggin Structure in Water: Catalytic Aerobic Oxidation and Chemistry of an Unsymmetrical Trimer[J]. J Am Chem Soc, 2006, 128(34): 11268–11277.
    [16] Nsouli N H, Prinz M, Damnik N, et al. Dimeric Nickel(II) Containing Tungstogermanate [{β-GeNi2W10O36(OH)2(H2O)}2]12-[J]. Eur J Inorg Chem, 2009, 2009(34): 5096–5101.
    [17] Tan H Q, Li Y G, Chen W L, et al. From Racemic Compound to Spontaneous Resolution: A Linker-Imposed Evolution of Chiral [MnMo9O32]6--Based Polyoxometalate Compounds[J]. Chem Eur J, 2009, 15(41): 10940–10947.
    [18] Jahier C, Cantuel M, McClenaghan N D, et al. Enantiopure Dendritic Polyoxometalates: Chirality Transfer from Dendritic Wedges to a POM Cluster for Asymmetric Sulfide Oxidation[J]. Chem Eur J, 2009, 15(35): 8703–8708.
    [19] Streb C, Tsunashima R, MacLaren D A, et al. Supramolecular Silver Polyoxometalate Architectures Direct the Growth of Composite Semiconducting Nanostructures[J]. Angew Chem Int Ed, 2009, 48(35): 6490–6493.
    [20] Carraro M, Sartorel A, Scorrano G, et al. Chiral Strandberg-Type Molybdates [(RPO3)2Mo5O15]2- as Molecular Gelators: Self-Assembled Fibrillar Nanostructures with Enhanced Optical Activity[J]. Angew Chem Int Ed, 2008, 47(38): 7275–7279.
    [21] Sakthivel A, Komura K, Sugi Y. MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide[J]. Ind Eng Chem Res, 2008, 47(8): 2538–2544.
    [22] Nagaoka Y, Shiratori S, Einaga Y. Photo-Control of Adhesion Properties by Detachment of the Outermost Layer in Layer-by-Layer Assembled Multilayer Films of Preyssler-Type Polyoxometalate and Polyethyleneimine[J]. Chem Mater, 2008, 20(12): 4004–4010.
    [23] Qi W, Li H L, Wu L X. Stable Photochromism and Controllable Reduction Properties of Surfactant-Encapsulated Polyoxometalate/Silica Hybrid Films[J]. J Phys Chem B, 2008, 112(28): 8257–8263.
    [24] Lee C, Keenan C R, Sedlak D L. Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen[J]. Environ Sci Technol, 2008, 42(13): 4921–4926.
    [25] Ma Z, Liu Q, Cui Z M, et al. Parallel Array of Pt/Polyoxometalates Composite Nanotubes with Stepwise Inside Diameter Control and Its Application in Catalysis[J]. J Phys Chem C, 2008, 112(24): 8875–8880.
    [26] Poulos A S, Constantin D, Davidson P, et al. Photochromic Hybrid Organic?Inorganic Liquid-Crystalline Materials Built from Nonionic Surfactants and Polyoxometalates: Elaboration and Structural Study[J]. Langmuir, 2008, 24(12): 6285–6291.
    [27] Uehara K, Nakao H, Kawamoto R, et al. 2D-Grid Layered Pd-Based Cationic Infinite Coordination Polymer/Polyoxometalate Crystal with Hydrophilic Sorption[J]. Inorg Chem, 2006, 45(23): 9448–9453.
    [28] Qi W, Li H, Wu L. A Novel, Luminescent, Silica-Sol-Gel Hybrid Based on Surfactant- Encapsulated Polyoxometalates[J]. Adv Mater,2007, 19(15): 1983–1987.
    [29] Laurencin D, Proust A, Gérard H. Theoretical Study of the Relative Stabilities of theα/β3-[XW11O39]m? Lacunary Polyoxometalates (X = P, Si)[J]. Inorg Chem, 2008, 47(17): 7888–7893.
    [30] Zhang F Q, Zhang X M, Wu H S, et al. Inversed Stability Order in Keggin Polyoxothiometalate Isomers: A DFT Study of 12-Electron Reducedα,β,γ,δ, andε[(MoO4)Mo12O12S12(OH)12]2- Anions[J] J Phys Chem. A, 2007, 111(9): 1683–1687.
    [31] Yang G C, Guan W, Yan L K, et al. Theoretical Study on the Electronic Spectrum and the Origin of Remarkably Large Third-Order Nonlinear Optical Properties of Organoimide Derivatives of Hexamolybdates[J]. J Phys Chem B, 2006, 110(46): 23092–23098.
    [32] Guan W, Yang G C, Yan L K, et al. Prediction of Second-Order Optical Nonlinearity of Trisorganotin-Substitutedβ-Keggin Polyoxotungstate[J]. Inorg Chem, 2006, 45(19): 7864–7868.
    [33] López X, Weinstock I A, Bo C, et al. Structural Evolution in Polyoxometalates: A DFT Study of Dimerization Processes in Lindqvist and Keggin Cluster Anions[J]. Inorg Chem, 2006, 45(16): 6467–6473.
    [34] López X, Maestre J M, Bo C, et al. Electronic Properties of Polyoxometalates: A DFT Study ofα/β-[XM12O40]n- Relative Stability (M = W, Mo and X a Main Group Element)[J]. J Am Chem Soc, 2001, 123(39): 9571–9576.
    [35] Si Y L, Chen W L, Wang E B. Theoretical studies on redox properties, protonation sites, and electronic spectrum of a new type of polyoxometalate [Ti12Nb6O44]10- by DFT[J]. Int J Quantum Chem, 2009, 109(7): 1560–1565.
    [36] Peacock R D, Weakley T J R. Heteropolytungstate Complexes of the Lanthanide Elements. PartⅠPreparation and Reactions[J]. J Chem Soc (A), 1971: 1836–1841.
    [37] Niu J Y, Zhao J W, Wang J P, et al. Synthesis, property and crystal structure of a novel two-dimensional network organic–inorganic hybrid compound based on the neodymiumIII center and Keggin-type heteropolyanion of [α-BW12O40]5-[J]. J Mol Struct, 2004, 699(2004): 85–92.
    [38] Wei M L, He C, Sun Q Z, et al. Zeolite Ionic Crystals Assembled through Direct Incorporation of Polyoxometalate Clusters within 3D Metal?Organic Frameworks[J]. Inorg Chem, 200, 46(15): 5957–5966.
    [39] Sadakane M, Dickman M H, Pope M T. Controlled assembly of polyoxometalate chains from lacunarybuilding blocks and lanthanide-cation linkers[J]. Angew Chem Int Ed, 2000, 39: 2914–2916.
    [40] Mialane P, Lisnard L, Mallard A, Marrot J, et al. Solid-State and Solution Studies of {Lnn(SiW11O39)} Polyoxoanions: An Example of Building Block Condensation Dependent on the Nature of the Rare Earth[J]. Inorg Chem, 2003, 42: 2102–2108.
    [41] Rong C Y, Liu J F, Chen X, et al. Bis(undecatungstogermanate) Lanthanates of Potassium[J]. Inorg Chim Acta, 130, 1987: 265-269.
    [42] Jiang N, Xu L, Li F Y, et al. A novel sandwich polyoxotungstogermanate: Synthesis, crystal structure and magnetic property of [Pr(GeW11O39)2]13-[J]. Inorg Chem Commun, 11 (2008): 24–27.
    [43]瞿伦玉,牛增元,刘景福,等.镧系元素钨硅杂多配合物异构体的合成与表征[J].高等化学学报, 1991, 12(11): 1434–1436.
    [44] Bassil B S, Dickman M H, Kammer B, et al. The Monolanthanide-Containing Silicotungstates [Ln(β2-SiW11O39)2]13- (Ln = La, Ce, Sm, Eu, Gd, Tb, Yb, Lu): A Synthetic and Structural Investigation[J]. Inorg Chem, 2007, 46(7): 2452–2458.
    [45] AlDamen M A, Cardona-Serra S, Clemente-Juan J M, et al. Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]9? and [Ln(β2-SiW11O39)2]13? (LnIII = Tb, Dy, Ho, Er, Tm, and Yb)[J]. Inorg Chem, 2009, 48(8): 3467–3479.
    [46] Copping R, Jonasson L, Gaunt A J, et al. Tetravalent Metal Complexation by Keggin and Lacunary Phosphomolybdate Anions[J]. Inorg Chem, 2008, 47(13): 5787–5798.
    [47] Cao J F, Liu S X, Cao R G, et al. Organic–inorganic hybrids assembled by bis(undecatungstophosphate) lanthanates and dinuclear copper(II)–oxalate complexes[J]. Dalton Trans, 2008, 115–120.
    [48] Wang J P, Zhao J W, Duan X Y, et al. Syntheses and Structures of One- and Two-Dimensional Organic-Inorganic Hybrid Rare Earth Derivatives Based on Monovacant Keggin-Type Polyoxotungstates[J]. Crystal Growth and Design, 2006, 6(2): 507–513.
    [49] Wang J P, Duan X Y, Du X D, et al. Novel Rare Earth Germanotungstates and Organic Hybrid Derivatives: Synthesis and Structures of M/[α-GeW11O39] (M = Nd, Sm, Y, Yb) and Sm/[α-GeW11O39](DMSO)[J]. Crystal Growth and Design, 2006, 6(10): 2266–2270.
    [50] Wang J P, Yan Q X, Du X D, et al. Synthesis, crystal structures and properties of three rare earth substituted germanotungstates: M/[a-GeW11O39] (M = Nd, Eu, and Tb)[J]. Inorg Chim Acta, 2008, 361( 9-10): 2701-2706.
    [51] Bassil B S, Dickman M H, R?mer I, et al. The Tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56-: A Polyoxometalate Containing 20 Cerium(III) Atoms[J]. Angew Chem Int Ed, 2007, 46: 1– 5.
    [52] Howell R C, Perez F G, Jain S, et al. A New Type of Heteropolyoxometalates formed from Lacunary Polyoxotungstate Ions and Europium or Yttrium Cations J]. Angew Chem Int Ed, 2001, 40(21): 4031–4034.
    [53] Fukaya K, Yamase T. Alkali-Metal-Controlled Self-Assembly of Crown-Shaped Ring Complexes of Lanthanide/[α-AsW9O33]9-: [K?{Eu(H2O)2(α-AsW9O33)}6]35- and [Cs?{Eu(H2O)2(α-AsW9O33)}4]23-[J]. Angew Chem Int Ed, 2003, 42(6): 654–658.
    [54] Fang X K, Anderson T M, Neiwert W A, et al. Yttrium Polyoxometalates. Synthesis and Characterization of a Carbonate-Encapsulated Sandwich-Type Complex[J]. Inorg Chem, 2003, 42(26): 8600–8602.
    [55] Chen W L, Li Y G, Wang Y H, et al. Building block approach to nanostructures: step-by-stepassembly of large lanthanide-containing polytungstoarsenate aggregates[J]. Dalton Trans, 2007, 4293–4301.
    [56] Luo Q H, Howell R C, Dankova M, et al. Coordination of Rare-Earth Elements in Complexes with Monovacant Wells-Dawson Polyoxoanions[J]. Inorg Chem, 2001, 40(8): 1894–1901.
    [57] Lu Y, Xu Y, Li Y G, et al. New Polyoxometalate Compounds Built up of Lacunary Wells-Dawson Anions and Trivalent Lanthanide Cations[J]. Inorg Chem, 2006, 45(5): 2055–2060.
    [58] Fang X K, Anderson T M, Benelli C, et al. Polyoxometalate-Supported Y– and YbIII–Hydroxo/Oxo Clusters from Carbonate-Assisted Hydrolysis[J]. Chem Eur J, 2005, 11: 712–718.
    [59] Shivaiah V, Narasimha Reddy P V, Cronin L, et al. A novel polyoxometalate chain formed from heteropolyanion building blocks and rare earth metal ion linkers: [Ln(H2O)7Cr(OH)6Mo6O18]n·4nH2O[J]. J Chem Soc, Dalton Trans, 2002, 3781–3782.
    [60] Drewes D, Limanski E M, Krebs B. A series of novel lanthanide polyoxometalates: condensation of building blocks dependent on the nature of rare earth cations[J]. Dalton Trans, 2004, 2087–2091.
    [61] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)] .4H2O (Ln = Ce, Pr, La and Nd) with a chiral layer structure[J]. New J Chem, 2005, 29, 667–672.
    [62] An H Y, Lan Y, Li Y G, et al. A novel chain-like polymer constructed from heteropolyanions covalently linked by lanthanide cations: (C5H9NO2)2[La(H2O)7CrMo6H6O24]·11H2O (Proline=C5H9NO2)[J]. Inorg Chem Commun, 2004, 7(2004): 356–358.
    [63] An H Y, Xiao D R, Wang E B, et al. Open-Framework Polar Compounds: Synthesis and Characterization of Rare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]·0.5H2O (Ln = Ce and La)[J]. Eur J Inorg Chem, 2005, 2005: 854–859.
    [64] An H Y, Xiao D R, Wang E B, et al. Synthesis and characterization of two new extended structures based on Anderson-type polyoxoanions[J]. J Mol Struct, 2005, 751(2005): 184–189.
    [65] An H Y, Xiao D R, Wang E B, et al. Organic–inorganic hybrids with three-dimensional supramolecular channels based on Anderson type polyoxoanions [J]. J. Mol. Struct, 2005, 743(2005): 117–123.
    [66] Liu Y, Liu S X, Cao R G, et al. Hydrothermal assembly and luminescence property of lanthanide-containing Anderson polyoxometalates[J]. J Solid State Chem, 2008, 181(2008): 2237– 2242.
    [67] Zhang X T, Wang D Q, Dou J M, et al. Polyoxometalate (W/Mo) Compounds Connected via Lanthanide Cations with a Three-Dimensional Framework, H2[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)·H2O: Synthesis, Structures, and Magnetic Properties[J]. Inorg Chem, 2006, 45(26): 10629–10635.
    [68] Pang H J, Chen Y G, Meng F X, et al. Assembly of three novel 2D frameworks with helical chains based on [H2W12O40]6- clusters and lanthanide–Organic complexes[J]. Inorg Chim Acta, 2008, 8: 2514–2520.
    [69] Shi D M, Yu H X, Pang H J, et al. A new polymeric chain constructed from isopolyanions and lanthanide cations: Synthesis, crystal structure, and properties of (NH4)5[Ln(NO3)2(H2O)3][H2W12O40]·nH2O (Ln = Ce, Pr, Nd, Gd, Dy, Ho)[J]. Solid State Sc, 2008, 10(7): 847–853.
    [70] Wang X L, Guo Y Q, Li Y G, et al. Novel Polyoxometalate-Templated, 3-D Supramolecular Networks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of [Ln2(DNBA)4(DMF)8][Mo6O19] (DNBA= 3,5-dinitrobenzoate, DMF = dimethylformamide)[J]. Inorg Chem, 2003, 42(13): 4135–4140.
    [71] Burgemeister K, Drewes D, Limanski E M, et al. Formation of Large Clusters in the Reaction ofLanthanide Cations with Heptamolybdate[J]. Eur J Inorg Chem, 2004, 2004: 2690–2694.
    [72] Ozeki T, Yamase T. Effect of Lanthanide Contraction on the Structures of the Decatungstolanthanoate Anions in K3Na4H2[LnW10O36].nH2O (Ln = Pr, Nd, Sm, Gd, Tb, Dy) Crystals[J]. Acta Cryst, 1994, B50: 128–134.
    [73] AlDamen M A, Clemente-Juan Juan M, Coronado E, et al. Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates[J]. J Am Chem Soc, 2008, 130(28): 8874–8875.
    [74] Wassermann K, Pope M. T. Large Cluster Formation through Multiple Substitution with Lanthanide Cations (La, Ce, Nd, Sm, Eu, and Gd) of the Polyoxoanion [(B-α-AsO3W9O30)4(WO2)4]28-. Synthesis and Structural Characterization[J]. Inorg Chem, 2001, 40(12): 2763-2768.
    [75] Xue G L, Liu Bin, Hu H M, et al. Large heteropolymetalate complexes formed from lanthanide (Y, Ce, Pr, Nd, Sm, Eu, Gd), nickel cations and cryptate [As4W40O140]28-: synthesis and structure characterization[J]. J Mol Struct, 2004, 690: 95–103.
    [76] Wassermann K, Dickman M H, Pope M T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [As12Ce16(H2O)36W148O524]76-[J]. Angew Chem Int Ed, 1997, 36(13): 1445–1448.
    [77] Sousa F L, Almeida Paz F A, Cavaleiro A M V, et al. Novel cerium(IV) heteropolyoxotungstate containing two types of lacunary Keggin anions[J]. Chem Commun, 2004, 2656–2657.
    [78] Xu L, Zhang H, Wang E, et al. Photoluminescent multilayer films based on polyoxometalates[J]. J Mater Chem, 2002, 12: 654–657.
    [79] Wang Y, Wang X, Hu C, et al. Photoluminescent organic–inorganic composite films layer-by-layer self-assembled from the rare-earth-containing polyoxometalate Na9[EuW10O36] and poly(allylamine hydrochloride)[J]. J Mater Chem, 2002, 12: 703–707.
    [80] Wang J, Liu F, Fu L, et al. Luminescence properties of rare earth-polyoxometalate thin film deposited by sol–gel process[J]. Mater Lett, 2002, 56: 300–304.
    [81] Granadeiro C M, Ferreira R A S, Soares-Santos P C R, et al. Lanthanopolyoxometalates as Building Blocks for Multiwavelength Photoluminescent Organic-Inorganic Hybrid Materials European Journal of Inorganic Chemistry[J]. Eur J Inorg Chem, 2009, 2009(34): 5088–5095.
    [82] Chai F, Li D L, Zhang X, et al. Three-dimensional films of photoluminescent polyoxometalates fabricated by a colloidal crystal template [J]. Thin Solid Films, 2009, 518(1): 154–159.
    [83] Granadeiro C M, Ferreira R, Soares-Santos P C R, et al. Photoluminescent hybrid materials based on lanthanopolyoxotungstates and 3-hydroxypicolinic acid[J]. J. Alloys Compd, 2008, 451(1-2): 422–425.
    [84] AlDamen M A, Cardona-Serra S, Clemente-Juan J M, et al. Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]9? and [Ln(β2-SiW11O39)2]13? (LnIII = Tb, Dy, Ho, Er, Tm, and Yb)[J]. Inorg Chem, 2009, 48(8): 3467–3479.
    [85] Aspinall H C. Chiral Lanthanide Complexes: Coordination Chemistry and Applications[J]. Chem Rev, 2002, 102 (6): 1807–1850.
    [86] Izzet G, Ishow E, Delaire J, et al. Photochemical Activation of an Azido Manganese-Monosubstituted Keggin Polyoxometalate: On the Road to a Mn(V)?Nitrido Derivative[J]. Inorg Chem, 2009, 48(24):11865–11870.
    [87] Geletii Y V, Besson C, Hou Y, et al. Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation[J]. J Am Chem Soc, 2009, 131(47): 17360–17370.
    [88] Liu C G, Guan W, Yan L K, et al. Second-Order Nonlinear Optical Properties of Transition-Metal-Trisubstituted Polyoxometalate?Diphosphate Complexes: A Donor?Conjugated Bridge?Acceptor Paradigm for Totally Inorganic Nonlinear Optical Materials[J]. J Phys Chem C, 2009, 113(45): 19672–19676.
    [89] Clemente-Le?n M, Coronado E, L?pez-Mu?ozá, Repetto D, et al. Dual-Emissive Photoluminescent Langmuir?Blodgett Films of Decatungstoeuropate and an Amphiphilic Iridium Complex[J]. Langmuir, 2010, 26(2): 1316–1324.
    [90] Legagneux N, Mallmann A, Grinenval E, et al. Grafting Reaction of Organotin Complexes on Silica Catalyzed by Tungstic Heteropolyacids[J]. Inorg Chem, 2009, 48(18): 8718–8722.
    [91] Qi W, Li H L, Wu L X. Stable Photochromism and Controllable Reduction Properties of Surfactant-Encapsulated Polyoxometalate/Silica Hybrid Films[J]. J Phys Chem B, 2008, 112(28): 8257–8263.
    [92] Sakthivel A, Komura K, Sugi Y. MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide[J]. Ind Eng Chem Res, 2008, 47(8): 2538–2544.
    [93] Sankarraj A V, Ramakrishnan S, Shannon C. Improved Oxygen Reduction Cathodes Using Polyoxometalate Cocatalysts[J]. Langmuir, 2008, 24(3): 632–634.
    [94] Luo S Z, Li J Y, Xu H, et al. Chiral Amine?Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts[J]. Org Lett, 2007, 9(18): 3675–3678.
    [95] Khenkin A M, Efremenko I, Weiner L, et al. Photochemical Reduction of Carbon Dioxide Catalyzed by a Ruthenium-Substituted Polyoxometalate[J]. Chem Eur J, 2010, 16(4): 1356–1364.
    [96] Ishimoto R, Kamata K, Mizuno N. Highly Selective Oxidation of Organosilanes to Silanols with Hydrogen Peroxide Catalyzed by a Lacunary Polyoxotungstate[J]. Angew Chem Int Ed, 2009, 48(47): 8900–8904.
    [97] Pope M T, Müller A. Polyoxometalates: from Platonic Solids to Anti RetroViral ActiVity[M]. Kluwer: Dordrecht, 1994.
    [98] Noro S, Tsunashima R, Kamiya Y, et al.Adsorption and Catalytic Properties of the Inner Nanospace of a Gigantic Ring-Shaped Polyoxometalate Cluster[J]. Angew Chem Int Ed, 2009, 48(46): 8703–8706.
    [99] Canny J, Teze A, Thouvenot R, et al. Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion of a tungstosilicate .gamma.-SiW10O368-[J]. Inorg Chem, 1986, 25(13): 2114–2119.
    [100] Nsouli N H, Bassil B S, Dickman M H, et al. Synthesis and Structure of Dilacunary Decatungstogermanate, [γ-GeW10O36]8-[J]. Inorg Chem, 2006, 45(46): 3858–3860.
    [101] Bi L H, Chubarova E V, Nsouli N H, et al. Dilacunary Decatungstates Functionalized by Organometallic Ruthenium(II), [{Ru(C6H6)(H2O)}{Ru(C6H6)}(γ-XW10O36)]4- (X = Si, Ge)[J]. Inorg Chem, 2006, 45 (21): 8575–8583.
    [102] Ritchie C, Ferguson A, Nojiri H, et al. Polyoxometalate-Mediated Self-Assembly of Single-Molecule Magnets: {[XW9O34]2[MnIII4MnII2O4(H2O)4]}12-[J]. Angew Chem Int Ed, 2008, 47(30): 5609-5612.
    [103] Nsouli N H, Mal S S, Dickman M H, et al. Two Iron-Containing Tungstogermanates: [K(H2O)(β-Fe2GeW10O37(OH))(γ-GeW10O36)]12- and [{β-Fe2GeW10O37(OH)2}2]12-[J] Inorg Chem, 2007, 46(21): 8763–8770.
    [104] Zhang Z M, Qi Y F, Qin C, et al. Two Multi-Copper-Containing Heteropolyoxotungstates Constructed from the Lacunary Keggin Polyoxoanion and the High-Nuclear Spin Cluster[J]. Inorg Chem, 2007, 46(20): 8162–8169.
    [105] Zhang Z M, Yao S, Wang E B, et al. Structure and characterization of zero- to two-dimensional compounds built up of the sandwich-type clusters and transition-metal linkers[J]. J Solid State Chem, 2008, 181(4): 715-723.
    [106] Zhang Z M, Wang E B, Li Y G, et al. Synthesis, characterization, and crystal structures of two 6-cobalt-containing dimeric polyoxoanions: [Co2(H2O)10Co4(H2O)2(B-α-XW9O34)2]8? (X = Ge and Si)[J]. J Mol Struct, 2008, 872(2-3) 176-181.
    [107] Nsouli N H, Prinz M, Damnik N, et al. Dimeric Nickel(II) Containing Tungstogermanate [{β-GeNi2W10O36(OH)2(H2O)}2]12-[J]. Eur J Inorg Chem, 2009, 2009(34): 5096-5101.
    [108] Besson C, Musaev D G, Lahootun V, et al. Vicinal Dinitridoruthenium-Substituted Polyoxometalatesγ-[XW10O38{RuN}2]6- (X=Si or Ge)[J]. Chem Eur J, 2009, 15: 10233– 10243.
    [109] Haraguchi N, Okaue Y, Isobe T, et al. Stabilization of Tetravalent Cerium upon Coordination of Unsaturated Heteropolytungstate Anions[J]. Inorg Chem, 1994, 33(6): 1015-1020.
    [110] Sousa F L, Almeida Paz F A, Granadeiro C, et al. The first one-dimensional lanthanopolyoxotungstoborate[J]. Inorg Chem Commun, 2005, 8: 924–927.
    [111] Kortz U, Nellutla S, Stowe A C, et al. Sandwich-Type Germanotungstates: Structure and Magnetic Properties of the Dimeric Polyoxoanions [M4(H2O)2(GeW9O34)2]12- (M = Mn2+, Cu2+, Zn2+, Cd2+)[J]. Inorg Chem, 2004, 43(7): 2308-2317.
    [112] Bi L H, Kortz U, Dickman M H, et al. Trilacunary Heteropolytungstates Functionalized by Organometallic Ruthenium(II), [(RuC6H6)2XW9O34]6- (X = Si, Ge)[J]. Inorg Chem, 2005, 44(21), 7485-7493.
    [113] Wang C M, Zheng S T, Yang G Y. Novel Copper-Complex-Substituted Tungstogermanates[J]. Inorg Chem, 2007, 46(3), 616-618.
    [114] Santiago R, Galán-Mascarós J. Heterometallic 3d?4f Polyoxometalate Derived from the Weakley-Type Dimeric Structure[J]. Inorg Chem, 2010, 49(2): 377–379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700