小檗碱降血糖作用的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血糖是引起2型糖尿病最主要的危险因素,临床上血糖升高先于糖尿病发病,因此降低血糖可明显降低糖尿病发病率、改善机体对胰岛素的敏感性和降低糖尿病并发症的危险。体内血糖主要由肝脏、肌肉和脂肪组织代谢,经葡萄糖转运体(GLUT)转运而被细胞吸收。胰岛素受体(InsR)是位于细胞表面的跨膜受体,其表达调控机制至今尚未阐明。胰岛素通过与其受体的结合而增加葡萄糖的吸收和糖原合成来降低血糖,因此上调InsR的表达具有重要意义。目前临床应用最广泛的治疗2型糖尿病的主要药物有磺酰脲类、双胍类、α-葡萄糖苷酶抑制剂、噻唑烷二酮类。总体来说这些药物一般具有较好的降血糖疗效,但也有部分患者因不良反应(如肝毒性、低血糖、浮肿等)不能耐受其治疗,而有的患者药效反应则不够明显。因此,新型降血糖药物的发现一直是糖尿病药物研究的重点。
     天然药物小檗碱(Berberine,BBR)在体内外具有明确的降血糖疗效。BBR是从黄连和黄柏等中草药中提取出来的生物碱,是具有明确化学结构的天然化合物,已报道有多种药理作用。BBR在我国已有很长的临床应用历史,过去主要作为抗菌药物治疗细菌性腹泻,其疗效和安全性均得到普遍认可。
     为了研究未来BBR作为新型降血糖药物的可能性,我们研究BBR降血糖作用的分子机制,设计了一系列体内外和临床实验。BBR作用于体外培养的人肝细胞系HepG2和Bel-7402细胞后能显著上调InsR mRNA的表达。BBR的作用呈时间和剂量依赖性,其上调InsR的表达在处理细胞4h后即可显现,并可至少维持24h。BBR还可增加周边组织如胰腺细胞SW1990、结肠细胞HCT116、人胚肾细胞293T、淋巴细胞CEM等InsRmRNA的表达。BBR也能使细胞表面InsR蛋白的表达水平明显增加。BBR对细胞中InsRmRNA的半衰期基本没有影响。用带有InsR基因启动子和Luc报告基因的质粒共转染HepG2细胞后再用BBR处理,结果显示BBR可使InsR基因启动子的转录活性明显增加。说明BBR主要在转录水平通过增加InsR基因启动子的活性来增加其表达。
     BBR在体外能显著降低培养基中葡萄糖的浓度,并且其降葡萄糖作用依赖胰岛素信号途径,去除培养基中的胰岛素或抑制PI3K的激酶活性能使BBR的降葡萄糖效应消失或显著下降。
     BBR在体外能迅速激活PKC信号转导途径,并通过PKC通路激活InsR基因的启动子。PKC的激活在时间上提前于InsR表达的增加。BBR对PKC的激活也呈时间及剂量依赖性。PKC的激活是BBR上调InsR表达所必需的,用PKC抑制剂Calphostin C阻断PKC信号转导能使BBR上调InsR的表达作用显著降低,进一步的PKC亚型研究证明,BBR通过PKC中的PKCμ发挥作用。
     BBR 75mg/kg/d和150mg/kg/d口服治疗15天后即可使高血糖Wistar大鼠的血糖浓度显著下降,肝脏及肌肉细胞中InsR mRNA的表达水平分别提高1.8倍和2.25倍;胰岛素敏感性增加2倍,并且显著提高肝组织中PKC的活性。BBR在2型糖尿病KK-Ay小鼠体内能显著降低血糖浓度及血液中胰岛素含量,增加InsR的表达。血液中胰岛素含量的降低与InsR表达的增加直接相关。BBR体内降血糖作用也依赖胰岛素信号途径,在缺失血液胰岛素的NOD/LtJ小鼠体内BBR降血糖作用消失,说明BBR主要应用于2型糖尿病的治疗。
     BBR 0.5g每天2次口服给药治疗2个月后,使50例2型糖尿病患者禁食血糖、糖化血红蛋白、甘油三脂浓度分别下降25.9%、18.1%和17.6%。经BBR治疗后患者血液胰岛素浓度也明显下降,对患者外周血液淋巴细胞的检测也表明BBR能够上调其InsR的表达。所有患者在BBR治疗后未出现明显不良反应。BBR还能使患者的肝功能得到改善。
     综上所述,我们的研究包括了从分子水平到细胞水平,从动物水平到临床试验等一系列工作,所有实验结论都说明BBR是一种安全可靠的新型降血糖药物,其作用机制不同于其他糖尿病治疗药物。我们认为BBR可单独应用或与其他类药物联合应用于2型糖尿病的临床治疗。
Blood glucose elevates in clinic before diabetic conditions and is by far one of the most important risk factors for the onset of diabetes.Lowering blood glucose significantly improves insulin sensitivity and decreases the mortality of diabetes.Insulin receptor(InsR) is a transmembrane receptor located on cell surface.Binding of insulin to InsR increases glucose uptake and glycogen synthesis.Up-regulation of InsR expression is considered to be one of the most effective means to lower blood glucose.Currently,the drugs widely-used to treat type 2 diabetes in clinic are Sulfonylureas,biguanide,α-Glucosidase Inhibitor and Thiazolidinedione. Although these drugs have good effects in blood glucose,a small portion of patients does not tolerate the adverse effects such as hepatotoxicity,hypoglycemia and edema et al,and the therapeutic effects are not satisfactory in some of the patients.Therefore,finding of new mechanism drugs to treat diabetes is highly desirable.
     Berberine(BBR),an alkaloid from herbs(such as Coptis chinensis),is known to lower blood glucose and has a well-defined chemical structure.It has been used in China to treat diarrhea for decades.The clinical effectiveness and safety of BBR has been widely accepted.
     To learn the glucose-lowering mechanism of BBR and explore the possibility of using BBR as a new drug to treat diabetes in the future,we have designed a series of experiments and the results are presented in the report.BBR up-regulates the expression of InsR mRNA in the human liver cell lines Bel-7402 and HepG2.The effect of BBR is in a time-and dose-dependent fashion.We found that InsR expression was up-regulated 4 hrs after BBR treatment and lasted for at least 24 hrs.BBR also up-regulates InsR mRNA expression in other types of human cells,such as pancreas cell SW1990,colon cell HCT116,human embryo kidney cell 293T and lymphocyte CEM.The InsR protein level on the cell surface was accordingly increased.BBR treatment didn't alter the half life of InsR mRNA.To learn if BBR enhances the transcriptional activity of InsR promoter,we used a plasmid containing the InsR promoter sequence and Luc reporter to transfect HepG2 cells,followed by BBR treatment.We found that BBR largely increased the activity of InsR gene promoter.These results indicated that BBR up-regulates InsR expression at the transcriptional level by promoting the transcriptional activity of InsR gene promoter.
     Glucose concentration in the culture medium was largely decreased after BBR treatment in vitro.The increase of glucose consumption by BBR is mediated through the insulin signal way,because remove of insulin in the culture circumstances or blockage of the activity of PI3K abolishes or decreases the hypoglycemic effect of BBR.
     BBR activates cellular PKC activity in a time- and dose-dependent manner,and increases the activity of InsR promoter through a PKC-mediated mechanism.Activation of PKC by BBR occurs before the increase of InsR expression.PKC activation is essential,because blocking PKC pathway by Calphostin C abolishes the effect of BBR on InsR up-regulation. Furthermore,PKCμ(PKD1),one of the subtypes of PKCs,was identified to be responsible for BBR's activity on InsR.
     We have then studied the hypoglycemic effect of BBR in hyperglycaemia Wistar rats. Treating the rats with 75 mg/kg/d and 150 mg/kg/d of BBR(orally) for 15 days reduced blood glucose and up-regulated InsR mRNA in liver and muscle by 1.8 and 2.25 folds,respectively. The insulin sensitivity increased by 2 folds and the activity of PKC in the rat livers also elevated.BBR effectively reduced blood glucose in the type 2 diabetic KK-Ay mice.The hypoglycemic effect of BBR required the presence of insulin in the blood,because the therapeutic effect of BBR vanished in the NOD/LtJ mice that were null of blood insulin.
     Fifty type 2 diabetic patients were then orally treated with BBR(0.5g,bid,for 2 months,). The treatment effectively lowered fasting blood glucose,haemoglobin A1c and triglyceride by 25.9%,18.1%and 17.6%,respectively.BBR also lowered blood insulin in these patients.InsR expressed on the peripheral blood lymphocytes elevated after BBR treatment.Liver function was improved.Side-effects in the BBR treated patients were not observed.
     In conclusion,we consider BBR to be a promising glucose-lowering agent,with good safety and a new mechanism distinctive from that of the known diabetes drugs.
引文
1.Dourakis SP,Tzemanakis E,Sinani C,et al.Gliclazide-induced acute hepatitis.Eur J Gastroenterol Hepatol.2000,12:119-121.
    2.Sitruk V,Mohib S,GRNAdo-Lemaire V,et al.Acute cholestatic hepatitis induced by glimepiride.Gastroenterol Clin Biol.2000,24:1233-1234.
    3.Al-Salman J,Arjomand H,Kemp DG,Mittal M.Hepatocellular injury in a patient receiving rosiglitazone.A case report.Ann Intern Med.2000,132:121-124.
    4.Forman LM,Simmons DA,Diamond RH.Hepatic failure in a patient taking rosiglitazone.Ann Intern Med.2000,132:118-121.
    5.Carrascosa M,Pascual F,Aresti S.Acarbose-induced acute severe hepatotoxicity (letter).Lancet.1997,349:698-699.
    6.Desilets DJ,Shorr AF,MoRNA KA,Holtzmuller KC.Cholestatic jaundice associated with the use of metformin.Am J Gastroenterol.2001,96:2257-2258.
    7.Babich MM,Pike I,Shiftman ML.Metformin-induced acute hepatitis.Am J Med.1998,104:490-492.
    8.Qin Li,Wei Wei,Mingchen Li,et al.Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats.J Ethmopharmacology.2006,108:109-115.
    9.Libin Zhou,Ying Yang,et al.Berberine stimulate glucose transport through a mechanism distinct from insulin.Metabolism Clinical and Experimental.2006,56:405-412.
    10.Zhe Cheng,Tao Pang,Min Gu,et al.Berberine-stimulated glucose uptake in L6 myotube involes both AMPK and p38MAPK.Biochimica et Biophysica Acta.2006,1760:1682-1689.
    11.Jun Yin,Renming Hu,et al.Effects berberine on glucose metabolism in vitro.Metabolism.2002,51 (11):1439-1433.
    12.Jun Yin,Huili Xing,Jianping Ye.Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism Clinical and Experimental.2008,57:712-717.
    13.Kong WJ,Zhang H,Song DQ,et al.Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression.Metabolism.2009,58 (1):109-19.
    14.D Sun,SN Abraham,et al.Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesion in uropathogenic Escherichia coli.Antimicrob Agents Chemother.1998,32:1274-1277.
    15.Gupta S,Gupta BM.Metabolic syndrome:diabetes and cardiovascular disease.Indian Heart J.2006,58 (2):149-152.
    16.Edith Schober,Reinhard W Holl,et al.Diabetes mellitus type 2 in childhood and adolescence in Germany and parts of Austria.European Journal of Pediatrics.2005,264 (11):705-707.
    17.Rosenbaum M,Nonas C,Horlick M,et al.beta-Cell function and insulin sensitivity in early adolescence:association with body fatness and family history of type 2 diabetes mellitus.J Clin Endocrinol Metab.2004,89 (11):5469-5476.
    18.Weill J,Vanderbecken S,Froguel P.Understanding the rising incidence of type 2 diabetes in adolescence.Arch Dis Child.2004,89 (6):502-504.
    19.King H,Aubert RE,Herman WH.Global burden of diabetes,1995-2025,Prevalence,numerical estimates and projections.Diabetes Care.998,21:1414-1431.
    20.Ullrich A,Bell JR,Chen EY,Herrera R,et al.Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.Nature.1985,313 (6005):756-761.
    21.Ebina Y,Ellis L,Jarnagin K,et al.The human insulin receptor cDNA:the structural basis for hormone-activated tRNAsmembRNAe signalling.Cell.1985,40 (4):747-758.
    22.Jones HE,Gee JM,Barrow D,et al.Inhibition of insulin receptor isoform-A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells.Br J Cancer.2006,95 (2):172-180.
    23.S Seino,M Seino,S Nishi,G I Bell.Structure of the human insulin receptor gene and characterization of its promoter.Proc Natl Acad Sci.1989,86 (1):114-118.
    24.P Briata,L Briata,R Gherzi.Glucose starvation and glycosylation inhibitors reduce insulin receptor gene expression:characterization and potential mechanism in human cells.Biochem Biophys Res Commun.1990,169:397-105.
    25.J R Levy,G Krystal,P Glickman,F Dastvan.Effect of media conditions,insulin,and dexamethasone on insulin-receptor mRNA and promoter activity in HepG2 cells.Diabetes.1991,40:58-65.
    26.L Yuan,R Ziegler,A Hamann.Chronic hyperinsulism induced down-regulation of insulin post receptor signaling tRNAsduction in Hep G2 cells.J Huazhong Univ Sci Technolog Med Sci.2002,22:313-316.
    27.A M Rohilla,C Anderson,W M Wood,P Berhanu.Insulin downregulates the steady-state level of its receptor messenger ribonucleic acid.Biochem.Biophys Res Commun.1991,175:520-526.
    28.MJ Saad,F Folli,CR Kahn.Insulin and dexamethasone regulate insulin receptors,insulin receptor substrate-1,and phosphatidylinosito 3-kinase in Fao hepatoma cells.Endocrinology.1995,136:1579-1588.
    29.AR McDonald,ID Goldfine.Glucocorticoid regulation of insulin receptor gene tRN Ascription in IM-9 cultured lymphocytes.J Clin Invest.1988,81:499-504.
    30.N Iwama,M Nomura,Y Kajimoto,E Imano,et al.Effect ofdexamethasone on the synthesis and degradation of insulinreceptor mRNA in cultured IM-9 cells.Diabetologia.1987,30:899-901.
    31.A R McDonald,B A Maddux,Y Okabayashi,K Y Wong,er al.Regulation ofmsulin-receptor mRNA levels by glucocorticoids.Diabetes.1987,36:779-781.
    32.Kong W,Wei J,Abidi P,Lin M,et al.Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat Med.2004,10 (12):1344-1351.
    33.Zhao W,Xue R,Zhou ZX,Kong WJ,Jiang JD.Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis.Biomed Pharmacother.2008,62 (10):730-1.
    34.Kong WJ,Wei J,Zuo ZY,Wang YM,et al.Combination of simvastatin with berberine improves the lipid-lowering efficacy.Metabolism.2008,57 (8):1029-37.
    35.Ward W K,Beard J C,Halter J B.Pathophysiology of insulin secretion in non-insulin-dependent diabetes mellitus.Diabetes Care.1984,7:491—502.
    36.Tsai PL,Tsai TH.Hepatobiliary excretion of berberine.Drug Metab Dispos.2004,32 (4):405-412.
    37.Price PM,Banerjee R,Acs G.Inhibition of the replication of hepatitis B virus by the carbocyclic analogue of 2'-deoxyguanosine.Proc Natl Acad Sci USA.1989,86 (21):8541-4.
    38.Romero MR,Efferth T,SerRNAo MA,et al.Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system.Antiviral Res.2005,68 (2):75-83.
    39.Di Paolo S.Metformin ameliorates extreme insulin resistance in a patient with anti-insulin receptor antibodies:description of insulin receptor and postreceptor effects in vivo and in vitro.Acta Endocrinol (Copenh).1992,126(2):117-23.
    40.Kanigiir-Sultuybek G,Giiven M,et al.The effect of metformin on insulin receptors and lipid peroxidation in alloxan and streptozotocin induced diabetes.J Basic Clin Physiol Pharmacol.1995,6 (3-4):271-280.
    41.R Hernandez,T Teruel,M Lorenzo.Rosiglitazone produces insulin sensitisation by increasing expression of the insulin receptor and its tyrosine kinase activity in brown adipocytes.Diabetologia.2003,46:1618-1628.
    42.Dinesh S Tewari,Donna M Cook,Rebecca TaubS.Characterization of the Promoter Region and 3'End of the Human Insulin Receptor Gene.J Biol Chem.1989,264 (27):16238-16245.
    43.Daisuke Koya,George L King.Protein kinase C activation and the development of diabetic complication.Perspectives in Diabetes.1998,47:859-866.
    44.I Idris,S Gray,R Donnelly.Protein kinase C activation:isozyme-specific effects on metabolism and cardiovascular complication in diabetes.Diabetologia.2001,44:659-673.
    45.An Rykx,Line De Kimpe,Svetlana Mikhalap,et al.Protein kinase D:a family affair.FEBS Letters.2003,546:81-86.
    46.Johan Van Lint,An Rykx,Yusuke Maeda,et al.Protein kinase D:an intracellular traffic regulator on the move.TRENDS in Cell Biology.2002,12 (4):193-200.
    47.Qiming J Wang.PKD at the crossroads of DAG and PKC signaling.TRENDS in Pharmacological Sciences.2006,27 (6):317-323.
    48.Shih-Lan HSU,YH Chou,et al.Differential effects of phorbol ester on growth and protein kinase C iosenzyme regulation in human hepatoma Hep3B cells.J Biol chem.1998,333:57-64.
    49.Tanaka M,Sagawa S,Hoshi J,et al.Synthesis of anilino-monoindolylmaleimides as potent and selective PKCbeta inhibitors.Bioorg Med Chem Lett.2004,14 (20):5171-5174.
    50.Seynaeve CM,Kazanietz MG,et al.Differential inhibition of protein kinase C isozymes by UCN-01,a staurosporine analogue.Mol Pharmacol.1994,45 (6):1207-1214.
    51.Martiny-Baron G,Kazanietz MG,Mischak H.Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976.J Biol Chem.1993,268 (13):9194-9197.
    52.German Cancer Research Center,Heidelberg.Rottlerin.a novel protein kinase inhibitor.Biochem Biophys Res Commun.1994,199 (1):93-98.
    53.Wilkinson SE,Parker PJ,Nixon JS.Isoenzyme specificity of bisindolylmaleimides,selective inhibitors of protein kinase C.J Biol Chem.1993,294 (Pt 2):335-337.
    54.Jirousek MR,Gillig JR,Gonzalez CM,et al.(S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues:isozyme selective inhibitors of protein kinase C beta.J Med Chem.1996,39(14):2664-2671.
    55.Gschwendt M,Dieterich S,Rennecke J,et al.Inhibition of protein kinase C mu by various inhibitors.Differentiation from protein kinase c isoenzymes.FEBS Lett.1996,392(2):77-80.
    56.Marte BM,Meyer T,Stabel S,et al.Protein kinase C and mammary cell differentiation:involvement of protein kinase C alpha in the induction of beta-casein expression.Cell Growth Differ.1994,3:239-47.
    57.An Rykx,Line De,et al.Protein kinase D:a family affair.FEBS Letters.2003,546:81-86.
    58.Qiming J Wang.PKD at the crossroads of DAG and PKC signaling.TRENDS in Pharmacological Sciences.2006,27(6):317-323.
    59.Kye V Butler,Alan P Kozikowski.Chemical origins of isform selectivity in histone deacetylase inhibitors.Current Pharmaceutical Design.2008,14:505-528.
    60.Shin-ichiro Imai,Leonard P Gurarente.Molecular Biology of Aging.2008.Cold Spring Harbor Laboratory Press.
    61.Bouwman P,Philipsen S.Regulation of activity of Sp1-related tRNAscription factors.Mol Cell Endocrinol.2002,195:27-38.
    62.Li L,He S,Sun JM,Davie JR,et al.Gene regulation by Sp1 and Sp3.Biochem Cell Biol.2004,82:460-471.
    63.Kim SH,Shin EJ,Kim ED,Bayaraa T,Frost SC,Hyun CK.Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes.Biol Pharm Bull.2007,30(11):2120-2125.
    64.Fisher SJ,Kahn CR.Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production.J Clin Invest.2003,111:463-468.
    65.Kuwabara K,Murakami K,et al.A novel selective peroxisome proliferator-activated receptor alpha agonist,2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid(NS-220),potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice.J Pharmacol Exp Ther.2004,309(3):970-977.
    66.Reed MJ,Meszaros K,Entes LJ,et al.A new rat model of type 2 diabetes:the fat-fed,streptozotocin-treated rat.Metabolism.2000,49:1390-4.
    67.Ja-Kyeong Lee,Joseph W O,et al.Identification of cis-and tRNAs-acting factors regulation the expression of the human insulin receptor gene.J Biol Chem.1992,267(7):4638-4645.
    68.Eiichi Araki,Takashi Murakami,et al.A cluster of four Sp1 binding sites required for efficient expression of the human insulin receptor gene.J Biol Chem.1991,266(6):3944-3948.
    69.Barbara B Kahn.Type 2 diabetes:when insulin secretion fails to compensate for insulin resistance.Cell.1998,92:593-596.
    70.盛美萍,孙淇,王宏.盐酸小檗碱在Beagle狗静脉注射和口服药动学研究.中国药理学通报.1993,9(1):64-67.
    71.Kemp BE,Stapleton D,et al.AMP-activated protein kinase,super metabolic regulator.Biochem Soc Trans.2003,31 (Pt 1):162-8.
    72.Hardie DG,Scott JW,et al.Management of cellular energy by the AMP-activated protein kinase system.FEBS Lett.2003,546 (1):113-20.
    73.Kazuhiko Nakamaru,Kazuya Matsumoto,et al.AICAR,an AMP-activated protein kinase,down-regulates the insulin receptor expression in HepG2 cells.Biochemical and Biophysical Research Communication.2005,328:449-454.
    74.Nakamaru K,Matsumoto K,Taguchi T,et al.AICAR,an activator of AMP-activated protein kinase,down-regulates the insulin receptor expression in HepG2 cells.Biochem Biophys Res Commun.2005,328 (2):449-54.
    1.Bandyopadhyay G,Standaert ML,Sajan MP,Karnitz L,Quon MJ,Farese RV.Dependence of insulin-stimulated glucose transporter 4 translocation on phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-ζ.Mol Endocrinol.1999,13:1766-1771.
    2.Standaert ML,Bandyopadhyay G,Kanoh Y,Sajan MP,Farese RV.Insulin and PIP3 PKC-ζby mechanisms that are both dependent and independent of phosphorylation of activation loop (T410)and autophosphorylation (T560)sites.Biochemistry.2001,40:249-255.
    3.Standaert ML,Bandyopadhyay G,Perez L,et al.Insulin activates protein kinases C-ζand C-λ by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes.J Biol Chem.1999,274:25308-25316.
    4.Limatola C,Schaap D,Moolenaar WH,van Blitterswijk WJ.Phosphatidic acid activation of protein kinase C-^overexpressed in COS cells:comparison with other protein kinaseC isotypes and other acidic lipids.BiochemJ.1994,304:1001-1008.
    5.Hill MM,Clark SF,Tucker DF,Birnbaum MJ,James DE,Macaulay SL.A role for protein kinase B_/Akt2 in insulinstimulated GLUT4 translocation in adipocytes.Mol Cell Biol.1999,19:7771-7781.
    6.Kohn AD,Summers SA,Birnbaum MJ,Roth RA.Expression of a constitutively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation.J Biol Chem.1996,271:31372-31378.
    7.Tanti JF,Grillo S,Gremeaux T,et al.Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes.Endocrinology.1997,138:2005,.
    8.Wang Q,Somwar R,et al.A.Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts.Mol Cell Biol.1999,19:4008.
    9.Kanoh Y,Bandyopadhyay G,et al.Thiazolidinedione treatment enhances insulin effects on protein kinase C-ζ/λactivation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type Ⅱ diabetic rats.J Biol Chem.2000,275:16690-16696.
    10.Kanoh Y,Bandyopadhyay G,et al.Rosiglitazone,insulin treatment,and fasting correct defective activation of protein kinase C-λ/ζ,by insulin in vastus lateralis muscles and adipocytes of diabetic rats.Endocrinology.2001,142:1595-1605.
    11.Bandyopadhyay G,et al.Glucose activates mitogen-activated protein kinase (extracellular signal-regulated kinase)through proline-rich tyrosine kinase-2 and the GLUT1 glucose transporter.J Biol Chem.2000,275:40817-40826.
    12.Sajan MP,Bandyopadhyay G,et al.Sorbitol activates atypical protein kinase Cs and GLUT 4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2,the extracellular signal-regulated kinase pathway and phospholipase D.Biochem J.2002,362:665-674.
    13.Bandyopadhyay G,Standaert ML,et al.Evidence for involvement of protein kinase C(PKC)-ζ and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology.1997,138:4721-4731.
    14.Leitges M,Ploman M,et al.Knockout of protein kinase C-a enhances insulin signaling through phosphatidylinositol 3-kinase.Mol Endocrinol.2002.In press.
    15.Chen D,Elmendorf JS,et al.Osmotic shock stimulates GLUT4 translocation by a novel tyrosine kinase pathway.J Biol Chem.1997,272:27401-27410.
    16.Bandyopadhyay G,Standaert ML,et al.Activation of protein kinase C (a,p,and ζ)by insulin in 3T3/L1 cells.Transfection studies suggest a role for PKC-ζ in glucose transport.J Biol Chem.1997,272:2551-2558.
    17.Bandyopadhyay G,et a.Effects of adenoviral gene transfer of wild-type constitutively active,and kinase-defective protein kinase C-λ on insulin-stimulated glucose transport in L6 myotubes.Endocrinology.1999,141:4120-4127.
    18.Avignon A,et al.Insulin increases mRNA levels of protein kinase C-a and-pin rat adipocytes and protein kinase C-a,-Pand-9in rat skeletal muscle.Biochem J.1995,308:181-187.
    19.Bandyopadhyay G,Kanoh Y,et al.Protein kinase C-λ,mediates insulin effects on glucose transport in cultured preadipocyte-derived human adipocytes.J Clin Endocrinol Metab.2002,87:716-723.
    20.Standaert ML,Bandyopadhyay G,et al.Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis,Rho translocation,de novo phospholipids synthesis and diacylglycerol/protein kinase C signaling in L6 myotubes.Endocrinology.1996,137:3014-3020.
    21.Bandyopadhyay G,Standaert ML,et al.Effects of transiently expressed atypical (ζ,λ),conventional (a,P)and novel (8,e)protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes:specific interchangeable effects of protein kinases C-ζ,and C-λ..Biochem J.1999,337:461-170.
    22.Kotani K,Ogawa W,et al.Requirement of atypical protein kinase CX for insulinstimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes.Mol Cell Biol.1998,18:6971-6982.
    23.Standaert ML,Galloway L,et al.Protein kinase C-ζ,as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes.Potential role in glucose transport.J Biol Chem.1997,272:30075-30082.
    24.Condorelli G,Vigliotta G,et al.Protein kinase C (PKC)-a activation inhibits PKC-ζand mediates the action of PED/PEA-15 on glucose transport in the L6 skeletal muscle cells.Diabetes.2001,50:1244-125.
    25.Bandyopadhyay G,Sajan MP,et al.Glucose activates protein kinase C-λ/ζ,through proline-rich tyrosine kinase-2,extracellular signal-regulated kinase and phospholipase D.A novel mechanism for activating glucose transporter translocation.J Biol Chem.2001,276:35537-35545.
    26.Hayashi T,Hirshman MF,et al.Evidence for 5_AMP-activated kinase mediation of the effect of muscle contraction on glucose transport.Diabetes.1998,47:1369-1373.
    27.Mu J,Brozinick JT Jr,Valladares O,Bucan M,and Birnbaum MJ.A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle.Mol Cell.2001,7:1085-1094.
    28.Avignon A,Yamada K,et al.Chronic activation of protein kinase C in soleus and other tissues of insulin-resistant type Ⅱ diabetic Goto-Kakazaki (GK),obese/aged,and obese/Zucker rats.A mechanism for inhibiting glycogen synthesis.Diabetes.1996,45:1396-1404.
    29.Standaert ML,Avignon A,et al.The phosphatidylinositol 3-kinase inhibitor,wortmannin,inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.Biochem J.1996,313:1039-1046.
    30.Yamada K,Avignon A,et al.Effects of insulin on the translocation of protein kinase C-θ and other protein kinase C isoforms in rat skeletal muscles.Biochem J.1995,308:177-180.
    31.Bollag GE,Roth RA,et al.Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity.Proc Natl Acad Sci USA.1986,83:5822-5824.
    32.Takayama S,White MF,Kahn RC.Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.J Biol Chem.1988,263:3440-3447.
    33.Standaert ML,Bandyopadhyay G,et al.Effects of knockout of the protein kinase C-gene on glucose transport and glucose homeostasis.Endocrinology.1999,140:4470-4477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700