建立在猪骨骼肌差异表达EST基础上的新基因cDNA克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,猪骨骼肌转录谱的研究取得了较大进展,获得了大量差异表达EST,但是,如何建立这些差异表达EST与经济性状表型差异的联系,并利用这些序列信息实现对农业动物经济性状的改良则是今后很长一段时间内需要解决的重大课题。而首先需要解决的一个问题就是通过EST克隆获得相应基因的cDNA信息,并研究基因的功能和相互调控关系。
     本研究以本实验室前期转录组研究发现的三条猪背最长肌组织中差异表达EST为基础,开展了候选基因的克隆、定位及其功能研究工作,得到如下结果:
     1.以差异表达EST为基础,结合生物信息学与实验验证克隆获得了猪PPP2R5A、CSRP1和CSRP2基因包含完整CDS的cDNA序列以及CSRP3基因和LDB1基因的全长cDNA序列。
     2.利用SCHP和RH克隆板对上述5个基因及PP2A相关的另6个基因共11个基因进行了染色体定位,结果如下:PPP2CA定位于SSC 2q21-qter,PPP2CB定位于SSC 15q,PPP2R1A定位于SSC 6q12-q21,PPP2R1B定位于SSC 9p21,PPP2RSA定位于SSC 9q26,PPP2R5B定位于SSC 2p14-p17,PPP2R5D定位于SSC 7q11-q12,CSRP1基因定位于SSC 10,CSRP2基因定位于SSC5,CSRP3基因定位于SSC2p14-p17,LDB1基因定位于SSC14。
     3.利用QPCR发现猪PPP2R5A基因在心、肝、脾、肺、肾、肌肉、脂肪、小肠组织中广泛表达,但在肌肉组织中表达量明显高于其他组织,并在脂肪组织中高表达;同时发现该基因在通城猪和长白猪胎儿背最长肌中呈上调表达趋势,且在33天和65天,两品种间表达差异显著。
     4.通过RT-PCR分析发现CSRP1基因和CSRP2基因均呈广泛表达特征,而CSRP3基因仅在横纹肌中表达,定量PCR显示该基因在通城和长白猪肌肉发育过程中上调表达,但是两品种间基因表达差异不显著;推导了猪CSRP家族三个基因的氨基酸序列,构建了该家族基因的系统进化树,并结合氨基酸同源性推测此家族三个基因具有共同的祖先,CSRP1基因与CSRF2基因在结构、功能和进化关系上更为接近,而CSRP3基因则相对独立。
     5.克隆获得了猪CSRP3基因6293 bp的DNA序列,推测了该基因的基因组结构以及剪接位点信息;并克隆了该基因部分启动子序列,预测发现存在典型的“TATA”Box和E-Box,并包含MEF2、RAR-beta及HNF3-like等转录因子结合位点;发现了猪CSRP3基因的13个潜在SNP位点,并发现可能存在两种较为稳定的单倍型,进一步利用TaqI PCR-RFLP方法对C466T多态位点分析发现,该位点不同基因型频率在国内外品种之间存在显著差异。
     6.发现猪LDB1基因5'UTR、3'UTR及CDS区中均存在选择性剪接。其中位于CDS区中的一个选择性剪接造成其编码蛋白缺少了46个氨基酸,并进一步发现这种选择性剪接体在肺脏中具有较高表达,其次在肌肉组织中可检测到表达;成功构建了该基因两种转录本的pEGFP-N1融合表达载体,通过转染并利用激光共聚焦观察发现两种转录本均呈现“核质”共定位特征。
     7.成功克隆了猪LDB1基因上游约2.6 kb的启动子序列,并构建了11个pGL3报告基因载体,转染猪IBRS-2肾细胞,通过双荧光素酶报告基因系统检测发现了对于该基因转录活性起重要调节作用的三个保守区域,通过分析推测SP1、NF-KappaB等转录因子可能参与LDB1基因的转录激活,而ARP-1和TtK等转录因子可能参与对LDB1基因的转录抑制。
     8.综合分析发现,猪PPP2R5D基因及LDB1基因共有三个位点的选择性剪接不符合“GT-AG”规则,并推测这种剪接现象可能与剪接位点附近存在的短重复序列相关。
     以上研究工作是本室关于猪骨骼肌基因组学研究的继续和延伸,将为猪功能基因组研究增添新的材料,并为建立差异表达基因与产肉性状表型差异的联系奠定基础。
Recent advance in porcine skeletal muscle profile obtained a number of differentially expressed ESTs. In a long period from now, the primary issue will be establishing the relationship between these ESTs and phenotypic difference of economic traits, and translating genomic sequences into enhanced value of the phenotypes. The first challenge is to obtain the corresponding gene based on these ESTs, study their function, and discover the mutual regulatory relationship.
     Based on three differentially expressed ESTs discovered in our previous transcriptome study of porcine skeletal muscle, the cloning, mapping and functional study of candidate gene had been done, and the results obtained were as follows:
     1. Combining bioinformatics and experiments validation, the cDNA sequences including complete CDS were obtained for porcine PPP2R5A, CSRP1 and CSRP2 respectively. The full-length cDNA sequence of porcine CSRP3 and LDB1 were also obtained based on corresponding differential expressed ESTs.
     2. The SCHP and RH panel were used to assign five genes mentioned above and another six PP2A-related genes, and obtained their chromosome location information as follows: PPP2CA to SSC 2q21-qter, PPP2CB to SSC 15q, PPP2R1A to SSC 6q12-q21, PPP2R1B to SSC 9p21, PPP2R5A to SSC 9q26, PPP2R5B to SSC 2pl4-pl7, PPP2R5D to SSC 7q11-q12, CSRP1 to SSC 10, CSRP2 to SSC5, CSRP3 to SSC 2p14-p17, and LDB1 to SSC14.
     3. QPCR assay indicated that PPP2R5A mRNA expressed widely in porcine heart, liver, spleen, lung, kidney, skeletal muscle, adipose, and small intestine, with the most abundance in skeletal muscle, followed by adipose. Furthermore, PPP2R5A mRNA shows an up-regulated trend during fetal skeletal muscle development of Tongcheng and Landrace pigs. The expression level of porcine PPP2R5A mRNA show significant difference between two pig breeds at both stages of 33-day old and 65-day old embryos.
     4. RT-PCR assay indicated that CSRP1 and CSRP2 mRNA distributed in all the tissues we detected, however, CSRP3 were only expressed in striated muscle. QPCR assay showed that CSRP3 was up-regulated during skeletal muscle development in Tongcheng and Landrace pigs. We deduced the amino acid sequences and constructed phylogenic tree of the CSRP family members. Combing the similarity information of the amino acid sequences and the cluster results, we deduced that the three members originated from the same ancestor. CSRP1 shows much more similarity with CSRP2 in structure and function, and they have a close evolutionary relationship, but CSRP3 is a separated member.
     5. We obtained 6293 bp DNA sequence of porcine CSRP3, speculated the genomic structure and analyzed the splicing sites information. We further cloned partial promoter sequence of CSRP3, which contained typical "TATA" box, "E-Box", and transcriptional factor binding sites, including MEF2, RAR-beta and HNF3-like. Thirteen potential SNPs and two possible haplotypes were discovered in CSRP3 DNA, TaqⅠPCR-RFLP assay were further conducted to detect the C466T polymorphic site, and significant difference in genotype frequency between indigenous and exotic pig breeds were discovered.
     6. Alternative splicing in the 5'UTR, 3'UTR and CDS of porcine LDB1 were detected. One alternative splicing in CDS produced a protein lacking 46 amino acids, which was found to be relatively high expressed in lung, followed by skeletal muscle. We successfully constructed two fused-expression vectors of pEGFP-N1 and two variants of porcine LDBl respectively, and found the dual location pattern in nucleus and cytoplasm of these two variants by observation and analyzing using Laser Scanning Confocal Microscope after transfection.
     7. The 2.6 kb upstream promoter of porcine LDB1 was obtained and used to construct pG13 reporter vectors. Eleven vectors were obtained and transfected into porcine IBRS-2 cell. Through dual-luciferase reporter assay, we identified three conserved regulatory region in LDB1 promoter, which were used for transcription factor binding sites prediction. SP1 and NF-KappaB were speculated to be involving in transcriptional activation, and ARP-1 and TtK in transcriptional repression.
     8. These unusual alternative splicing sites detected in porcine PPP2R5D and LDB1 were not accordant with the general "GT-AG" rule, but were speculated to be connected with the short repeat elements around the splicing sites.
     This research is the extension of our previous study in porcine skeletal muscle development, which will add new materials for porcine functional genomic research, and lay a foundation for establish relationship between these ESTs and phenotypic difference of meat production traits.
引文
1.白雪源,孟令英,崔红,李劲松,翟俊辉,车凤翔.甜菜碱促进高GC含量p16基因的PCR扩增.中华医学遗传学杂志,2000,17:224
    2.曹慧青.多基因共表达载体的构建策略.国外医学分子生物学分册,2002,24:1-4
    3.陈峰,李洁,张贵友,刘强.酵母单杂交的原理与应用实例.生物工程进展,2001,21:57-62
    4.顾燕云,周晓鸥,胡仁明.PP2A的结构和功能新进展.国外医学分子生物学分册,2003,25:228-231
    5.贺超英,张志永,陈受宜.大豆中NBS类抗病基因同源序列的分离与鉴定.科学通报,2001,48:1017-1021
    6.黄骥,张红生,曹雅君,王东,王建飞,杨金水.一个新的水稻C2H2型锌指蛋白cDNA的克隆与序列分析.南京农业大学学报,2002,25:110-112
    7.何志颖,姚玉成,胡以平等.EST技术及其在全长cDNA克隆上的应用策略.国外医学遗传学分册,2002,25:67-69
    8.何东苟,余新炳,吴忠道.全长cDNA文库的构建和新基因全长cDNA克隆的策略.热带医学杂志,2003,3:473-476
    9.刘春宇,张春玲,夏家辉.数据综合分析鉴定人类Auxilin基因.生物化学与生物物理研究进展,1998,25:434-438
    10.卢志国.对基于同源序列候选基因法克隆R基因的探讨.[硕士学位论文].河北农业大学,2002
    11.林丽.猪五个基因的分离、辐射杂种板定位及其与经济性状的初步关联分析.[硕士学位论文].武汉:华中农业大学,2004
    12.李文海,邓学梅,李宁,王少华,赵毅强,杜正霖,张然,吴克亮,吴常信.SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因.生物化学与生物物理进展,2005,4:353-358
    13.李重生,陈瑶生,王翀,李加琪.猪肌肉组织差异表达ESTs的克隆与分析.中国科学C辑生命科学,2006,2:139-144
    14.潘佩文.猪不同品种或发育阶段肌肉组织中差异表达EST的分离、鉴定和定位.[博士学位论文].武汉:华中农业大学,2002
    15.唐中林.应用LongSAGE技术进行中外猪种不同发育时期的胚胎骨骼肌比较转录谱研究.[博士学位论文].武汉:华中农业大学,2006
    16.粟永萍,高京生,王锋超.由EST到全长cDNA—RACE及相关技术进展.生命的化学,2002,22:294-297
    17.万敬员,张力,叶笃筠.选择性剪接调控机制的研究进展.国外医学分子生物学分册,2003,25:342-245
    18.王尔松,金百祥.视黄酸受体及其信号转导机制.国外医学.生理.病理科学与临床分册,1999,19:472-475
    19.王彦芳.猪PA28和PA700基因家族相关基因的分离、定位、SNPs检测及其与性状的关联分析.[博士学位论文],武汉:华中农业大学,2004
    20.王焕岭.从猪胚胎骨骼肌cDNA文库中分离、定位新基因并分析部分基因的功能.[博士学位论文].武汉:华中农业大学,2006
    21.薛勇彪,唐定中,张燕生,李维明.水稻基因组中R类抗病基因同源序列的分离.科学通报,1998,43:277-281
    22.邢小黑,姜卫红.提高富含GC碱基DNA模板PCR扩增效率的方法.南京农业大学学报,1999,3:112-114
    23.夏慧煜,李衍达.真核基因选择性剪接机理的初步研究.清华大学学报(自然科学版),2003,43:553-556
    24.杨建一,赵小玲,宋玉兰,宋国华.高GC含量FMR-1基因的PCR扩增.中国优生与遗传杂志,2002,10:28-29
    25.章国卫,宋怀东,陈竺.mRNA选择性剪接的分子机制.遗传学报,2004,31:102-107
    26.张静,刘次全.真核生物mRNA二级结构与内含子剪接.生物化学与生物物理进展,1999,26:363-366
    27.朱新产,王宝维,张庭荣.研究基因转录的RT-PCR技术.生物技术,2002,12:39-41
    28.朱正茂.应用cDNA宏阵列技术发现猪某些产肉性状的候选基因.[博士学位论文],武汉:华中农业大学,2003
    29. Agulnick A D, Taira M, Breen J J, Tanaka T, Dawid I B, Westphal H. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature, 1996, 384:270-272
    30. Alfonso M A. Cell Type Specification: A Developmental Operation. In: Alfonso M A, Alison S. Molecular Principles of Animal Development. Oxford: Oxford University Press, 2002. 310-315
    31. Arber S, Caroni P. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev, 1996, 10:289-300
    32. Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell, 1994, 79:221-231
    33. Arber S, Hunter J J, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard J C, Chien K R, Caroni P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell, 1997, 88: 393-403
    34. Ast G How did alternative splicing evolve? Nat Rev Genet, 2004,5: 773-782
    35. Bach I, Carriere C, Ostendorff H P, Andersen B, Rosenfeld M G A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev, 1997,11:1370-1380
    36. Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear M J, Chang K C. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics, 2003,4: 8
    37. Barash I A, Mathew L, Lahey M, Greaser M L, Lieber R L. Muscle LIM protein plays both structural and functional roles in skeletal muscle. Am J Physiol Cell Physiol, 2005, 289: C1312-C1320
    38. Basu P, Sargent T G, Redmond L C, Aisenberg J C, Kransdorf E P, Wang S Z, Ginder G D, Lloyd J A. Evolutionary conservation of KLF transcription factors and functional conservation of human gamma-globin gene regulation in chicken. Genomics, 2004, 84: 311-319
    39. Blencowe B J. Exonic splicing enhancers mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci, 2000, 25:106-110
    40. Bos J M, Poley R N, Ny M, Tester D J, Xu X, Vatta M, Towbin J A, Gersh B J, Ommen S R, Ackerman M J. Genotype-phenotype relationships involving hypertrophic cardiomyopathy- associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab, 2006, 88: 78-85
    41. Breen J J, Agulnick A D, Westphal H, Dawid I B. Interactions between LIM domains and the LIM domain-binding protein Ldbl. J Biol Chem, 1998, 273: 4712-4717
    42. Brigitte P, Louis L, Cecile B, Michel J D. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev, 2002, 42: 415-431
    43. Caceres J F, Kornblihtt A R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet, 2002,18:186-193
    44. da Costa N, McGillivray C, Bai Q, Wood J D, Evans G, Chang K C. Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. J Nutr, 2004,134: 2191-2199
    45. Drechsler M, Schumacher V, Friedrich S, Wildhardt G, Giesler S, Schroth A, Bodem J, Royer-Pokora B. Genomic structure, alternative transcripts and chromosome location of the human LIM domain binding protein 1 gene LDB1. Cytogenet Cell Genet, 1999, 87:119-124
    46. Eperon I C, Makarova O V, Mayeda A, Munroe S H, Caceres J F, Hayward D G, Krainer A R. Selection of Alternative 5' Splice Sites: Role of U1 snRNP and Models for the Antagonistic Effects of SF2/ASF and hnRNP A1. Mol Cell Biol, 2000, 20: 8303-8318
    47. Firulli A, Olson E. Molecular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet, 1997,13: 364-369
    48. Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven P F, Furst D O, Vornwald A, von Hodenberg E, Nurnberg P, Scheffold T, Dietz R, Osterziel K J. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation, 2003,107: 1390-1395
    49. Grutz G, Forster A, Rabbitts T H. Identification of the LM04 gene encoding an interaction partner of the LIM-binding protein LDB1/NLI1: a candidate for displacement by LMO proteins in T cell acute leukaemia. Oncogene, 1998, 17: 2799-2803
    50. Halevy O, Novitch B G, Spicer D B, Skapek S X, Rhee J, Hannon G J, Beach D, Lassar A B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science ,1995, 267:1018-1021
    51. Harrison S D, Travers A A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J, 1990, 9: 207-216
    52. Hedjran F, Yeakley J M, Huh G S, Hynes R O, Rosenfeld M G Control of alternative pre-mRNA splicing by distributed pentameric repeats. Proc Natl Acad Sci U S A, 1997, 94:12343-12347
    53. Hefferon T W, Groman J D, Yurk C E, Cutting G R. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci (USA), 2004, 101: 3504-3509
    54. Henderson J R, Macalma T, Brown D, Richardson J A, Olson E N, Beckerle M C. The LIM protein, CRP1, is a smooth muscle marker. Dev Dyn, 1999, 214: 229-238
    55. Hui J, Stangl K, Lane W S, Bindereif A. HnRNP stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol, 2003,10: 33-37
    56. Hui J, Hung L H, Heiner M, Schreiner S, Neumuller N, Reither G, Haas S A, Bindereif A . Intronic CA repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J, 2005, 24: 1988-1998
    57. Ingerslev H C, Pettersen E F, Jakobsen R A, Petersen C B, Wergeland H I. Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L). Mol Immunol, 2006,43:1194-1201
    58. Jain M K, Fujita K P, Hsieh C M, Endege W O, Sibinga N E, Yet S F, Kashiki S, Lee W S, Perrella MA, Haber E, Lee M E. Molecular cloning and characterization of SmLIM, a developmentally regulated LIM protein preferentially expressed in aortic smooth muscle cells. J Biol Chem, 1996, 271:10194-10199
    59. Jain M_K, Kashiki S, Hsieh C M, Layne M D, Yet S F, Sibinga N E, Chin M T, Feinberg M W, Woo I, Maas R L, Haber E, Lee M E. Embryonic expression suggests an important role for CRP2/SmLIM in the developing cardiovascular system. Circ Res, 1998, 83: 980-985
    60. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001, 353: 417-439
    61. Janzen M A, Kuhlers D L, Jungst S B, Louis C F. ARPP-16 mRNA is up-regulated in the longissimus muscle of pigs possessing an elevated growth rate. J Anim Sci, 2000, 78: 1475-1484
    62. Jensen K B, Dredge B K, Stefani G, Zhong R, Buckanovich R J, Okano H J, Yang Y Y, Darnell R B. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron, 2000, 25: 359-371
    63. Jiffar T, Kurinna S, Suck G, Carlson-Bremer D, Ricciardi M R, Konopleva M, Andreeff M, Ruvolo P P. PKC alpha mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia, 2004, 18: 505-512
    64. Johnson E F, Palmer C N, Griffin K J, Hsu M H. Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. Faseb J, 1996, 10:1241-1248
    65. Johnson J M, Castle J, Garrett-Engele P, Kan Z, Loerch P M, Armour C D, Santos R, Schadt E E, Stoughton R, Shoemaker D D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302: 2141-2144
    66. Johnson K D, Bresnick E H. Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods, 2002, 26: 27-36
    67. Jurata L W, Gill G N. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol, 1997, 17: 5688-5698
    68. Jurata L W, Kenny D A, Gill G N. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc Natl Acad Sci (U S A), 1996, 93:11693-11698
    69. Jurata L W, Pfaff S L, Gill G N. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem, 1998, 273: 3152-3157
    70. Karaiskou A, Jessus C, Brassac T, Ozon R. Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci, 1999,112: 3747-3756
    71. Kang S, Spann N J, Hui T Y, Davis R A. ARP-1/COUP-TF II determines hepatoma phenotype by acting as both a transcriptional repressor of microsomal triglyceride transfer protein and an inducer of CYP7A1. J Biol Chem, 2003, 278: 30478-30486
    72. Knoll R, Hoshijima M, Hoffman H M, Person V, Lorenzen-Schmidt I, Bang M L, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork N J, Omens J H, McCulloch A D, Kimura A, Gregorio C C, Poller W, Schaper J, Schultheiss H P, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell, 2002, 111: 943-55
    73. Kong Y, Flick M J, Kudla A J, Konieczny S F. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol, 1997,17: 4750-4760
    74. Kramer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem, 1996, 65: 367-409
    75. Kuo M H, Allis C D. In vivo cross-linking and immunoprecipitation for studying dynamic Protein: DNA associations in a chromatin environment. Methods, 1999, 19: 425-433
    76. Ladd A N, Charlet N, Cooper T A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol, 2001, 21: 1285-1296
    77. Lassar A B, Davis R L, Wright W E, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell, 1991, 66: 305-315
    78. Lechward K, Awotunde O S, Swiatek W, Muszynska G Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol, 2001, 48: 921-933
    79. Lefaucheur L, Edom F, Ecolan P, Butler-Browne G S. Pattern of muscle fiber type formation in the pig. Dev Dyn, 1995, 203: 27-41
    80. Li Y, Blencowe B J. Distinct factor requirements for exonic splicing enhancer function and binding of U2AF to the polypyrimidine tract. J Biol Chem, 1999, 274: 35074-35079
    81. Liebhaber S A, Emery J G, Urbanek M, Wang X, Cooke N E. Characterization of a human cDNA encoding a widely expressed and highly conserved cysteine-rich protein with an unusual zinc-finger motif. Nucleic Acids Res, 1990,18: 3871-3879
    82. Lin C S, Hsu C W. Differentially transcribed genes in skeletal muscle of Duroc and mTaoyuan pigs. J Anim Sci, 2005, 83: 2075-2086
    83. Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, Wang Z. Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. J Cell Physiol, 2007, (Epub ahead of print)
    84. Ludolph D C, Konieczny S F. Transcription factor families: muscling in on the myogenic program. Faseb J, 1995, 9:1595-1604
    85. Ma Y, Zhang L, Peng T, Cheng J, Taneja S, Zhang J, Delafontaine P, Du J. Angiotensin II stimulates transcription of insulin-like growth factor I receptor in vascular smooth muscle cells: role of nuclear factor-kappaB. Endocrinology, 2006, 147:1256-1263
    86. Malik S, Karathanasis S. Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res, 1995, 23:1536-1543
    87. Maroto M, Reshef R, Munsterberg A E, Koester S, Goulding M, Lassar A B. Ectopic Pax-3 Activates MyoD and Myf-5 Expression in Embryonic Mesoderm and Neural Tissue. Cell, 1997, 89:139-148
    88. Martens E, Stevens I, Janssens V, Vermeesch J, Gotz J, Goris J, Van Hoof C. Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B' regulatory subunits of protein phosphatase 2A in mice. J Mol Biol, 2004, 336: 971-986
    89. McCright B, Brothman A R, Virshup D M. Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11. 2 --> p12. Genomics, 1996, 36: 168-170
    90. McCright B, Rivers A M, Audlin S, Virshup D M. The B56 Family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem, 1996, 271: 22081-22089
    91. McCright B, Virshup D M. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem, 1995, 270: 26123-26128
    92. McCullough A J, Berget S M. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol, 1997, 17: 4562-4571
    93. Michael B, Mikhail S G, Sylvia S, Zorn M, Dubchak I, Conboy J G. Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Research, 2001, 29: 2338-2348
    94. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J. IMpRH server: an RH mapping server available on the Web. Bioinformatics, 2000,16: 558-559
    95. Modrek B, Lee C A .Genomic view of alternative splicing. Nature Genetics, 2002,30: 13-19
    96. Moody D E, Zou Z, McIntyre L. Cross-species hybridisation of pig RNA to human nylon microarrays. BMC Genomics, 2002, 3: 27
    97. Morcillo P, Rosen C, Baylies M K, Dorsett D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev, 1997,11: 2729-2740
    98. Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domestic Animal Endocrinology, 2004, 27: 219-240
    99. Olson E N, Brown D, Burgess R, Cserjesi P. A new subclass of helix-loop-helix transcription factors expressed in paraxial mesoderm and chondrogenic cell lineages. Ann NY Acad Sci, 1996, 785:108-118
    100.Olsvik P A, Lie K K, Jordal A E, Nilsen T O, Hordvik I. Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol, 2005, 6: 21
    101.Palmer C N, Hsu M H, Muerhoff A S, Griffin K J, Johnson E F .Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter. J Biol Chem, 1994, 269: 18083-18089
    102.Palmer CN, Hsu M H, Griffin K J, Johnson E F. Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem,1995, 270: 16114-16121
    103.Rawls A, Valdez M R, Zhang W, Richardson J, Klein W H, and Olson E N. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development, 1998, 125: 2349-2358
    104.Read D, M Levine, Manley J L. Ectopic expression of the Drosophila tramtrack gene results in multiple embryonic defects, including repression of even-skipped and fushi tarazu. Mech Dev 1992,38:183-195
    105.Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest Prod Sci, 2000, 66:177-188
    106.Ren Z Q, Xiong Y Z, Deng C Y, Lei M G Cloning and identification of porcine SMPX differentially expressed in F1 crossbreds and their parents. Acta Biochim Biophys Sin (Shanghai), 2006,38: 753-758
    107.Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell signal, 2002,14: 231-238
    108.Rudnicki M A, Schnegelsberg P N, Stead R H, Braun T, Arnold H H, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993, 75: 1351-1359
    109.Ruvolo P P, Clark W, Mumby M, Gao F, May W S. A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem, 2002, 277: 22847-22852
    110. Sandelin A, Wasserman W W, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res, 2004, 32: W249-252
    111.Savkur R S, Philips A V, Cooper T A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet, 2001, 29: 40-47
    112.Schug, Jonathan. Using TESS to Predict Transcription Factor Binding Sites in DNA Sequence. Current Protocols in Bioinformatics. J. Wiley and Sons published. 2003
    113.Seeling J M, Miller J R, Gil R, Moon RT, White R, Virshup D M. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 1999, 283: 2089-2091
    114.Semina E V, Altherr M R, Murray J C. Cloning and chromosomal localization of two novel human genes encoding LIM-domain binding factors CLIM1 and CLIM2/LDB1/NLI. Mamm Genome, 1998, 9: 921-924
    115.Solomou E E, Sfikakis P P, Kotsi P, Papaioannou M, Karali V, Vervessou E, Hoffbrand A V, Panayiotidis P. 13q deletion in chronic lymphocytic leukemia: characterization of E4.5, a novel chromosome condensation regulator-like guanine nucleotide exchange factor. Leuk Lymphoma, 2003, 44: 1579-1585
    116.Stangl K, Cascorbi I, Laule M, Klein T, Stangl V, Rost S, Wernecke K D, Felix S B, Bindereif A, Baumann G, Roots I. High CA repeat numbers in intron 13 of the endothelial nitric oxide synthase gene and increased risk of coronary artery disease. Pharmacogenetics, 2000,10:133-140
    117.Stickland N C, Demirtas B, Clelland A K. Ashton C. Genetic and nutritional influence on muscle growth in farm animals. Comp Biochem Physiol A, 2000,126:141
    118.Stoss O, Olbrich M, Hartmann A M, Konig H, Memmott J, Andreadis A, Stamm S. The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J Biol Chem, 2001, 276: 8665-8673
    119.Stronach B E, Renfranz P J, Lilly B, Beckerle M C. Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis. Mol Biol Cell, 1999,10: 2329-23242
    120.Stronach B E, Siegrist S E, Beckerle M C. Two muscle-specific LIM proteins in Drosophila. J Cell Biol, 1996,134:1179-1195
    121.Takahra T, Smart D E, Oakley F, Mann D A. Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1. Int J Biochem Cell Biol, 2004,36: 353-363
    122.Takayama K, Kaneshiro K, Tsutsumi S, Horie-Inoue K, Ikeda K, Urano T, Ijichi N, Ouchi Y, Shirahige K, Aburatani H, Inoue S. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene, 2007, (Epub ahead of print)
    123.Taylor J D, Ackroyd A J, Halford S E. The gel shift assay for the analysis of DNA-protein interactions. Methods Mol Biol, 1994, 30: 263-279
    124.te Pas M F, de Wit A A, Priem J, Cagnazzo M, Davoli R, Russo V, Pool M H. Transcriptome expression profiles in prenatal pigs in relation to myogenesis. J Muscle Res Cell Motil, 2005, 26:157-165
    125.Tehrani M A, Mumby M C, Kamibayashi C. Identification of a novel of protein phosphatase 2A regulatory subunits highly expressied in muscle. J Biol Chem, 1996, 271: 5164-5170
    126.Ueki N, Seki N, Yano K, Ohira M, Saito T, Masuho Y, Muramatsu M. Isolation and chromosomal assignment of human genes encoding cofactor of LIM homeodomain proteins, CLIM1 and CLIM2. J Hum Genet, 1999, 44: 112-115
    127.Valdez M R, Richardson J A, Klein W H, Olson E N. Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol, 2000, 219: 287-298
    128.Visvader J E, Mao X, Fujiwara Y, Hahm K, Orkin S H. The LIM-domain binding protein Ldb1 and its partner LM02 act as negative regulators of erythroid differentiation. Proc Natl Acad Sci USA, 1997, 94: 13707-13712
    129.Wadman I A, Osada H, Grutz G G , Agulnick A D, Westphal H, Forster A, Rabbitts T H. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J, 1997,16: 3145-3157
    130.Wang X, Ray K, Szpirer J, Levan G, Liebhaber S A, Cooke N E. Analysis of the human cysteine-rich protein gene (CSRP), assignment to chromosome 1q24-1q32, and identification of an associated MspI polymorphism. Genomics, 1992, 14: 391-397
    131.Weiskirchen R, Erdel M, Utermann G, Bister K, Cloning, structural analysis, and chromosomal localization of the human CSRP2 gene encoding the LIM domain protein CRP2. Genomics. 1997,44: 83-93
    132.Weiskirchen R, Moser M, Weiskirchen S, Erdel M, Dahmen S, Buettner R, Gressner A M. LIM-domain protein cysteine- and glycine-rich protein 2 (CRP2) is a novel marker of hepatic stellate cells and binding partner of the protein inhibitor of activated STAT1. Biochem J, 2001, 359: 485-96
    133.Weiskirchen R, Pino J D, Macalma T, Bister K, and Beckerle M C. The cysteine-rich protein family of highly related LIM domain proteins. J Biol Chem, 1995, 270: 28946-28954
    134.Westphal R S, Coffee R L, Marotta A, Pelech S L, Wadzinski B E. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A(PP2A) and p21-activated kinase-PP2A. J Bio Chem, 274: 687-692
    135.Widom R L, Rhee M, Karathanasis S K. Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol, 1992,12: 3380-3389
    136.Will C L, Luhrmann R. Spliceosomal U1 snRNP biogenesis, structure and function. Curr Opin Cell Biol, 2001,13: 290-301
    137.Willmann R, Kusch J, Sultan K R, Schneider A G, Pette D. Muscle LIM protein is upregulated in fast skeletal muscle during transition toward slower phenotypes. Am J Physiol Cell Physiol, 2001, 280: C273- C279
    138.Xu D Q, Xiong Y Z, Ling X F, Lan J, Liu M, Deng C Y, Jiang S W, Lei M G. Identification of a differential gene HUMMLC2B between F1 hybrids Landrace x Yorkshire and their female parents Yorkshire. Gene 2005, 352: 118-126
    139.Yamashita T, Agulnick A D, Copeland N G, Gilbert D J, Jenkins N A, Westphal H. Genomic structure and chromosomal localization of the mouse LIM domain-binding protein 1 gene, Ldb1. Genomics 1998,48: 87-92
    140.Yet S F, Folta S C, Jain M K, Hsieh C M, Maemura K, Layne M D, Zhang D, Marria P B, Yoshizumi M, Chin M T, Perrella M A, Lee M E. Molecular cloning, characterization, and promoter analysis of the mouse Crp2/SmLim gene: Preferential expression of its promoter in the vascular smooth muscle cells of transgenic mice. J Biol Chem, 1998, 273:10530-10537
    141.Zeitlinger J, Zinzen R P, Stark A, Kellis M, Zhang H, Young R A, Levine M. Whole-genome ChlP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev, 2007, 21: 385-390
    142.Zhao S H, Nettleton D, Liu W, Fitzsimmons C, Ernst C W, Raney N E, Tuggle C K. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci, 2003, 81: 2179-2188
    143.Zhu Z, Li Y, Mo D, Li K, Zhao S. Molecular characterization and expression analysis of the porcine caveolin-3 gene. Biochem Biophys Res Commun, 2006, 346 : 7-13
    144.Zolk O, Caroni P, Bohm M. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation, 2000,101: 2674-2677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700