苯甲酰胺和硫脲衍生物的光化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计合理的光反应的条件进而合成具有特定结构和功能的光反应产物是当前光化学领域的研究热点之一。本文设计并合成了一系列苯甲酰胺和硫脲衍生物,通过选择合理的光反应条件,合成了一系列二苯甲酮和喹唑啉类化合物,应用核磁、质谱以及X-射线衍射技术对这些化合物的结构进行表征。提出了苯甲酰胺和硫脲衍生物的光反应机理。论文的主要内容如下:
     1、简要介绍本论文工作的研究背景,并对苯甲酰胺和具有硫脲官能团类化合物的光化学研究进展进行简要的总结。
     2、合成与表征了14个具有不同取代基的苯甲酰胺类化合物,利用紫外光谱和气相色谱确定了此类化合物较佳光照时间,测定了一个具有代表性光解产物的单晶结构,提出了苯甲酰胺类化合物的光反应机理。
     3、合成与表征了7个带有不同取代基的氯代苯甲酰亚胺中间体及61个硫脲衍生物,测定了两个具有代表性化合物的单晶结构。通过实验对比我们找到了较佳的反应物的投料比、反应温度和反应所用的溶剂。
     4、根据不同条件下的光反应结果,确定了硫脲衍生物的相对较好的光反应条件和光照时间,首次利用光化学手段成功得到50个具有生物活性的喹唑啉衍生物和4个具有脲基官能团的光氧化的产物,测定了两个具有代表性的喹唑啉和光氧化的产物的晶体结构。根据所得到的产物对具有硫脲基团的硫羰基化合物的光反应机理进行合理的推测。
     5、合成与表征了1个环硫酮中间体和4个杂环硫酮类化合物,摸索出合成杂环硫酮中间体较佳反应条件。研究了杂环硫酮类化合物光反应,利用所得到的光产物,提出了合理的反应机理。
Design of photochemical reaction conditions and preparation of photoreaction products with special structures and functions are one of the main focuses in current fields of photochemistry. In this thesis, a series of benzamides and thioureas derivatives have been designed and prepared. By reasonable photoreaction conditions, a series of benzophenone and quinazoline compounds have been synthesized and structurally determined by NMR, MS and X-ray crystallography, respectively. The mechanisms of photoreaction of benzamide and thiureas have been proposed.This thesis includes five parts as follows.
     1. The backgrounds and some relative concepts of this work are briefly introduced. The photochemistry of benzamides and compounds with thiourea functional group is also concisely reviewed.
     2. Total of fourteen benzamides with different substituted groups have been synthesized and structurally characterized. Better photoreaction time for that kind of compounds at given concentrations is confirmed by tracking its’UV spectrum and GC chromatogram. A representative dibenzophenone photoproduct has been determined by X-ray crystallography. The mechanisms of photoreaction of benzamide have been proposed.
     3. Total of seven N-(chloro(phenyl)methylene)benzenamines with different substituted groups and sixty-one thiourea derivatives have been synthesized and structurally characterized. Two representative compounds have been determined by X-ray crystallography. The best ratio of reactants, the adequate reaction temperature and solvent have been found by contrast experiments.
     4. The better photoreaction conditions and irridation times have been confirmed through the different photoreaction results. It is the first time that fifty quinazoline derivatives with biological activity and four photooxidation products with urea functional groups have been obtained by photochemistry method. Two representative compounds, quinazoline derivatives and photooxidation products, have been determined by X-ray crystallography, respectively. The mechanism of thiocarbonyl compounds with thiourea function group has been proposed according to the photoreaction products.
     5. Total of one heterocyclothione intermidate and four heterocyclothione compounds have been synthesized and structurally characterized. The photochemical reaction of heterocyclothione compounds has been investigated, and the mechanism of heterocyclothione compounds has been presumed according to the photoreaction products.
引文
1. Diau, E. W. G.; K?tting, C.; Zewail, A. H., Femtochemistry of Norrish Type-I Reactions: I. Experimental and Theoretical Studies of Acetone and Related Ketones on the S1 Surface, ChemPhysChem, 2001, 2 (5): 273~293.
    2. Diau, E. W. G.; K?tting, C.; Zewail, A. H., Femtochemistry of Norrish Type-I Reactions: Ⅱ . Experimental and Theoretical Studies of Acetone and Related Ketones on the S1 Surface, ChemPhysChem, 2001, 2 (5): 294~309.
    3. Diau, E. W. G.; K?tting, C., S?lling, T. I.; et al., Femtochemistry of Norrish Type-I Reactions III. Highly Excited Ketones–Theoretical, ChemPhysChem, 2002, 3(1): 57~78.
    4. Diau, E. W. G.; K?tting, C., S?lling, T. I.; et al., Femtochemistry of Norrish Type-I Reactions Ⅳ. Highly Excited Ketones–Theoretical, ChemPhysChem, 2002, 3 (1), 79~97.
    5. He, H. Y.; Fang, W. H., Photochemistry of Butyrophenone: Combined Complete-Active-Space Self-Consistent Field and Density Functional Theory Study of Norrish Type I and II Reactions, J. Phys. Chem. A, 2004, 108(25): 5386-5392.
    6. Lei, X. G.; Doubleday, C. E. Jr.; Zimmt, M. B.; et al., Photochemistry of Large Ring 2-Phenylcyclanones. Formation of Cyclophanes and Encapsulation by a Ship in Bottle and by a Reptation Strategy, J. Am. Chem. Soc., 1986, 108(9): 2444-2445.
    7. Bruno, M.; Buscemia, S.; Rosselli, S.; et al., Photochemical reactivity of 6α-hydroxy-7-keto neoclerodane diterpenoids, J. Photochem. Photobiol. A : Chemistry, 2006, 180(1~2): 54–58
    8. Hwu, J. R.; Chen, B. L.; Lin, C. F.; et al., Electronic and steric effects of silyl groups in silicon-directed Norrish type cleavages, J. Organomet. Chem., 2003, 686 (1~2): 198_/201
    9. Yamashita, H.; Takada, S.; Hada, M.; et al., Experimental study and ab initio molecular orbital calculation on the photolysis of n-butyrophenone included within the alkali metal cation-exchanged ZSM-5 zeolite, J. Photochem. Photobiol. A : Chemistry, 2003, 160 (1~2): 37–42
    10. Chen, X. B.; Fang, W. H., Norrish I vs II reactions of butanal: a combined CASSCF, DFT and MP2 study, Chem. Phys. Lett., 2002, 361 (5~6): 473–482
    11. Matsumoto, M.; Murayama, J.; Nishiyama, M.; et al., Synthesis of 1-(3-tert-butyldimethylsiloxy) phenyl-5, 5-dimethyl-2, 7, 8- trioxabi cyclo [4.2.0] octanes: new dioxetanes giving high chemiexcitation yields in thermolysis and influoride induced CIEEL-decay, Tetrahedron Lett. 2002, 43 (8), 1523–1527
    12. Kuzina, S. I.; Pivovarov, A. P.; Mikhailov, A. I.; et al., Free radicals and photo-oxidation of an alternating copolymer of ethylene and carbon monoxide, Eur. Polym. J., 2000, 36(5): 975-980
    13. Hartley, G. H.; Guillet, J. E., Photochemistry of Ketone Polymers. I. Studies of Ethylene-Carbon Monoxide Copolymers, Macromolecules, 1968, 1(2): 165~170
    14. Grossetête, T.; Rivaton, A.; Gardette, J. L.; et al., Photochemical degradation of poly(ethylene terephthalate)-modified copolymer, Polymer, 2000, 41(10): 3541–3554
    15. Nishiguchi, H.; Yukawa, K.; Yamashita, H.; et al., The effect of ion-exchanged alkali metal cations on the excited states of xanthone and the photolysis of 2-pentanone included within zeolite cavities, J. Photochem. Photobiol. A : Chemistry, 1995, 92 (1~2), 85-90
    16. Yurkovskaya, A. V.; Morozova, O. B.; Sagdeev, R. Z.; et al., The influence of scavenging on CIDNP field dependences in biradicals during the photolysis of large-ring cycloalkanones, Chem. Phys., 1995, 197(2): 157-166
    17. Corbin, D. R.; Eaton, D. F.; Ramamurthy, V., Modification of photochemical reactivity by zeolites: Norrish type I and type II reactions of benzoin derivatives, J. Am. Chem. Soc. 1988, 110 (14): 4848-4849
    18. McGimpsey, W. G.; Scaiano, J. C., A two-photon study of the "reluctant" Norrish type I reaction of benzyl, J. Am. Chem. Soc., 1987, 109(7): 2179-2181
    19. Johnston, L. J.; Scaiano, J. C., One- and two-photon processes in the photochemistry of 1,3-bis(1-naphthyl)-2-propanone: an example of a "reluctant" Norrish type I reaction, J. Am. Chem. Soc., 1987, 109(18), 5487-5491
    20. Caldwell, R. A.; Sakuragi, H.; Majima, T., Direct observation and chemistry of triplet 1,6-biradicals in the Norrish I reaction, J. Am. Chem. Soc., 1984, 106(8), 2471-2473
    21. Ramamurthy, V.; Corbin, D. R.; Eaton, D. F., Modification of photochemical reactivity by zeolites. Norrish type I and type II reactions of ketones as photochemical probes of the interior of zeolites, J. Org. Chem., 1990, 55(18): 5269-5218.
    22. Reddy, G. D.; Usha, G.; Ramanathan, K. V.; et al., Modification of photochemistry by cyclodextrin complexation. Competitive Norrish type I and type II reactions of benzoin alkyl ethers, J. Org. Chem., 1986, 51(5), 3085-3093.
    23. (a) Singh, S.; Usha, G.; Tung, C. H.; et al., Modification of chemical reactivity by cyclodextrins. Observation of moderate effects on Norrish type I and type II photobehavior, J. Org. Chem., 1986, 51(6): 941~944; (b) Barber, J.; Archer, M. D., P680, the primary electron donor of photosystem II, J. Photochem. Photobiol. A : Chemistry, 2001,142 (2~3): 97–106.; (c) Norrish, R.G.W.; Porter, G., A novel method for investigation the intermediate of photochemistry, Nature, 1949, 164:658-659
    24. (a) Chang, M.Y.; Lin, C. H.; Chang, N. C., Formal synthesis of (±)-udoteatrial hydrate, Tetrahedron, 2004, 60(7): 1581–1585;
    b) Lee, A. Y.; Chang, M. Y.; Chang, N. C., Total synthesis of (±)-Perdicularis-Lactone and (±)-Ningpogenin, Heterocycles, 1999, 51(2): 295-302;
    (c) Chang, M. Y.; Lin, C. H.; Lee, A. Y.; et al., Total synthesis of (±)-Boschnialactone and (±)-Tetrahydroanhydrodesoxy- aucubigenin, J. Chin. Chem. Soc., 1999, 46 (2): 205–210;
    (d) Lee, A. Y.; Chang, M. Y.; Tai, H. M.; et al., Total synthesis of (±)-Iridolactone, J. Chin. Chem. Soc., 1999, 46 (6): 937–940.
    25. a) P. J.; Wagner, Type II photoelimination and photocyclization of ketones, Acc. Chem. Res. 1971, 4(5): 168-177;
    (b) Scaiano, J. C., Laser flash photolysis studies of the reactions of some 1,4-biradicals. Acc. Chem. Res. 1982, 15(8): 252-258;
    (c)P. J.; Wagner, 1,5-Biradicals and five-membered rings generated by .delta.-hydrogen abstraction in photoexcited ketones, Acc. Chem. Res. 1989, 22(3): 83-90;
    (d) Feyter, S. D.; Diau, E. W. G.; Zewail, A. H., Femtosecond Dynamics of Norrish Type-II Reactions: Nonconcerted Hydrogen-Transfer and Diradical Intermediacy, Angew. Chem., Int. Ed., 2000, 39(1): 260-263;
    (e) Reddy, G. D.; Jayasree, B.; Ramamurthy, V., Modification of photochemical reactivity by cyclodextrin complexation: consequences of restricted rotation of Norrish type II 1,4 diradicals from aryl alkyl ketones, J. Org. Chem. 1987, 52 (14): 3107-3113;
    (f) Liu, D.; Fang W. H.; Fu, X. Y., An ab initio study on photodissociation of acetone, Chem. Phys. Lett., 2000, 325(1~3): 86-92;
    (g) Griesbeck, A. G.; Heckroth, H., Stereoselective Synthesis of 2-Aminocyclobutanols via Photocyclization of α-Amido Alkylaryl Ketones: Mechanistic Implications for the Norrish/Yang Reaction, J. Am. Chem. Soc., 2002, 124 (3): 396-403
    26. Bach, T.; Aechtner, T.; Neumüller, B., Intermolecular hydrogen binding of a chiral host and a prochiral imidazolidinone: enantioselective Norrish–Yang cyclisation in solution, Chem. Commun., 2001, (7): 607–608
    27. Kell, A. J.; Workentin, M. S., Aryl Ketone Photochemistry on Monolayer Protected Clusters: Study of the Norrish Type II Reaction as a Probe of Conformational Mobility and for Selective Surface Modification, Langmuir, 2001, 17(23): 7355-7363
    28. Kell, A. J.; Donkers, R. L.; Workentin, M. S., Core Size Effects on the Reactivity of Organic Substrates as Monolayers on Gold Nanoparticles, Langmuir, 2005, 21 (2): 735-742
    29. Kokubo, K.; Kawahara, K.; Takatani, T.; et al., Conformational Specificity in Photoinduced Intramolecular 1,7-Hydrogen Abstraction of Homonaphthoquinones with a Spiro-Linked Dibenzocycloheptene Ring, Org. Lett., 2000, 2 (4): 559~562
    30. Kell, A. J.; Stringle, D. L. B.; Workentin, M. S., Norrish Type II Photochemical Reaction of an Aryl Ketone on a Monolayer-Protected Gold Nanocluster. Development of a Probe of Conformational Mobility, Org. Lett., 2000, 2(21): 3381~3384
    31. a) Yang, N. C.; Yang, D.H., PhotoChemical Reactions of Ketones in Solution, J. Am. Chem. Soc., 1958, 80(11), 2913-2914;
    b) Hu, S. K.; Neckers, D. C., Photochemically Active Polymers Containing Pendant Ethyl Phenylglyoxylate, Macromolecules 1998, 31(2): 322-327
    32. Kang, T.; Scheffer, J. R., An Unexpected Patern?-Büchi Reaction in the Crystalline State, Org. Lett., 2001, 3(21), 3361~3364
    33. Booker-Milburn, K. I.; Baker, J. R.; Bruce, I., Rapid Access to Azepine-Fused Oxetanols from Alkoxy-Substituted Maleimides, Org. Lett., 2004, 6(9): 1481-1484
    34. (a) Kaptein, R.; Kanter, F. J. J.; Rist, G. H., CIDNP from a 1,4-biradical in the norrish type II photoreaction of valerophenone, J. Chem. Soc., Chem. Commun., 1981, (10): 499~500;
    (b) Severance, D.; Pandey, B.; Morrison, H., Organic photochemistry. 71. Reaction path analysis of hydrogen abstraction by the formaldehyde triplet state, J. Am. Chem. Soc., 1987, 109(11): 3231~3233.;
    (c) Chuljian, D. T.; Simons, J., Photofragment spectrum of C-state hydrogen cyanide. Theoretical interpretation, J. Am. Chem. Soc., 1982, 104(2): 646~652;
    (d) Scaiano, J. C.; Wagner, P. J., Excited-state chemistry of a 1,5-biradical: laser-induced ejection of a 1,3-biradical, J. Am. Chem. Soc. 1984, 104(17): 4626~4627;
    (e) Breckenridge, W. H.; Stewart, G. M., Pulsed laser photolysis of chromium hexacarbonyl in the gas phase, J. Am. Chem. Soc., 1986, 108(3): 364~367;
    (f) Wagner, P. J.; Meador, M. A.; Park., B. S., The photocyclization of o-alkoxy phenyl ketones, J. Am. Chem. Soc., 1990, 112(13): 5199~5211
    35. (a) Yang, N. C.; Elliott, S. P., Photochemistry of (s)-(+)-5-methyl-2-heptanone, J. Am. Chem. Soc., 1969, 91(26): 7550-7551;
    (b) Casey, C. P.; Boggs, R. A., Nonstereospecific formation of olefins in the Norrish type II photochemical cleavage of ketones from the singlet excited state. Evidence for a singlet diradical intermediate, J. Am.Chem. Soc., 1972, 94(18): 6457-6463
    36. Sugimura, T.; Paquette, L. A., Enantiospecific total synthesis of the sesquiterpene antibiotics (-)-punctatin A and (+)-punctatin D, J. Am. Chem. Soc., 1987, 109(10): 3017-3024
    37. Vlad, P. F.; Ciocarlan, A. G.; Coltsa, M. N.; et al., Photodegradation of some 14, 15-bisnorlabdene-13-ones, derived from larixol. Synthesis of drimanic dienes with functional groups at C-6, Tetrahedron, 2006, 62 (36): 8489–8497
    38. Wochnowskia, C.; Eldin, M. S.; Metev, S., UV-laser-assisted degradation of poly(methyl methacrylate), Polym. Degrad. Stab., 2005, 89(2), 252-264
    39. Zhu, Z. M.; Kelley, M. J., Effect of deep UV (172 nm) irradiation on PET: ToF/SIMS analysis, Appl. Surf. Sci., 2004, (231–232): 302–308.
    40. Moorthy, J. N.; Mal, P., Norrish Type II photoreactivity of β-anisylalkanophenones and solvent effects on stereoselective Yang cyclization, Tetrahedron Lett., 2003, 44(12): 2493–2496
    41. Mortko, C. J.; Dang, H.; Campos, L. M.; et al., H-abstraction prevails over α-cleavage in the solution and solid state photochemistry of cis-2,6-di(1-cyclohexenyl)cyclohexanone, Tetrahedron Lett., 2003, 44(32): 6133–6136
    42. Literák, J.; Klán, P.; Heger, D.; et al., Photochemistry of alkyl aryl ketones on alumina, silica-gel and water ice surfaces, J. Photochem. Photobiol. A : Chemistry, 2003, 154(2~3): 155–159
    43. Klán, P.; Jano?ek, J.; K?í?, Z., Photochemistry of valerophenone in solid solutions, J. Photochem. Photobiol. A : Chemistry, 2000, 134 (1~2): 37–44
    44. Ihmels, H.; Scheffer, J. R., The Norrish type II reaction in the crystalline state: Toward a better understanding of the geometric requirements for γ-hydrogen atom abstraction, Tetrahedron, 1999, 55 (4): 885-907
    45. Gao, L. J.; Zhao, T. Z.; Han, G. D., A novel method for the synthesis of a C/D-ring synthon of vitamin D derivatives from hyodeoxycholic acid, Tetrahedron Lett., 1999, 40 (1): 131-132
    46. Dauben, W. G.; OllmannJr, R. R.; Wu, S. C., Photochemical synthesis of C/D-ring synthons of vitamin D, Tetrahedron Lett., 1994, 35(14): 2149-2152
    47. Photochemical reactions of sulfide-containing alkyl phenylglyoxylates, Shengkui Hu and Douglas C. Neckers., Tetrahedron, 53 (21), 7165-7180, 1997.
    48. Hu, S.K.; Neckers, D. C., Photochemical reactions of mercapto/amino substituted alkyl phenylglyoxylates induced by intramolecular electron transfer, Tetrahedron, 1997, 53(8): 2751-2766
    49. Takagi, K.; Harata, E.; Shichi, T.; et al., Intercalation and control of the Norrish type II reactions of aromatic ketocarboxylates in hydrotalcite clay interlayers, J. Photochem. Photobiol. A : Chemistry, 1997, 105(1): 47-54
    50. Freeman-Cook, K. D.; Halcomb, R. L., Synthesis of bicyclic ketals related to zaragozic acid by a novel photoannulation, Tetrahedron Lett., 1996, 37(28): 4883-4886
    51. Bhattacharyya, A.; Subramanian, S., Theoretical studies of the photochemical ring fission reaction of dicyclopropyl ketone and the Norrish type II reaction of cyclopropyl 2,2-dimethyl cyclopropyl ketone, J. Mol. Struct.(Theochem), 1996, 361 (1~3): 145-150
    52. Sengupta, D.; Bhattacharyya, A.; Sumathi, R.; et al., Further studies on Norrish type II reactions including a reaction in the first excited singlet state and cyclization of 1:4 biradicals, J. Photochem. Photobiol. A : Chemistry, 1995, 86(1~3): 161-170
    53. Brunckova, J.; Crich, D., Intramolecular hydrogen atom abstraction: The β-oxygen effect in the Norrish type II photoreaction, Tetrahedron, 1995, 51(44):11945-11952
    54. Morita, A.; Kato, S., Theoretical study on the intersystem crossing mechanism of a diradical in Norrish type II reactions in solution, J. Phys. Chem., 1993, 97(13): 3298-3313
    55. Small, R. D.; Scaiano, J. C., Electron transfer reactions of the biradicals produced in the Norrish type II process, J. Phys. Chem., 81978, 2(25): 2662-2664
    56. Furman, I.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 43. Norrish II reactions of neat liquid-crystalline ketones. Comparison between nematic and solid phase order and control of photoproduct distributions, J. Am. Chem. Soc., 1992, 114(4): 1381-1388
    57. Furman, I.; Butcher, R. J.; Catchings, R. M.; et al., Liquid-crystalline solvents as mechanistic probes. 45. Norrish II reactions of liquid-crystalline ketones. Comparison between smectic B and solid-phase order and control of photoproduct distributions, J. Am. Chem. Soc., 1992, 114(15): 6023-6030.
    58. Nunez, A.; Hammond, G. S.; Weiss, R. G., Liquid crystalline solvents as mechanistic probes. 47. Investigation of the modes of solubilization and Norrish II photoreactivity of 2- and sym-n-alkanones in the solid phases of n-heneicosane and two homologs, J. Am. Chem. Soc., 1992, 114(26): 10258-10271
    59. He, Z.Q.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. Part 38. Length and direction-specific solute-solvent interactions as determined from Norrish II reactions of p-alkylalkanophenones in ordered phases of n-butyl stearate, J. Am. Chem. Soc., 1990, 112(14): 5535-5541
    60. Treanor, R. L.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 26. Norrish II photolyses and deuterium magnetic resonance studies on the solubilization sites and mobilities of 2- and sym-alkanones in interdigitated and bilayer gel phases of aqueous surfactants, J. Am. Chem. Soc., 1988, 110(7): 2170-2177
    61. Nunez, A.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 27. Control of Norrish II reactions of 2- and sym-alkanones by the ordered solid phases of heneicosane, J. Am. Chem. Soc. 1987, 109(20): 6215-6216
    62. Treanor, R. L.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 22. The influence of smectic order of n-butyl stearate and lyotropic gels on the diastereomeric ratio of cyclobutanols from the Norrish II reactions of aliphatic, linear ketones, J. Am. Chem. Soc., 1986, 108(15), 3137-3139
    63. Zimmermann, R. G.; Liu, J. H.; Weiss, R. G., Liquid-crystalline solvents as mechanistic probes. 21. Control of Norrish II 1, 4-biradical reactivity by the phase and molecular dimensions of an ordered solvent, J. Am. Chem. Soc., 1986, 108 (17): 5264-5271
    64. Ramamurthy, V.; Corbin, D. R.; Johnston, L. J., A study of Norrish type II reactions of aryl alkyl ketones included within zeolites, J. Am. Chem. Soc. 1992, 114(10): 3870-3882
    65. Workentin, M. S.; Leigh, W. J.; Jeffrey, K. R., Organic reactions in liquid crystalline solvents. 10. Studies of the ordering and mobilities of simple alkanophenones in CCH-n liquid crystals by deuterium NMR spectroscopy and Norrish II photoreactivity, J. Am. Chem. Soc., 1990, 112(20): 7329-7336
    66. Evans, S. V.; Garcia-Garibay, M.; Omkaram, N.; et al., Use of chiral single crystals to convert achiral reactants to chiral products in high optical yield: application to the di-.pi.-methane and Norrish type II photorearrangements, J. Am. Chem. Soc., 1986, 108(18): 5648-5650
    67. Caldwell, R. A.; Dhawan, S. N.; Moore, D. E., pH dependence of the lifetime of a Norrish II biradical, J. Am. Chem. Soc., 1985, 107(18): 5163-5166
    68. Ariel, S.; Ramamurthy, V.; Scheffer, J. R.; et al., Norrish type II reaction in the solid state: involvement of a boatlike reactant conformation, J. Am. Chem. Soc., 1983, 105(23), 6959-6960
    69. Wagner, P. J.; Kelso, P. A.; Kemppainen, A. E.; et al., Type II photoprocesses of phenyl ketones. Competitive .delta.-hydrogen abstraction and the geometry of intramolecular hydrogen atom transfers, J. Am. Chem. Soc., 1972, 94(21), 7500-7506
    70. Büchi, G.; Inman, C. G.; Lipinsky, E. S., Light-catalyzed Organic Reactions. I. The Reaction of Carbonyl Compounds with 2-Methyl-2-butene in the Presence of Ultraviolet Light, J. Am. Chem. Soc., 1954, 76(17), 4327~4331
    71. Kopecky. J., Organic Chemistry, New York: VHC Publishers, Inc., 1992, 117-135.
    72. 高振衡,有机光化学,北京:人民教育出版社,1982, 170~200
    73. Freilich, S. C.; Peters, K. S., Observation of the 1,4 biradical in the Paterno-Buchi reaction, J. Am. Chem. Soc., 1981, 103(20), 6255-6257
    74. Adam, W.; Stegmann, V. R.; Weink?tzJ, S., Unusual Temperature-Dependent Diastereoselectivity in the [2+2] Photocycloaddition (Paternò-Büchi Reaction) of Benzophenone to cis- and trans-Cyclooctene through Conformational Control, J. Am. Chem. Soc., 2001, 123(10), 2452-2453
    75. Griesbeck, A. G.; Bondock, S., Paternò-Büchi Reactions of Allylic Alcohols and Acetates with Aldehydes: Hydrogen-Bond Interaction in the Excited Singlet and Triplet States, J. Am. Chem. Soc. 2001, 123(25), 6191-6192
    76. Abe, M.; Kawakami, T.; Ohata, S.; et al., Mechanism of Stereo- and Regioselectivity in the Paternò-Büchi Reaction of Furan Derivatives with Aromatic Carbonyl Compounds: Importance of the Conformational Distribution in the Intermediary Triplet 1, 4-Diradicals, J. Am. Chem. Soc. 2004, 126(9): 2838-2846.
    77. Bordwell, F. G.; Scamehorn, R. G.; Knipe, A. C, 1-Phenyl- and 1,3-diphenyl- 2-indanones from the reaction of .alpha.-halo ketones and sodium methoxide in methanol, J. Am. Chem. Soc., 1970, 92(7): 2172-2173
    78. Schanberg, A.; Mostafa, A., Photo-reactions. Part V. Photo-oxidation of non-ionisable thioketones in sunlight, J. Chem. Soc., 1943, 275-276
    79. Oster, G.; Citarel, L.; Goodman, M., Photochemical Reactions of Thiobenzophenones, J. Am. Chem. Soc., 1962, 84(5): 703-706
    80. Sumathi, K.; Chandra, A. K., Activation barrier for the .alpha.-cleavage process in thiones, J. Org. Chem., 1988, 53(6): 1239-1243
    81. Chandra, A. K.; Sumathi, R., Mindo/3 configuration interaction studies of α-cleavage processes in organic photochemistry, J. Photochem. Photobiol. A: Chemistry, 1990, 52(2): 213-234.
    82. (a) Muthuramu, K.; Ramamurthy, V., Photolysis of the dithiolactone 4-isopro- pylidene-3,3-dimethyl-1-thietan-2- thione; a Norrish type I reaction, J. Chem. Soc., Chem. Commun., 1980, (5): 243-244;
    (b) Muthuramu, K.; Ramamurthy, V., Photochemistry of dimethylthioketene dimmers, J . Org. Chem., 1980, 45(22): 4532-4533;
    (d) Muthuramu, K.; Ramamurthy, V., Photofragmentation Reactions of Thiocarbonyl Compounds, Chem. Lett., 1981, 10(9): 1261-1264.
    (e) Muthuramu, K.; Sundari, B.; Ramamurthy, V., Strain-assisted .alpha.-cleavage reactions of thioketones: cyclobutanethiones, J. Org. Chem., 1983, 48(24), 44824487;
    (f) Muthuramu, K.; Sundari, B.; Ramamurthy, V., Photofragmentation reactions of dithiolactones, Tetrahedron, 1983, 39(16): 2719-2723
    83. (a) Sharat, S.; Bhadbhade, M. M.; Venkatesan, K.; et al., Strain assisted .alpha.-cleavage reactions of thio ketones: diphenylcycloprope- nethione, J. Org. Chem., 1982, 47(18): 3550-3553;
    (b) Sharat, S.; Ramamurthy, V., Regioselectivity in .alpha.-cleavage reactions: arylalkylcyclopropenethiones, J. Org. Chem. 1985, 50(20): 3732-3738;
    (c) Usha, G.; Rao, B. N.; Chandrasekhar, J.; et al., The origin of regioselectivity of .alpha.- cleavage reactions of cyclopropenethiones: potential role of pseudo-Jahn-Teller effect in substituted cyclopropenyl systems, J. Org. Chem., 1986, 51(19), 3630-3635
    84. Rao, B. N.; Chandrasekhar, J.; Ramamurthy, V., Photochemical, photophysical, and theoretical studies on cyclobutanethi- ones. .alpha.-Cleavage reactions, J. Org. Chem., 1988, 53(4): 745-751
    85. (a) Couture, A.; Ho, K.; Hoshino, M.; et al., Photochemical synthesis. 65. Thione photochemistry. 22. Intramolecular cyclization of aralkyl thiones from S2, J. Am. Chem. Soc. 1976, 98(20), 6218-6225;
    (b) Ho, K. W.; and Mayo, P., Photochemical synthesis. 78. Thione photochemistry. 29. Mechanism of photocyclization of aralkyl thiones, J. Am. Chem. Soc. 1979, 101(19): 5725-5732
    86. (a) Basu, S.; Couture, A.; Ho, K. W.; et al., Thione photochemistry. Dual pathways in aralkyl thione cyclizations, Can. J. Chem., 1981, 59: 246-254;
    (b) Hui, M. H.; Mayo, P.; Suau, R.;et al., Thione photochemistry: Fluorescence from higher excited states, Chem. Phys. Lett., 1975, 31(2), 257-263;
    (c) Couture, A.; Gomez, J.; Mayo, P., Thione photo- chemistry: abstraction and cyclization at the .beta.-position of aralkyl thiones from two excited states, J. Org. Chem. 1981, 46(10): 2010-2016
    (d) Mayo, P.; Suaulg, R., Type I1 and Homo-Type I1 Photoprocesses. Specific Reactivity of Upper and Lower Excited States of Aralkyl Thiones, J. Am. Chem. Soc., 1974, 96(21): 6807-6809;
    (e) Couture, A.; Hoshino, M.; Mayo, P., Thione photochemistry: cyclopropanethiol formation from arylalkyl thiones, J. Chem. Soc., Chem. Commun., 1976, (4): 131 - 132
    87. Blackwell, D. S. L.; Mayo, P., Thione photochemistry: cyclopropanethiol (homothioenol) formation by β-hydrogen abstraction, J. Chem. Soc., Chem. Commun., 1973, (4): 130 – 131
    88. a) Law, K. Y.; Mayo, P.; Wong, S. K., Photochemical synthesis. 69. Hydrogen abstraction by the .pi.,.pi. singlet state, J. Am. Chem. Soc., 1977, 99(17): 5813-5815 ;
    b) Law, K. Y.; and Mayo, P., Photochemical synthesis. 72. Thione photochemistry. Adamantanethione as a model for singlet .pi.,.pi. hydrogen abstraction, J. Am. Chem. Soc., 1979, 101(12): 3251-3259;
    c) Liao, C. C.; Mayo, P., Photoadditions of an alicyclic thioketone, J. Chem. Soc. D, Chem. Commun., 1971, (23): 1525-1526.
    d) Bolton, J. R.; Chen, K. S.; Lawrence, A. H.; et al., Photochemical synthesis. 58. Thione photochemistry. Photoreduction of adamantanethione, J. Am. Chem. Soc., 1975, 97(7): 1832-1835
    89. Oster, G.; Citarel, L.; Goodman, M., Photochemical Reactions of Thiobenzo- phenones, J. Am. Chem. Soc., 1962, 84(5): 703-706
    90. Kito, N.; Ohno, A., Photochemical Reaction of Diaryl Thioketones in Ethereal Solutions. A Stable Transient Free-Radical, Bull. Chem. Soc. Jap., 1973, 46(8): 2487-2489
    91. a) Brühlmann, u.; huber, J. R., Photochemical Reaction of Xanthioes, J. Photochem., 1979,10(3): 205-207;
    b)Capitanio, D. A.; Pownall, H. J.; huber, J. R., Photochemical Properities of Xanthioes, J. Photochem., 1974, 3(12): 225-261.
    92. Lawrence, A. H.; Liao, C. C.; De Mayo, P.; et al., Photochemical synthesis. 63. Thione photochemistry. 20. Cycloaddition in a saturated alicyclic system, J. Am. Chem. Soc., I976, 98(8): 2219-2226
    93. The role of T1 self-quenching in photochemical decay of aromatic thiones, Andrzej Maciejewski, J. Photochem. Photobiol. A : Chemistry, 1988, 43(3), 303-312
    94. (a) Congdon, W. I.; Edward, J. T., Thiohydantoins. XII. Secondary Deuterium Isotope Effects in the Acid- and Base-catalyzed Hydrolysis of 1-Acetyl-5, 5-dimethyl-2-thiohydantoin, Can. J. Chem., 1983, 50: 3921-3923;
    (b) Worman, J. J.; Shen, M.; Nichols, P. C., A New Photochemical Reaction of Unconjugated Thioketones, Can. J. Chem., 1983, 50: 3923-3926
    95. Kaiser E. T.; Wulfers, T. F., Photolysis of Thiobenzophenone in the Presence of Olefins: A Novel Reaction, J. Am. Chem. Soc., 1964, 86(9), 1897-1898
    96. Yamada, K.; Yoshioka, M.; Sugiyama, N., Photochemical cycloaddition of thiobenzophenone to conjugated dienes, J. Org. Chem., 1968, 33(3): 1240-1243
    97. Tsuchihashi, G.; Yamauchi, M.; Fukuyama, M., Photocycloaddition of thiobenzo- phenone to olefins, Tetrahedron lett., 1967, 8(21): 1971-1974
    98. a) Ohno, A.; Ohnishi, Y.; Fukuyama, M.; et al., Photocycloaddition of thiocarbon- yl compounds to olefins. Reaction of thiobenzophenone with styrene and substituted styrenes, J. Am. Chem. Soc., 1968, 90(25): 7038~7043;
    b) Ohno, A.; Ohnishi, Y.; Tsuchihashi, G., Photocycloaddition of thiocarbonyl compounds to olefins. Reaction of thiobenzophenone with various types of olefins. J. Am. Chem. Soc., 1969, 91(18): 5038-5043;
    c) Ohno, A.; Ohnishi, Y.; Tsuchihashi, G., Photocycloaddition of thiocarbonyl compounds to olefins. The reactions of thiobenzophenone with case-III olefins. Tetrahedron lett., 1969, 10(4), 283
    99. Gotthardt, H., Photocycloadditionen von thioarylketonen a 2.4-dimethyl-2.3 und- 1.3-penta dien, Tetrahe. Lett., 1971, 12(25): 2345-2348
    100. Ohno, A.; Koizumi, T.; Ohnishi, Y., et al., Photocycloaddition of thiocarbonyl compounds to multiple bonds. VI the reaction of thiobenzophenone with acetylenic compounds. Tetrahedron lett., 1970, 11(23): 2025-2028
    101. Ohno, A.; Ohnishi, Y.; Tsuchihashi, G., Photocycloaddition of thiocarbonyl compounds to olefins. The reactions of thio- benzophenone with electron-deficient olefins. Tetrahedron lett., 1969, 10(3): 161
    102. Thione photochemistry: cycloaddition to the nitrile function, D. S. L. Blackwell, P. de Mayo, and R. Suau., Tetrahedron letter, (1970, 15(1), 91-94
    103. Devanathan, S.; Ramamurthy, V., Photochemistry of a,β-UnsaturatedT hiones: Cycloaddition of Thiocoumarin to Electron-Rich and Electron-Deficient Olefins from T1, J. Org. Chem. 1988, 53(4): 741-744
    104. Turro, N. J.; Ramamurthy, V., On the mechanism of photocycloaddition of aromatic thiones (n, π* triplet) to multiple bonds, Tetrahedron lett., 1976, 17(28): 2423-2426
    105. Kamphuis, O.; Bos, H. J. T.; Visser, R. J.; et al., An extremely short-lived 1,4-biradical as intermediate in the photocycloaddition reactions of triplet state aromatic thiones with allenes, J. Chem. Soc., Perkin Trans. 2, 1986, (12): 1867-1874
    106. Visser, R. G.; Baaij, J. P. B.; Brouwer, A. C.; et al., Photochemical (2+2) cycloaddition of aromatic thiones to ketenimines. Acid catalyzed rearrangement of 2-iminothietanes, Tetrahedron lett., 1977, 18 (49): 4343-4344,
    107. Visser, R. G.; Bos, H. J. T., Photochemical (2+2)-cycloaddition of thioxanthenethi- one with some butatriene derivatives, Tetrahedron lett., 1979, 20(50): 4857-4858
    108. Ooms, P.; Hartmann, W., Orientierungsph?nomene bei der photochemischen [2+2]-cycloaddition von thiocarbonylverbindungen an ketenacetale, Tetrahedron lett., 1987, 28(24),2701-2704
    109. Rao, V. P.; Ramamurthy, V., Photochemistry of .alpha.,.beta.-unsaturated thiones: addition to electron-rich olefins from T1, J. Org. Chem. 1988, 53(2): 327-332
    110. Rao, V. P.; Ramamurthy, V., Photochemistry of .alpha.,.beta.-unsaturated thiones. Cycloaddition to electron-deficient olefins from higher excited states, J. Org. Chem., 1988, 53(2): 332-339
    111. Devanathan, S.; Ramamurthy, V., Photochemistry of .alpha.,.beta.-unsaturated thiones: cycloaddition of thiocoumarin to electron-rich and electron-deficient olefins from T1, J. Org. Chem. 1988, 53(4), 741-744
    112. Ramnath, N.; Ramesh, V.; Ramamurthy, V., Photochemical oxidation of thio ketones: steric and electronic aspects, J. Org. Chem.1983, 48(2): 214-222
    113. Rajee, R.; Ramamurthy, V.; Ohno, A.; et al., Oxidation of thiones by singlet and triplet oxygen, Tetrahedron lett., 1978, 19(51): 5127-5130
    114. Rao, V. J.; Muthuramu, K.; Ramamurthy, V., Oxidations of thio ketones by singlet and triplet oxygen, J. Org. Chem. 1982, 47(1): 127-131
    115. Padmanabhan, K.; Venkatesan, K.; Ramamurthy , V., Structure reactivity correlation in inclusion complexes: deoxycholic acid di-tert-butyl thioketone, Can. J. Chem., 1984, 62: 2025-2028
    116. Rao, V. J.; Ramamurthy, V.; Schaumann, E.; et al., Oxidation of thioketenes by singlet oxygen, J. Org. Chem. 1984, 49(4): 615-621
    117. Rao, V. P.; Ramamurthy, V., Mechanism of oxidation of α,β-unsaturated thiones by singlet oxygen, Tetrahedron, 1985, 41(11): 2169-2176
    118. Singh, A.K.; Raghuraman, T. S., Photobehaviour of N-aryl amides in micelle. Synth. Commun., 1986, 16(4): 485-490
    119. Syamala, M. S.; Rao, B. N.; Ramamurthy, V., Modification of photochemical reactivity by cyclodextrin complexalion: product selectivity in photo-fries rearrangement, Tetrahedron, 1988, 44(23): 7234-7242
    120. Magdy M. A. M.; Paul, M., Surface photochemistry: the amide Photo-Fries rearrangement, Can. J. Chem., 1984, 62: 1275-1278
    121. Mayouf, A. M.; Park, Y. T., Photoreaction of 2′-chloro-4-R-benzanilide: synthesis of 2-(4-R-phenyl)-1, 3- benzoxazole and 9-R-phenanthridin-6(5H)-one (R=H, CH3, CH3O), J. Photochem. Photobiol. A: Chemistry, 2002, 150(1-3): 115-123
    122. Mayouf, A. M., Photochemistry of 2′-halobenzanilides: reaction mechanism, J. Photochem. Photobiol. A: Chemistry, 2005, 172(3): 258-268
    123. Park, Y. T.; Jung, C. H.; Kim, K. W.; et al.,Synthesis of 2-Pyridinylbenzoxazole: Mechanism for the Intramolecular Photo- substitution of the Haloarene with the Carbonyl Oxygen of the Amide Bond in Basic Medium, J. Org. Chem. 1999, 64(23): 8546-8556
    124. Park, Y. T.; Jung, C. H.; Kim, M. S.; et al., Photoreaction of 2-Halo-N-pyridinyl- benzamide: Intramolecular Cyclization Mechanism of Phenyl Radical Assisted with n-Complexation of Chlorine Radical, J. Org. Chem. 2001, 66(7): 2197-2206
    125. Jayanthi, G.; Muthusamy, S.; Ramakrishnan, V. T., Photoreaction of N-aryl- carbonyl-N′-arylthiourea derivatives, J. Photochem. Photobiol. A: Chemistry, 1998, 116(2): 103-108
    126. a) Senthilvelan, A.; Ramakrishnan, V. T., A new base-mediated photocyclization to 1,2,4-triazolo[3,4-b]-1,3-(4H)–benzothiazines via 1,2,4-triazole-3-thiones, Tetrahedron Lett., 2002, 43(29): 5119–5121;
    b) Senthilvelan, A.; Thirumalai, D.; Ramakrishnan, V. T.; Photochemical synthesis of triazolo[3,4-b]-1,3(4H)-benzo- thiazines: a detailed mechanistic study on photocyclization/photodesulfurisation of triazole-3-thiones, Tetrahedron 2004, 60 (4): 851–860;
    c) Jayanthi, G.; Muthusamy, S.; Paramasivam, R.; et al., Photochemical Synthesis of s-Triazolo[3,4-b]benzo- thiazole and Mechanistic Studies on Benzothiazole Formation, J. Org. Chem. 1997, 62(17), 5766-5770
    127. Van der Nieuwendijk, A. M. C. H.; Pietra, D., Heitman, L.; et al., Synthesis and Biological Evaluation of 2,3,5-Substituted [1,2,4]Thiadiazoles as Allosteric Modulators of Adenosine Receptors, J. Med. Chem., 2004, 47(3): 663-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700