XPNPEP2介导肿瘤导向多肽TMTP1入胞并选择性诱导肿瘤细胞凋亡的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:寻找、验证肿瘤靶向多肽TMTP1的受体,并对TMTP1靶向肿瘤作用的分子机理做初步探讨,寻找肿瘤治疗可能的新靶点。
     方法:利用Pulldown技术寻找TMTP1可能的受体,通过逆向亲和实验、生物信息学分析、竞争拮抗实验以及Realtime PCR和Western等方法从受体与配体的结合、受体的分布以及功能效应等方面加以验证;以MTT、FCM、Western-blot等方法验证TMTP1具有诱导凋亡以抑制肿瘤细胞生长及增殖的生物作用,并探讨TMTP1与受体结合后,发挥TMTP1生物效应的分子机理。
     结果:XPNPEP2和Hsp27是利用Pulldown技术寻找到的TMTP1可能的受体。其中XPNPEP2存在于细胞膜表面,可以和TMTP1稳固结合,并可以显著影响TMTP1与肿瘤细胞亲和和诱导凋亡的能力,其细胞、组织的表达分布也与TMTP1的筛选原理想吻合;Hsp27在细胞内与TMTP1结合,通过PI3K/Hsp27信号通路拮抗TMTP1诱导肿瘤细胞凋亡的生物学作用。
     结论:XPNPEP2是TMTP1的细胞膜受体,并介导了TMTP1进入肿瘤细胞内部;Hsp27是TMTP1的胞内结合蛋白,在拮抗TMTP1诱导肿瘤细胞凋亡过程中起着关键作用。
Objective:To capture and verify the receptor of a tumor homing peptide TMTP1 is helpfulto know about the mechanism of tumor homing effect.The receptor may be a potentialtherapeutic target.
     Methods:The motheds of pull-down (affinity chromatography)method were used toseparate the membrane protein molecules interacting with TMTP1 and indetify the somekind(s)of protein(s)using the Spectral analysis from the mixture of proteins.The validationof receptor including following aspect:the subcellular localization,the distribution,thebinding and the functional testing.We also used MTT assay,FCM,western-blot to verifythe inhibiton on tumor cell proliferation induced by TMTP1 and to investigate themechanism.
     Results:XPNPEP2 and Hsp27 are candidate receptor captured by pull-down.XPNPEP2expresses in the cellular surface,it can bind TMTP1 strongly and shows a good results inthe functional test.Its distribution also coincides with the rules which we screens theTMTP1 by phage display.Hsp27 is a intracellular binding protein of TMTP1,it negativelyregulate the apoptosis induced by TMTP1 through the PI3K/Hsp27 pathway.
     Conclusions:XPNPEP2 is a cellular surface receptor of TMTP1 and mediate theendocytosis of TMTP1.Hsp27 is a intracellular binding protein of TMTP 1,it plays a keyrole in the apoptosis induced by TMTP 1.
引文
1,陈竺主编《全国第三次死因回顾抽样调查报告》
    2,Ravd IN PM, Cron IN KA, Howlader N. et al. The decrease in breast2cancer incidence in 2003 in the United States. N Engl J Med, 2007, 356 (16): 1670-1674.
    3,Llovet J, Ricci S, Mazzaferro V, et al. Sorafenib improves survival in advanced hepatocellular carcinoma ( HCC) :Results of a phase ***** randomized placebo2controlled trial ( SHARP trial). J Clin Oncol, 2007, 25: 18 s
    4,Gralow J, Ozols R F, Bajorn D F, et al. Clinical Cancer Advances 2007: Major Research Advances in Cancer Treatment, Prevention, and Screening2A Report From the American Society of clinical oncology[ J ]. J Clin Oncol, 2007, 26 (2): 313-325.
    5,Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 2001; 7:2958- 2970
    6,Chung KY. Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol, 2005; 23:1803-1810
    7,Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998 Jan 16; 279(5349):377-380.
    1. Einarson, M.B. Orlinick, J.R. (2002). Identification of Protein-Protein Interactions with Glutathione S-Transferase Fusion Proteins. In Protein-Protein Interactions: A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, pp. 37-57.
    2. Einarson, M.B. (2001). Detection of Protein-Protein Interactions Using the GST Fusion Protein Pulldown Technique. In Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, pp. 18.55-18.59.
    3. Vikis, H.G. and Guan, K.-L. (2004). Glutathione-S-Transferase-Fusion Based Assays for Studying Protein-Protein Interactions. In Protein-Protein Interactions, Methods and Applications, Methods in Molecular Biology, 261, Fu, H. Ed. Humana Press, Totowa, N.J.,pp. 175-186.
    4. Sprenger R R, Speijer D, Back J W, et al. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. electrophoresis, 2004, 25(1): 156-172
    5. Bazan, J. F., Weaver, L. H., Roderick, S. L., Huber, R. and Matthews, B. W. Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,2473-2477
    6. Molinaro, G, Boileau, G. and Adam, A. Aminopeptidase P and vasoactive peptides: from fundamental aspects to clinical interests. In Aminopeptidases in Biology and Disease (Hooper, N. M. and Lendeckel, U., eds.), 2004, pp. 251-269
    7. N.M.Hooper, A.J. Turner, FEBS Lett. 229 1988.340-344.
    8. J.W. Ryan, A. Papapetropoulos, H. Ju, N.D. Denslow, A.Antonov, R. Virmani, F.D. Kolodgie, R.G Gerrity, J.D. Catravas, Immunopharmacol. 32 1996.149-152.
    9. Phil Oh, Per Borgstrom, Halina Witkiewicz, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol. 2007; 25(3): 327-337.
    1.Liu Y, Zheng J, Fang W, et al [Isolation and characterization of human prostate cancer cell subclones with different metastatic potential]. Zhonghua Bing Li Xue Za Zhi 1999;28: 361-4.
    2.Tai SK, Tan OJ, Chow VT, Jin R, et al.Differential expression of metallothionein 1 and 2 isoforms in breast cancer lines with different invasive potential: identification of a novel nonsilent metallothionein-1H mutant variant. Am J Pathol 2003; 163(5):2009-19.
    3.Kroemer G,Reed JC. Mitochondrial control of cell death. Nat Med ,2000 ,6 (5):513-519.
    4.Li H , Zhu H , Xu CJ , et al . Cleavage of BID by caspase28 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998 , 94 (4): 491-501.
    5.Rao RV ,Hermel E ,Castro2Obregon S , et al . Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem ,2001 ,276 (36) : 33869-33874.
    6.Yang W, Luo D, Wang S, Wang R, et al.TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res. 2008; 14(17):5494-502
    7.Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu Rev Genet 1993; 27: 437-496.
    8.Samali A, Orrenius S. Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress and Chaperones 1998; 3: 228-236.
    9.Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992; 313: 307-313.
    10.Kulik G, Klippel A,Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Molecular and Cellular Biology 1997; 17:1595-1606.
    11. Konishi H, Matsuzaki H, Tanaka M, et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lettl997; 410: 493-498.
    1.Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu Rev Genet 1993; 27: 437-496.
    2.Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22: 631-677.
    3.Samali A, Orrenius S. Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress and Chaperones 1998; 3: 228-236.
    4.Morino M, Tsuzuki T, Ishikawa Y, et al. Specific expression of HSP27 in human tumor cell lines in vitro.In Vivo , 1997 ,11 (2):179-184.
    5.De Jong WW, Leunissen JA, Voorter CE. Evolution of the alpha-crystallm/small heat-shock protein family. Molecular Biology and Evolution 1993; 10: 103-126.
    6.Landry J, Lambert H, Zhou M, et al. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogenactivated kinases that recognize the same amino acid motif as S6 kinase Ⅱ. J Biol Chem 1992; 267: 794-803.
    7.Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992; 313: 307-313.
    8.Freshney NW, Rawlinson L, Guesdon F, et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 1994; 78: 1039-1049.
    9.Landry J, Chretien P, Laszlo A, Lambert H. Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 1991; 147:93-101.
    10.Pauli D, ArrigoAP,Vazquez J,Tonka CH,Tissieres A. Expression of the small heat shock genes during Drosophila development: Comparison of the accumulation of hsp23 and hsp27mRNAs and polypeptides. Genome 1989; 31: 671-676.
    11.Soldatenkov VA, Dritschilo A. Apoptosis of Ewing's sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res 1997; 57: 3881-3885.
    12. Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 1993; 268:1517-1520.
    13. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232: 522-524.
    14. DiDomenico BJ, Bugaisky GE, Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 1982; 31: 593-603.
    15. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999; 13: 2061-2070.
    16. Samali A, Robertson JD, Peterson E, et al. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli.Cell Stress and Chaperones 2001; 6: 49-58.
    17. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2: 645-652.
    18. Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 2001; 9:195-201.
    19. Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000; 19: 1975-1981.
    20. Polla BS, Kantengwa S, Francois D, et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 1996; 93: 6458-6463.
    21. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132-1136.
    22. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129-1132.
    23. Paul C, Manero F, Gonin S, Kretz-Remy CVirot S, Arrigo AP. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002; 22: 816-834.
    24. Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602-7612.
    25. aul C, Manero F, Gonin S, Kretz-Remy C,Virot S, Arrigo AP. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002; 22: 816-834.
    26. Yang X, Khosravi-Far R, Chang HY, Baltimore D. Daxx, a novel fas-binding protein that activates JNK and apoptosis. Cell 1997; 89: 1067-1076.
    27. Liang P, MacRae TH. Molecular chaperones and the cytoskeleton.J Cell Sci 1997; 110: 1431-1440.
    28. Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 1993; 268: 24210-24214.
    29. Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 1995; 227: 416-427.
    30. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p3 8 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110(Pt 3): 357-368.
    31. Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269: 20780-20784.
    32. Miron T, Vancompernolle K, Vandekerckhove J,Wilchek M, Geiger B. A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 1991; 114:255-261.
    33. Wieske M, Benndorf R, Behlke J, et al. Defined sequence segments of the small heat shock proteins HSP25 and alphaBcrystallin inhibit actin polymerization. Eur J Biochem 2001; 268: 2083-2090.
    34. Hino M, Kurogi K, Okubo MA, Murata-Hori M, Hosoya H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 2000; 271: 164-169.
    35. Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 1995; 154: 363-374.
    36. Mehlen P, Kretz-Remy C, Preville X, Arrigo AP. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalphainduced cell death. EMBO J 1996; 15:2695-2706.
    37. Ito H, Okamoto K, Kato K. Enhancement of expression of stress proteins by agents that lower the levels of glutathione in cells. Biochimica et Biophysica Acta-Gene Structure and Expression 1998; 1397: 223-230.
    38. Love S, King RJ.A27 kDa heat shock protein that has anomalous prognostic powers in early and advanced breast cancer. Br J Cancer 1994; 69: 743-748.
    39. Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 1993; 53: 4443-4448.
    40. Cornford PA, Dodson AR, Parsons KF, et al. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000; 60: 7099-7105.
    41. Ehrenfried JA, Herron BE, Townsend CM, Jr., Evers BM. Heat shock proteins are differentially expressed in human gastrointestinal cancers. Surg Oncol 1995; 4: 197-203.
    42. Langdon SP, Rabiasz GJ, Hirst GL, et al. Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1995; 1: 1603-1609.
    43. Hsu PL, Hsu SM. Abundance of heat shock proteins (hsp89, hsp60, and hsp27) in malignant cells of Hodgkin's disease. Cancer Res 1998; 58: 5507-5513.
    44. Oesterreich S, Hilsenbeck SQ Ciocca DR, et al. The small heat shock protein HSP27 is not an independent prognostic marker in axillary lymph node-negative breast cancer patients. Clin Cancer Res 1996; 2: 1199-1206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700