细胞核肌动蛋白参与基因转录调控的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌动蛋白是一类高度保守的蛋白质,存在于所有的真核细胞中,参与细胞分裂、运动、迁移、形态的维持、生长等许多重要生理活动。有研究指出,肌动蛋白也存在于细胞核内。但由于肌动蛋白是丰富的胞质蛋白,致使这一结论受到质疑。后来,依赖生物化学、免疫荧光、免疫电子显微镜和激光共聚焦显微镜等实验技术,证明肌动蛋白普遍存在于各类细胞的细胞核中。
     虽然肌动蛋白在细胞质中的功能已经被研究的很透彻,但它在细胞核内的功能还不清楚。有实验指出,肌动蛋白在核运输方面发挥作用,可能参与RNA运输及mRNA加工。肌动蛋白还能与protein 4.1共定位,可能参与核组装过程。此外,肌动蛋白还能与染色质改构复合物和乙酰转移酶复合物相互作用,在染色质结构的调整方面也发挥重要作用。越来越多的证据表明肌动蛋白也能参与基因转录的调控。在早期的实验中,微注射肌动蛋白的抗体或结合蛋白能抑制灯刷染色体的转录。肌动蛋白还能与RNA聚合酶II共纯化,对RNA聚合酶II体外的有效转录起到作用。最近有实验指出,肌动蛋白能被募集到基因的启动子区,是转录前起始复合物的成分。但肌动蛋白在此复合物中的作用还有待于进一步研究。
     本文通过实验证明,RNA解旋酶A是转录前起始复合物中能够与肌动蛋白相互作用的蛋白质。我们首先通过免疫共沉淀和免疫荧光标记技术证明RNA解旋酶A在体内可以与肌动蛋白相互作用。然后利用GST pull-down实验证实RNA解旋酶A主要是通过其RGG区域与肌动蛋白作用,并且这一负显性突变体能够抑制RNA聚合酶II募集到转录前起始复合物中。此外,过表达或干涉RNA解旋酶A都能够影响RNA聚合酶II与肌动蛋白之间的相互作用,并且也能影响肌动蛋白所参与的基因表达。综上所述,RNA解旋酶A对肌动蛋白参与的转录过程起到重要调节作用。
Actin is a highly conserved protein, which exists in almost all eukaryotic cells and has been proved to be essential for many cellular functions such as movement, morphology, growth, cytokinesis as well as other crucial events. Over the years actin has been reported to exist in the nucleus, but these results have always been disputed because they could have reflected the contamination due to the high concentration of actin in the cytoplasm. Recent years, based upon ultrstructural, histochemical, and immunofluorescence studies, the presence of actin in the nucleus has been confirmed in different cell types.
     In contrast to its functions in cytoplasm, the knowledge concerning the role of actin in nucleus is still limited. It has been proposed that actin plays an important role in nuclear export, and actin might be involved in RNA transport and indirectly participate in mRNA processing. It was reported recently that nuclear actin co-localized with protein 4.1, linking actin to nuclear assembly processes. Furthermore, nuclear actin has been found to be associated with chromatin remodeling and histone acetyltransferase complexes, suggesting a role for actin in chromatin remodeling. A number of studies have suggested a role for actin in transcription. In early studies, it had been shown that injection of antibodies against actin or actin-binding proteins in amphibian oocyte nuclei could block the transcription of lampbrush chromosomes. Actin was also reported to co-purify with RNA polymerase II and to be required for efficient in vitro transcription by RNA polymerase II. Recently, it was reported that actin could be recruited to the promoter region of the gene, and is a component of pre-initiation complexes (PICs). However, as a part of PICs, the role of actin in this complex remains to be elucidated.
     Here, we identified RHA (RNA helicase A) as an actin-interacting protein in PICs. Using immunoprecipitation and immunofluorescence techniques, we showed that RHA associated withβ-actin in the nucleus. GST pull-down assay using different deletion mutants revealed that RGG region of RHA was responsible for the interaction withβ-actin, and this dominant-negative mutant reduced the recruitment of Pol II (RNA polymerase II) into PICs. Moreover, overexpression or depletion of RHA could influence the interaction of Pol II withβ-actin andβ-actin-involved gene transcription regulation. These data suggest that RHA acts as a bridge factor linking nuclearβ-actin with Pol II.
引文
1 Pederson T. Half a Century of“the nuclear matrix”[J]. Mol Biol Cell, 2000, 11: 799~805.
    2 Zhu X, Zeng X, Huang B, Hao S. Actin is closely associated with RNA polymerase II and involved in activation of gene transcription[J]. Biochem Biophy Res Commun, 2004, 321(3): 623-630.
    3 Clark, T. G. & Rosenbaum, J. L. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes[J]. Cell, 1979, 18: 1101–1108.
    4 Clark, T. G. & Merriam, R. W. Diffusible and bound actin nuclei of Xenopus laevis oocytes[J]. Cell, 1977, 12: 883–891.
    5 Nakayasu, H. & Ueda, K. Association of actin with the nuclear matrix from bovine lymphocytes[J]. Exp Cell Res, 1983, 143: 55–62.
    6 Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus[J]. Curr Biol, 2002, 12: 1–11.
    7 Nakayasu, H. & Ueda, K. Ultrastructural localization of actin in nuclear matrices from mouse leukemia L5178Y cells[J]. Cell Struct Funct, 1985, 10: 305–309.
    8 Miller, C. A. III, Cohen, M. D. & Costa, M. Complexing of actin and other nuclear proteins to DNA by cisdiamminedichloroplatinum(II) and chromium compounds[J]. Carcinogenesis, 1991, 12: 269–276.
    9 Gonsior, S. M. et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody[J]. J Cell Sci, 1999, 112: 797–809.
    10 Hofmann, W.A. & de Lanerolle, P. Nuclear actin: to polymerize or not to polymerize[J]. J Cell Biol, 2006, 172: 495-496.
    11 Vieu, E. & Hernandez, N. Actin's latest act: polymerizing to facilitate transcription[J]? Nat Cell Biol, 2006, 8: 650-651.
    12 Pederson, T. As functional nuclear actin comes into view, is it globular, filamentous, or both[J]? J Cell Biol, 2008, 180: 1061-1064.
    13 Vartiainen, M.K. Nuclear actin dynamics - From form to function[J]. FEBS Lett, 2008, 582: 2033-2040.
    14 Hofmann, W. et al. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin[J]. J Cell Biol, 2001, 152: 895-910.
    15 Krauss, S.W., Chen, C., Penman, S. & Heald, R. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro[J]. Proc Natl Acad Sci U S A, 2003, 100: 10752-10757.
    16 Pendleton, A., Pope, B., Weeds, A. & Koffer, A. Latrunculin B or ATP depletion Induces cofilin-dependent translocation of actin into nuclei of mast cells[J]. J Biol Chem, 2003, 278: 14394-14400.
    17 Skare, P., Kreivi, J.P., Bergstrom, A. & Karlsson, R. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing[J]. Exp Cell Res, 2003, 286: 12-21.
    18 Huff, T. et al. Nuclear localisation of the G-actin sequestering peptide thymosin beta4[J]. J Cell Sci, 2004, 117: 5333-5341.
    19 McDonald, D., Carrero, G., Andrin, C., de Vries, G. & Hendzel, M.J. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations[J]. J Cell Biol, 2006, 172: 541-552.
    20 Wu, X. et al. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners[J]. Nat Cell Biol, 2006, 8, 756-763.
    21 Ye, J., Zhao, J., Hoffmann-Rohrer, U. & Grummt, I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription[J]. Genes Dev, 2008, 22: 322-330.
    22 Constantin B, Meerschaert K, Vandekerckhove J, et al. Disruption of the actin cytoskeleton of mammalian cells by the capping complex actin-fragmin is inhibited by actin phosphorylation and regulated by Ca2+ ions[J]. J Cell Sci, 1998, 111: 1695~1706.
    23 Baskaran R, Escobar S R, Wang J Y J. Nuclear c-Ab1 is a COOH-terminal repeated domain (CTD)-tyrosine kinase-specific for the mammalian RNA polymeraseⅡ: Possible role in transcription elongation[J]. Cell Growth Differ, 1999, 10; 387~396.
    24 Sun H Q, Kwiatkowska K, Yin H L. Actin monomer binding proteins[J]. Curr Opin Cell Biol, 1995, 7: 102~110.
    25 Bonet C, Ternent D, Maciver S K, et al. Rapid formation and high diffusibility of actin-cofilin co-filaments at low pH[J]. Eur J Biochem, 2000, 267: 3378~3348.
    26 Mermall V, Post P L, Mooseker M S. Unconventional myosins in cell movement, membrane traffic, and signal transduction[J]. Science, 1998, 279: 527~533.
    27 Pestic-Dragovich L, Stojiljkovic L, Philimonenko A A, et al. A myosinⅠisoform in the nucleus[J]. Science, 2000, 290: 337~341.
    28 Wulfkuhle J D, Donina I E, Stark N H, et al. Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals[J]. JCell Sci, 1999, 112: 2125~2136.
    29 Krauss S W, Larabell C A, Lockett S, et al. Structural protein 4.1 in the nucleus of human cells: Dynamic rearrangements during cell division[J]. J Cell Biol, 1997, 137: 275~289.
    30 Schroer TA, Fyrberg E, Cooper JA, Waterston RH, Helfman D, Pollard TD, Meyer DI: Actin-related protein nomenclature and classification[J]. J Cell Biol, 1994, 127: 1777-1778.
    31 Goodson HV, Hawse WF: Molecular evolution of the actin family[J]. J Cell Sci, 2002, 115: 2619-2622.
    32 Blessing CA, Ugrinova GT, Goodson HV: Actin and ARPs: action in the nucleus[J]. Trends Cell Biol, 2004, 14: 435-442.
    33 Eckley DM, Gill SR, Melkonian KA, Bingham JB, Goodson HV, Heuser JE, Schroer TA: Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end[J]. J Cell Biol, 1999, 147: 307-320.
    34 Poch O, Winsor B: Who's who among the Saccharomyces cerevisiae actin-related proteins? A classification and nomenclature proposal for a large family[J]. Yeast, 1997, 13: 1053-1058.
    35 Harata M, Mochizuki R, Mizuno S: Two isoforms of a human actin-related protein show nuclear localization and mutually selective expression between brain and other tissues[J]. Biosci Biotechnol Biochem, 1999, 63: 917-923.
    36 Kato M, Sasaki M, Mizuno S, Harata M: Novel actin-related proteins in vertebrates: similarities of structure and expression pattern to Arp6 localized on Drosophila heterochromatin[J]. Gene, 2001, 268: 133-140.
    37 Boyer LA, Peterson CL: Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines[J]? Bioessays, 2000, 22: 666-672.
    38 Schroer TA, Bingham JB, Gill SR: Actin-related protein 1 and cytoplasmic dynein-based motility -what's the connection[J]? Trends Cell Biol, 1996, 6: 212-215.
    39 Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ: Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation[J]. Science, 1998, 281: 105-108.
    40 May RC, Hall ME, Higgs HN, Pollard TD, Chakraborty T, Wehland J, Machesky LM, Sechi AS: The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes[J]. Curr Biol, 1999, 9: 759-762.
    41 Weber V, Harata M, Hauser H, Wintersberger U: The actin-related protein Act3p of Saccharomyces cerevisiae is located in the nucleus[J]. Mol Biol Cell, 1995, 6:1263-1270.
    42 Harata M, Oma Y, Tabuchi T, Zhang Y, Stillman DJ, Mizuno S: Multiple actin-related proteins of Saccharomyces cerevisiae are present in the nucleus[J]. J Biochem (Tokyo), 2000, 128: 665-671.
    43 Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD: Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF[J]. Mol Cell, 1998, 2: 639-651.
    44 Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR: Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling[J]. Cell, 1998, 95: 625-636.
    45 Peterson CL, Zhao Y, Chait BT: Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family[J]. J Biol Chem, 1998, 273: 23641-23644.
    46 Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S, Savard J, Lane WS, Stillman DJ, Cote J: Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription[J]. Mol Cell, 2000, 5: 927-937.
    47 Shen X, Mizuguchi G, Hamiche A, Wu C: A chromatin remodelling complex involved in transcription and DNA processing[J]. Nature, 2000, 406: 541-544.
    48 Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis[J]. Cell, 2000, 102: 463-473.
    49 Chen M, Shen X: Nuclear actin and actin-related proteins in chromatin dynamics[J]. Curr Opin Cell Biol, 2007, 19: 326-330.
    50 Shen X, Ranallo R, Choi E, Wu C: Involvement of actin-related proteins in ATP-dependent chromatin remodeling[J]. Mol Cell, 2003, 12: 147-155.
    51 Harata M, Oma Y, Mizuno S, Jiang YW, Stillman DJ, Wintersberger U: The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones[J]. Mol Biol Cell, 1999, 10: 2595-2605.
    52 Szerlong H, Saha A, Cairns BR: The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling[J]. Embo J, 2003, 22: 3175-3187.
    53 Rando OJ, Chi TH, Crabtree GR: Second messenger control of chromatin remodeling[J]. Nat Struct Biol, 2003, 10: 81-83.
    54 Iida K, Matsumoto S, Yahara I. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, Cofilin[J]. Cell Struct Funct, 1992, 17: 39~46.
    55 Samstag Y, Eibert S M, Klemke M, et al. Actin cytoskeletal dynamics in T lymphocyte activation and migration[J]. J Leuk Biol, 2003, 73: 30~48.
    56 Wada, A., Fukuda, M., Mishima, M. & Nishida, E. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein[J]. EMBO J, 1998, 17: 1635–1641.
    57 Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin–actin complexes[J]. EMBO J, 2003, 22: 5928–5940.
    58 Yuzyuk, T., Foehr, M. & Amberg, D. C. The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress[J]. Mol Biol Cell, 2002, 13: 2869–2880.
    59 Yuzyuk, T. & Amberg, D. C. Actin recovery and bud emergence in osmotically stressed cells requires the conserved actin interacting mitogen-activated protein kinase kinase kinase Ssk2p/MTK1 and the scaffold protein Spa2p[J]. Mol Biol Cell, 2003, 14: 3013–3026.
    60 Wasser, M. & Chia, W. The EAST protein of Drosophila controls an expandable nuclear endoskeleton[J]. Nature Cell Biol, 2000, 2: 268–275.
    61 Conboy, J. G. Structure, function, and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells[J]. Semin Hematol, 1993, 30: 58–73.
    62 Krauss, S. W. et al. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro[J]. J Biol Chem, 2002, 277: 44339–44346.
    63 Byers, T. J. & Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton[J]. Proc Natl Acad Sci USA, 1985, 82: 6153–6157.
    64 Shen, B. W., Josephs, R. & Steck, T. L. Ultrastructure of the intact skeleton of the human erythrocyte membrane[J]. J Cell Biol, 1986, 102: 997–1006.
    65 Sasseville, A. M. & Langelier, Y. In vitro interaction of the carboxy-terminal domain of lamin A with actin[J]. FEBS Lett, 1998, 425: 485–489.
    66 Lattanzi, G. et al. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts[J]. Biochem Biophys Res Commun, 2003, 303: 764–770.
    67 Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997, 389: 251-260.
    68 Imbalzano AN, Kwon H, Green MR, Kingston RE: Facilitated binding of TATA-binding protein to nucleosomal DNA[J]. Nature, 1994, 370: 481-485.
    69 Kingston RE, Narlikar GJ: ATP-dependent remodeling and acetylation as regulators of chromatin fluidity[J]. Genes Dev, 1999, 13: 2339-2352.
    70 Kornberg RD, Lorch Y: Chromatin-modifying and -remodeling complexes[J]. CurrOpin Genet Dev, 1999, 9: 148-151.
    71 Cote J, Quinn J, Workman JL, Peterson CL: Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex[J]. Science, 1994, 265: 53-60.
    72 Martens JA, Winston F: Recent advances in understanding chromatin remodeling by Swi/Snf complexes[J]. Curr Opin Genet Dev, 2003, 13: 136-142.
    73 Boeger H, Griesenbeck J, Strattan JS, Kornberg RD: Nucleosomes unfold completely at a transcriptionally active promoter[J]. Mol Cell, 2003, 11: 1587-1598.
    74 Reinke H, Horz W: Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter[J]. Mol Cell, 2003, 11: 1599-1607.
    75 Bazett-Jones DP, Cote J, Landel CC, Peterson CL, Workman JL: The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains[J]. Mol Cell Biol, 1999, 19: 1470-1478.
    76 Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, CanadienV, et al.: A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1[J]. Mol Cell, 2003, 12: 1565-1576.
    77 Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C: ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science, 2004, 303: 343-348.
    78 Olave, I. A., Reck-Peterson, S. L. & Crabtree, G. R. Nuclear actin and actin-related proteins in chromatin remodeling[J]. Annu Rev Biochem, 2002, 71: 755–781.
    79 Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling[J]. Cell, 1998, 95: 625–636.
    80 Papoulas, O. et al. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes[J]. Development, 1998, 125: 3955–3966.
    81 Xue, Y. et al. The human SWI/SNF-B chromatin remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes[J]. Proc Natl Acad Sci USA, 2000, 97: 13015–13020.
    82 Fuchs, M. et al. The p400 complex is an essential E1A transformation target[J]. Cell, 2001, 106: 297–307.
    83 Rando, O. J., Zhao, K., Janmey, P. & Crabtree, G. R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex[J]. Proc Natl Acad Sci USA, 2002, 99: 2824–2829.
    84 Nakayasu H, Ueda K. Small nuclear RNA-protein complexes anchors on the actin filaments in bovine lymphocyte nuclear matrix[J]. Cell Struct Funct, 1984, 9: 317~326.
    85 Percipalle P, Jonsson A, Nashchekin D, et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins[J]. Nucleic Acids Res, 2002, 30: 1725~1734.
    86 Percipalle P, Zhao J, Pope B, et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes[J]. J Biol Chem, 2001,153: 229~235.
    87 Zhang, S. et al. Nuclear DNA helicase II/RNA helicase A binds to filamentous actin[J]. J Biol Chem, 2002, 277: 843–853.
    88 Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II[J]. Proc Natl Acad Sci USA, 2003, 100: 6475–6480.
    89 Scheer U, Hinssen H, Franke W W, et al. Microinjection of actin binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes[J]. Cell, 1984, 39: 111~122.
    90 Nguyen E, Besombes D, Debey P: Immunofluorescent localization of actin in relation to transcriptionsites in mouse pronuclei[J]. Mol Reprod Dev, 1998, 50: 263-272.
    91 Egly, J. M., Miyamoto, N. G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B[J]? EMBO J, 1984, 3: 2363–2371.
    92 Sotiropoulos A, Gineitis D, Copeland J, et al. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics[J]. Cell, 1999, 98: 159~169.
    93 Fomproix N, Percipalle P. An actin-myosin complex on actively transcribing genes[J]. Exp Cell Res, 2004, 294: 140~148.
    94 Milankov K, Boni U D. Cytochemical localization of actin and myosin aggregates in interphase nuclei in situ[J]. Expe Cell Res, 1993, 209: 189 ~199.
    95 Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, Kysela K, Goodrich JA, Lessard JL, Hope TJ, et al.: Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II[J]. Nat Cell Biol, 2004, 6: 1094-1101.
    96 Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P, et al.: Nuclear actin and myosin I are required for RNA polymerase I transcription[J]. Nat Cell Biol, 2004, 6: 1165-1172.
    97 Hu P, Wu S, Hernandez N: A role for beta-actin in RNA polymerase III transcription[J]. Genes Dev, 2004, 18: 3010-3015.
    98 Lohman T M , Bjornson K P. Mechanisms of helicase-catalyzed DNA unwinding[J]. A nnu Rev Biochem, 1996, 65: 169-214.
    99 Luking A , Stahl U , Schmidt U. The protein family of RNA helicases[J]. Crit Rev Biochem Mol Biol, 1998, 33 (4) : 259-296.
    100 Hall M C , Matson S W. Helicase motifs : The engine that powers DNA unwinding[J]. Mol Microbiol , 1999 , 34 (5) :867-877.
    101 Zhang S, Grosse F. Purification and characterization of two DNA helicases from calf thymus nuclei[J]. J Biol Chem, 1991, 266(30): 20483–20490.
    102 Lee CG, Hurwitz J. A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3' to 5' direction[J]. J Biol Chem, 1992, 267(7): 4398–4407.
    103 Zhang S, Grosse F. Nuclear DNA helicase II unwinds both DNA and RNA[J]. Biochemistry, 1994, 33(13): 3906–3912.
    104 Lee CG, Eki T, Okumura K, Nogami M, Soares Vda C, Murakami Y, Hanaoka F et al. The human RNA helicase A (DDX9) gene maps to the prostate cancer susceptibility locus at chromosome band 1q25 and its pseudogene (DDX9P) to 13q22, respectively[J]. Somat Cell Mol Genet, 1999, 25(1): 33–39.
    105 Klockars T, Isosomppi J, Laan M, Kakko N, Palotie A, Peltonen L. The visual assignment of genes by fiber-fish: BTF3 protein homologue gene (BTF3) and a novel pseudogene of human RNA helicase A (DDX9P) on 13q22[J]. Genomics, 1997, 44(3): 355–357.
    106 Lee CG, Hurwitz J. Human RNA helicase A is homologous to the maleless protein of Drosophila[J]. J Biol Chem, 1993, 268(22): 16822–16830.
    107 Zhang S, Maacke H, Grosse F. Molecular cloning of the gene encoding nuclear DNA helicase II. A bovine homologue of human RNA helicase A and Drosophila Mle protein[J]. J Biol Chem, 1995, 270(27): 16422–16427.
    108 Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila[J]. Cell, 1991, 66(5): 935–947.
    109 Gibson TJ, Thompson JD. Detection of dsRNA-binding domains in RNA helicase A and Drosophila maleless: Implications for monomeric RNA helicases[J]. Nucleic Acids Res, 1994, 22(13): 2552–2556.
    110 Zhang S, Grosse F. Domain structure of human nuclear DNA helicase II (RNA helicase A) [J]. J Biol Chem, 1997, 272(17): 11487–11494.
    111 Lee CG, Eki T, Okumura K, da Costa Soares V, Hurwitz J. Molecular analysis of the cDNA and genomic DNA encoding mouse RNA helicase A[J]. Genomics, 1998, 47(3): 365–371.
    112 Kernan MJ, Kuroda MI, Kreber R, Baker BS, Ganetzky B. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription[J]. Cell, 1991, 66(5): 949–959.
    113 Reenan RA, Hanrahan CJ, Barry G. The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing[J]. Neuron, 2000, 25(1): 139–149.
    114 Bratt E, Ohman M. Coordination of editing and splicing of glutamate receptor pre-mRNA[J]. RNA, 2003, 9(3): 309–318.
    115 Maas S, Rich A, Nishikura K. A-to-I RNA editing: Recent news and residual mysteries[J]. J Biol Chem, 2003, 278(3): 1391–1394.
    116 Rosenberger U, Shakibaei M, Weise C, Franke P, Buchner K. Citric acid extracts a specific set of proteins from isolated cell nuclei[J]. J Cell Biochem, 1995, 59(2): 177–185.
    117 Hartmuth K, Urlaub H, Vornlocher HP, Will CL, Gentzel M, Wilm M, Lührmann R. Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method[J]. Proc Natl Acad Sci USA, 2002, 99 (26): 16719–16724.
    118 Zhang S, Herrmann C, Grosse F. Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A) [J]. J Cell Sci, 1999, 112(7): 1055–1064.
    119 Zhang S, Schlott B, G?rlach M, Grosse F. DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner[J]. Nucleic Acids Res, 2004, 32: 1–10.
    120 Zhang S, Herrmann C, Grosse F. Nucleolar localization of murine nuclear DNA helicase II (RNA helicase A) [J]. J Cell Sci, 1999, 112(16): 2693–2703.
    121 Fuchsova B, Hozak P. The localization of nuclear DNA helicase II in different nuclear compartments is linked to transcription[J]. Exp Cell Res, 2002, 279(2): 260–270.
    122 Zhang S, Koehler C, Hemmerich P, Grosse F. Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus[J]. Exp Cell Res, 2004, 293(2): 248–258.
    123 Adams CC, Jakovljevic J, Roman J, Harnpicharnchai P, Woolford JL Jr. Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis of 60S ribosomal subunits[J]. RNA, 2002, 8(2): 150–165.
    124 Tang H, Gaietta GM, Fischer WH, Ellisman MH, Wong-Staal F. A cellular cofactor for the constitutive transport element of type D retrovirus[J]. Science, 1997, 276(5317): 1412–1415.
    125 Tang H, McDonald D, Middlesworth T, Hope TJ, Wong-Staal F. The carboxyl terminus of RNA helicase A contains a bidirectional nuclear transport domain[J]. Mol Cell Biol, 1999,19(5): 3540–3550.
    126 Li J, Tang H, Mullen TM, Westberg C, Reddy TR, Rose DW, Wong-StaalF. A role forRNA helicase A in post-transcriptional regulation of HIV type 1[J]. Proc Natl Acad Sci USA, 1999, 96(2): 709–714.
    127 Reddy TR, Tang H, Xu W, Wong-Staal F. Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA[J]. Oncogene, 2000, 19(32): 3570–3575.
    128 Westberg C, Yang JP, Tang H, Reddy TR, Wong-Staal F. A novel shuttle protein binds to RNA helicase A and activates the retroviral constitutive transport element[J]. J Biol Chem, 2000, 275(28): 21396–21401.
    129 Yang JP, Tang H, Reddy TR, Wong-Staal F. Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses[J]. J Biol Chem, 2001, 276(33): 30694–30700.
    130 Akileswaran L, Taraska JW, Sayer JA, Gettemy JM, Coghlan VM. A-kinaseanchoring protein AKAP95 is targeted to the nuclear matrix and associates with p68 RNA helicase[J]. J Biol Chem, 2001, 276(20): 17448–17454.
    131 Tang H, Wong-Staal F. Specific interaction between RNA helicase A and Tap, two cellular proteins that bind to the constitutive transport element of type D retrovirus[J]. J Biol Chem, 2000, 275(42): 32694–32700.
    132 Fujii R, Okamoto M, Aratani S, Oishi T, Ohshima T, Taira K, Baba M et al. A Role of RNA helicase A in cis-acting transactivation response element mediated transcriptional regulation of human immunodeficiency virus type 1[J]. J Biol Chem, 2001, 276(8): 5445–5451.
    133 Liao HJ, Kobayashi R, Mathews MB. Activities of adenovirus virus-associated RNAs: Purification and characterization of RNA binding proteins[J]. Proc Natl Acad Sci USA, 1998, 95(15): 8514–8519.
    134 Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H et al. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins[J]. J Mol Biol, 2003, 332(1): 85–98.
    135 Isken O, Grassmann CW, Sarisky RT, Kann M, Zhang S, Grosse F, Kao PN et al. Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus[J]. EMBO J, 2003, 22(21): 5655–5665.
    136 Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A[J]. Nat Genet, 1998, 19(3): 254–256.
    137 Starita LM, Parvin JD. The multiple nuclear functions of BRCA1: Transcription, ubiquitination and DNA repair[J]. Curr Opin Cell Biol, 2003, 15 (3): 345–350.
    138 Abdelhaleem M. The actinomycin D-induced apoptosis in BCR-ABL-positive K562 cells is associated with cytoplasmic translocation and cleavage of RNA helicase A[J]. Anticancer Res, 2003, 23(1A): 485–490.
    139 Schlegel BP, Starita LM, Parvin JD. Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells[J]. Oncogene, 2003, 22 (7): 983–991.
    140 Takeda Y, Caudell P, Grady G, Wang G, Suwa A, Sharp GC, Dynan WS et al. Human RNA helicase A is a lupus autoantigen that is cleaved during apoptosis[J]. J Immunol, 1999, 163(11): 6269–6274.
    141 Abdelhaleem MM, Hameed S, Klassen D, Greenberg AH. Leukophysin: An RNA helicase A-related molecule identified in cytotoxic T cell granules and vesicles[J]. J Immunol, 1996, 156 (6): 2026–2035.
    142 Yoshida H, Satoh M, Behney KM, Lee CG, Richards HB, Shaheen VM, Yang JQ et al. Effect of an exogenous trigger on the pathogenesis of lupus in (NZB x NZW) F1 mice[J]. Arthritis Rheum, 2002, 46(8): 2235–2244.
    143 Satoh M, Mizutani A, Behney KM, Kuroda Y, Akaogi J, Yoshida H, Nacionales DC et al. X-linked immunodeficient mice spontaneously produce lupusrelated anti-RNA helicase A autoantibodies, but are resistant to pristaneinduced lupus[J]. Int Immunol, 2003, 15(9): 1117–1124.
    144 Meller VH. Dosage compensation: Making 1X equal 2X[J]. Trends Cell Biol, 2000, 10(2): 54–59.
    145 Kelley RL, Kuroda MI. The role of chromosomal RNAs in marking the X for dosage compensation[J]. Curr Opin Genet Dev, 2000, 10(5): 555–561.
    146 Pannuti A, Lucchesi JC. Recycling to remodel: Evolution of dosage compensation complexes[J]. Curr Opin Genet Dev, 2000, 10(6): 644–650.
    147 Lee CG, Chang KA, Kuroda MI, Hurwitz J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation[J]. EMBO J, 1997, 16(10): 2671–2681.
    148 Richter L, Bone JR, Kuroda MI. RNA-dependent association of the Drosophila maleless protein with the male X chromosome[J]. Genes Cells, 1996, 1(3): 325–336.
    149 Lee CG, da Costa Soares V, Newberger C, Manova K, Lacy E, Hurwitz J. RNA helicase A is essential for normal gastrulation[J]. Proc Natl Acad Sci USA, 1998, 95(23): 13709–13713.
    150 Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M. RNA helicase A mediates association of CBP with RNA polymerase II[J]. Cell, 1997,90(6): 1107–1112.
    151 Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M et al. Dual roles of RNA helicase A in CREB-dependent transcription[J]. Mol Cell Biol, 2001, 21(14): 4460–4469.
    152 Aratani S, Fujii R, Fujita H, Fukamizu A, Nakajima T. Aromatic residues are required for RNA helicase A mediated transactivation[J]. Int J Mol Med, 2003, 12(2): 175–180.
    153 Kitagawa H, Yanagisawa J, Fuse H, Ogawa S, Yogiashi Y, Okuno A, Nagasawa H et al. Ligand-selective potentiation of rat mineralocorticoid receptor activation function 1 by a CBP-containing histone acetyltransferase complex[J]. Mol Cell Biol, 2002, 22(11): 3698–3706.
    154 Fujita H, Fujii R, Aratani S, Amano T, Fukamizu A, Nakajima T. Antithetic effects of MBD2a on gene regulation[J]. Mol Cell Biol, 2003, 23(8): 2645–2657.
    155 Pellizzoni L, Charroux B, Rappsilber J, Mann M, Dreyfuss G. A functional interaction between the survival motor neuron complex and RNA polymerase II[J]. J Cell Biol, 2001, 152(1): 75–85.
    156 Terns MP, Terns RM. Macromolecular complexes: SMN-the master assembler[J]. Curr Biol, 2001, 11(21): R862–R864.
    157 Fuchsova B, Novak P, Kafkova J, Hozak P. Nuclear DNA helicase II is recruited to IFN-alpha-activated transcription sites at PML nuclear bodies[J]. J Cell Biol, 2002, 158(3): 463–473.
    158 Zhou K, Choe KT, Zaidi Z, Wang Q, Mathews MB, Lee CG. RNA helicase A interacts with dsDNA and topoisomerase IIalpha[J]. Nucleic Acids Res, 2003, 31(9): 2253–2260.
    159 Myohanen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter[J]. J Biol Chem, 2001, 276(2): 1634–1642.
    160 Orphanides, G. and Reinberg, D. A unified theory of gene expression[J]. Cell, 2002, 108: 439-451.
    161 Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. and Percipalle, P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II[J]. Nat Struct Mol Biol, 2005, 12: 238-244.
    162 Orphanides, G., Lagrange, T. and Reinberg, D. The general transcription factors of RNA polymerase II[J]. Genes Dev, 1996, 10: 2657-2683.
    163 Lee, T. I. and Young, R. A. Transcription of eukaryotic protein-coding genes[J]. Annu Rev Genet, 2000, 34: 77-137.
    164 Amorim, B. R., Okamura, H., Yoshida, K., Qiu, L., Morimoto, H. and Haneji, T. Thetranscriptional factor Osterix directly interacts with RNA helicase A[J]. Biochem Biophys Res Commun, 2007, 355: 347-351.
    165 Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. Atomic structure of the actin: DNase I complex[J]. Nature, 1990, 347: 37-44.
    166 Mejean, C., Boyer, M., Labbe, J. P., Derancourt, J., Benyamin, Y. and Roustan, C. Antigenic probes locate the myosin subfragment 1 interaction site on the N-terminal part of actin[J]. Biosci Rep, 1986, 6: 493-499.
    167 Labbe, J. P., Mejean, C., Benyamin, Y. and Roustan, C. Characterization of an actin-myosin head interface in the 40-113 region of actin using specific antibodies as probes[J]. Biochem. J, 1990, 271: 407-413.
    168 Bettinger, B.T., D.M. Gilbert, and D.C. Amberg. Actin up in the nucleus[J]. Nat Rev Mol Cell Biol, 2004,5:410-415.
    169 Erwann Vieu and Nouria Hernandez. Actin’s latest act: polymerizing to facilitate transcription[J]? Nat Cell Biol, 2006, 8: 650-651.
    170 Dong-Ming Qu., Mei Han, and Jin-Kun Wen. Actin Binding Protein[J]. Chinese Journal of Cell Biology, 2007, 29: 219-224.
    171 McGough, A. F-actin-binding proteins[J]. Current Opin Struct Biol, 1998, 8:166-176.
    172 Gettemans, J., K. Van Impe, V. Delanote, T. Hubert, J. Vandekerckhove, and V. De Corte. Nuclear actin-binding proteins as modulators of gene transcription[J]. Traffic, 2005, 6: 847-857.
    173 Shumaker, D.K., Kuczmarski, E.R., and Goldman, R.D. The nucleoskeleton: lamins and actin are major players in essential nuclear functions[J]. Curr Opin Cell Biol, 2003, 15: 358-366.
    174 Jiang I. Wu and Gerald R. Crabtree. Nuclear Actin as Choreographer of Cell Morphology and Transcription[J]. Science, 2007, 317: 1710-1711.
    175 de Lanerolle, P., T. Johnson, and W.A. Hofmann. Actin and myosin I in the nucleus: what next [J]? Nat Struct Mol Biol, 2005, 12: 742-746.
    176 Abdelhaleem, M., Maltais, L., and Wain, H. The human DDX and DHX gene families of putative RNA helicases[J]. Genomics, 2003, 81: 618-622.
    177 Mischo, Hannah Elisabeth et al. Actinomycin D Induces Histoneγ-H2AX Foci and Complex Formation ofγ-H2AX with Ku70 and Nuclear DNA Helicase II[J]. J Biol Chem, 2005, 280: 9586-9594.
    178 Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. Atomic structure of the actin: DNase I complex[J]. Nature, 1990, 347: 37-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700