光周期相关基因在大豆成花诱导与开花逆转中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是典型的短日植物,在光周期反应的早期研究中被当作模式植物。与水稻、玉米等短日植物相比,大豆的光周期反应更加敏感,品种间的差异更大,单个品种的适应性狭窄一直阻碍着大豆育种工作的开展。对于光周期反应敏感的晚熟大豆品种米说,短日照不仅是成花诱导的必要条件,而且影响开花、结荚和鼓粒。一旦光周期条件不适,这些品种的生殖生长就会延迟,甚至可从生殖生长状态逆转到营养生长状态。对大豆光周期反应机制的研究将为培育广适应的大豆品种奠定基础。本研究利用RACE技术克隆了四个大豆光周期反应的相关基因,并通过同源比对搜索到七个相关的光周期反应基因,利用本实验窒长期以来建立的短日照(开花)、长日照(持续营养生长)、短日照-长日照(开花逆转)三位一体的实验系统,采用Real-Time PCR技术研究了这11个基因在大豆成花诱导与开花逆转中的表达,并比较了它们在光周期敏感性不同品种中的差异。为了进一步验证与大豆光周期相关的GmSOC1基因的功能,本研究建立了利用发根农杆菌介导的豆科植物百脉根高效快速的转化平台,并将该基因转入百脉根中验证了其功能。具体研究结果如下:
     1.克隆了四个大豆光周期反应的相关基因GmCOL1、GmCOL2、GmCOL3以及GmSOC1,它们分别编码含311,365,310和211个氨基酸的蛋白。同源比对结果显示,GmCOL1,GmCOL2,GmCOL3与豆科植物苜蓿和豌豆的CO-like基因的同源性最高;GmSOC1与拟南芥AGL20的同源性最高,达到70%,是MADS-box基因家族的一员。
     2.利用Real-Time PCR技术,通过对10个内标基因的系统分析,我们发现看家基因GmELF1B在大豆光周期反应中较为稳定,可用作大豆光周期相关基因表达研究的内标基因。
     3.以GmELF1B为内标基因,对克隆的四个大豆光周期相关基因以及通过同源比对筛选到的七个光周期相关的基因在光周期敏感品种ZGDD成花诱导与开花逆转中的表达进行了研究,结果发现,这11个大豆光周期相关基因在其成花诱导过程中的不同光周期条件下均有表达,但是长短日条件下的表达量和表达规律有所不同。它们并非特异地被短日条件诱导,在特定的阶段,长日条件也可以诱导它们的表达。
     4.所检测的光周期相关基因在光周期敏感性不同的大豆品种的SAM中也均有表达,所不同的是,在光周期钝感品种HH27中这些基因的表达峰值出现的时间普遍比在光周期敏感品种ZGDD中出现的时间早,分子生物学检测结果与HH27在短日条件下开花比ZGDD早的生理现象相符合,但是这些基因在ZGDD中的表达峰值却比HH27中高。
     5.对于光周期敏感品种ZGDD而言,经一定日数短日诱导后进行长日照处理,可以产生花序逆转和花逆转,甚至整株逆转,植株回复到营养生长的状态。通过研究大豆开花相关基因在ZGDD开花逆转中的表达发现,拟南芥分生组织特异基因LFY和AP1的同源基因GmLFY-like和GmAP1-like在逆转条件下的表达介于短日诱导条件和长日抑制条件之间,说明GmLFY-like和GmAP1-like可能具有维持大豆分生组织特性的功能。而光周期上游基因GmGI-like和PEBP家族基因只在逆转早期与GmLFY-like和GmAP1-like的表达相似,说明它们可能在开花逆转的早期发挥作用。
     6.与拟南芥中的基因相似,大豆的光周期相关基因也呈现24小时的日变化规律,GmGI-like在长短日条件下的表达与拟南芥在长日下的表达模式相近而与水稻不同;GmCO-like的日变化与水稻Hd1和拟南芥CO均不同,但其在短日条件下的日变化与拟南芥COL1和COL2在长日下的日变化规律相似;大豆PEBP家族基因在短日下的日变化又与水稻短日下的日变化相似,但长日下的日变化却不相同,说明光周划调控大豆相关基因对日长的响应机制可能与长日双子叶植物拟南芥以及短日单子叶植物水稻均不同。
     7.结合发根农杆菌介导的遗传转化的高效性与百脉根品种"Superroot"简单、快速的再生体系,本研究建立了一个快速、高效的转化平台用于豆科植物基因功能的研究。转基因百脉根植株可在两个半月内获得,分子生物学检测验证了转基因事件的发生。同时,利用双元转化载体pGFPGUSPlus对一些可能影响转化效率的因子进行优化,进而得到92%的高效转化频率。同时,将一个来源于小麦、编码Na~+/H~+逆向转运蛋白的耐盐基因TaNHX2转到百脉根中,并对其耐盐性进行鉴定,从而验证此系统作为基因功能研究平台的实用性。在此基础上,将大豆中克隆的GmSOC1基因转到了百脉根中使其过表达,导致了百脉根提前开花,从而验证了此基因促进开花的功能,同时也说明了此转化平台可以用于逆境生物学与发育生物学的研究。
Soybean is a typical short-day plant,being considered as the model plant in the early studies of photoperiodism.Compared with other SD plants,like rice and maize,soybean is more sensitive to photoperiod and the difference among different cultivars is greater than that in rice and maize.The fact that different soybean cultivars can only be planted in limited area due to their sensitivity to photoperiod restricts the extensive cultivation of soybean.For late-maturing soybean,which is sensitive to photoperiod,short-day condition is not only necessary for flower induction,but for blooming, podding and seed maturation.The inapposite photoperiod may result in delayed reproductive phase or even back to vegetative growth.The understanding of photoperiod mechanism involved in soybean may benefit the breeding of extensively adapted soyeban cultivars.
     In the present study,four photoperiod-related genes were cloned in soybean using RACE,and seven homologues were obtained through BLAST search.Their expression patterns in our exprimental system,which is SD(blooming),LD(persistant vegetative growth),LD-SD(flower reversion),were detected using Real-Time PCR.To further detect the function of GmSOC1,a rapid and highly efficient transforamtion platform was established through Agrobacterium rhizogenes-mediated trnasformation of Lotus corniculatus.Transgenic GmSOC1 L.corniculatus was obtained and its function was investigated. The detailed results were mentioned as follows:
     1.Four photoperiod-related genes in soybean were cloned,named GmCOL1、GmCOL2、GmCOL3 and GmSOC1,corresponding to proteins of 311,365,310 and 211 amino acids,respectively.The putative amino acid sequence of GmCOL1,GmCOL2 and GmCOL3 showed high similarity with MsCO-like and PsCO-like;the putative amino acid sequence of GmSOC1 showed 70%similarity with AtAGL20,and is a member of MADS-box gene family.
     2.A suitable internal control makes gene expression results from Real-Time PCR more reliable. We performed a systematic study among ten selected housekeeping genes to validate the most suitable internal control in soybean by Real-time PCR.GmELF1B showed relatively constant expression pattern in the photoperiod response of soybean,and theffore was selected as an internal control in the gene expression studies of photoperiod in soybean.
     3.The expression patterns of 11 photoperiod-related genes were detected during the flower induction of ZGDD,a photoperiod sensitive cultivar.The results indicated that all of them were expressed under SD or LD conditions and the difference is that they were expressed in different abundance and following different rules.They were not specifically induced by SD condition and LD condition also induced their expression at a given stage.
     4.The expression patterns of the 11 genes were also detected in the SAM of cultivars with different sensitivity to photoperiod and they were all expressed in HH27,a non-sensitive cultivar and ZGDD,a sensitive cultivar.However,the expression peak in HH27 appeared earlier than that in ZGDD, which coincides with the earlier flowering phenotype of HH27 in SD condition,while the peak value in ZGDD is much higher than that in HH27.
     5.The flowering process of ZGDD can be reversed when switching from LD to SD condition, resulting in reversed terminal raceme,short terminal raceme,and vegetative terminal.The expression patterns of photoperiod-related genes in the flower reversion of ZGDD were identified and it was found that,GmLFY-like and GmAP1-like,the homologues of meristem identity genes LFY and AP1 showed intermediate expression patterns among SD,LD and SD-LD conditions,indicating that GmLFY-like and GmAP1-like may act as the meristem related genes in soybean.Genes involved in the up-stream photoperiodic pathway like GmGI-like and PEBP family genes expressed similarly with GmLFY-like and GmAP1-like in the early stage of flower reversion indicating they may participate in the early control of flower reversion in soybean.
     6.The photoperiod-related genes in soyean exhibit a rhythm of 24-h like their homologues in Arabidopsis.In SD and LD condition,GmGI has a similar expression rhythm with that in Arabidopsis in LD and is different from rice.The daily oscillation of GmCO-like genes varies from that in both AtCO and Hd1.However,the daily rhythm of GmCO-like in SD was similar with that of COL1 and COL2 in LD.The PEBP family genes showed a similar rhythm with rice in SD,and that in LD condition were different.All the results may indicate that the day length measurement in soybean is different from that both in Arabidopsis and Rice.
     7.A rapid and efficient platform for gene function investigation in legumes was developed, combining the simplicity and high efficiency of the Lotus corniculatus cultivar Superroot regeneration system and the availability of Agrobacterium rhizogenes-mediated transformation.Transgenic L. corniculatus plants were obtained in two and a half months and identified by molecular analysis.This system was improved by validating some parameters influencing the transformation frequency,which could reach 92%based on GUS detection.As proof of concept,transgenic Superroot plants overexpressing TaNHX2,which encodes an Na~+/H~+ antiporter,were gained and shown to have increased salt tolerance to salt stress.Transgenic Superroot plants overexpressing GmSOC1 were also obtained and they showed earlier flowering than control,indicating GmSOC1 acted as a floral inducer. It also suggested that this gene function-investigating platform could be used for antibiotic biology and developmental biology.
引文
1.Komeda Y:Genetic regulation of time to flower in Arabidopsis thaliana.Annu Rev Plant Biol 2004,55(1):521-535.
    2.Garner W,Allard H:Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants.JAgric Res 1920,18:553-606.
    3.Bu'nning E:Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion.Ber Dtsch Bot Ges 1936,54:590-607.
    4.Pittendrigh C,Minis D:The entrainment of circadian oscillations by light and their role as photoperiodic clocks.Am Nat 1964,108:261-195.
    5.Hayama R,Coupland G:The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice.Plant physiology 2004,135(2):677-684.
    6.Vaz-Nunes M,Saunders D:Photoperiodic time measurement in insects:a review of clock models.J Biol Rhythms 1999,14:84-104.
    7.Wagner D,Quail P:Mutational analysis of phytochrome B identifies a small COOH- terminal - domain region critical for regulatory activity.PNAS 1995,92(19):8596-8600.
    8.Briggs W,Huala E:Blue-light photoreceptors in higher plants.Annu Rev Cell Dev Biol 1999,15:33-62.
    9.Cashmore A,Jarillo J:Cryptochromes:blue light receptors for plants and animals.Science 1999,284:760-765.
    10.Todd M,Yang H,Yu X,Parikh D,Cheng Y,Dolan S,Lin C:Regulation of photoperiodic flowering by Arabidopsis photoreceptors.Nature 2003,298:780-785.
    11.Dunlap J:Molecular bases for circadian clocks.Cell 1999,96:271-190.
    12.Harmer S,Panda S,Kay S:Molecular basis of circadian rhythms.Annu Rev Cell Dev Biol 2001,17:215-253.
    13.Park D,Somers D,Kim Y,Choy Y,Lim H,Soh M,Kim H,Kay S,Nam H:Control of circadian rhythms and photoperiodc flowering by the Arabidopsis GIGANTEA gene.Science 1999,285:1579-1582.
    14.Putterill J,Robson F,Lee K,Simon R,Coupland G:The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.Cell 1995,80:847-857.
    15.Ledger S,Strayer C,Ashton F,Kay S,Putterill J:Analysis of the function of two circadian-regulated CONSTANS-LIKE genes.Plant J 2001,26:15-22.
    16.Samach A,Onouchi H,Gold S,Ditta G,Schwarz-Sommer Z,Yanofsky M,Coupland G:Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.Science 2000,288:1613-1616.
    17.Suarez-Lopez P,Wheatley K,Robson F,Onouchi H,Valverde F,Coupland G:CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.Nature 2001,410:1116-1120.
    18.Millar A,Carre I,Strayer C,Chua N,Kay S:Circadian clock mutants in Arabidopsis identified by luciferase imaging.Science 1995,267:1161-1163.
    19.Guo H,Yang H,Mockler T,Lin C:Regulation of flowering time by Arabidopsis photoreceptors. 279 1998:1360-1363.
    20.Yanovsky M,Kay S:Molecular basis of seasonal time measurement in Arabidopsis.Nature 2002,419:308-312.
    21.Valverde F,Mouradov A,Soppe W,Ravenscroft D,Samach A,Coupland G,:Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.Science 2004,303:1003-1006.
    22.Imaizumi T,Tran H,Swartz T,Briggs W,Kay S:FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature 2003,426:302-306.
    23.Nelson D,Lasswell J,Rogg L,Cohen M,Barrel B:FKF1,a clock controlled gene that regulates the transition to flowering in Arabidopsis.Cell 2000,101:331-340.
    24.Moon J,Lee H,Kim M,Lee I:Analysis of flowering pathway integrators in Arabidopsis.Plant Cell Physiol 2005,46(2):292-299.
    25.Parcy F:Flowering:a time for integration.The International journal of developmental biology 2005,49(5-6):585-593.
    26.Zeevaart J:Florigen coming of age after 70 years.Plant Cell,2006,18:1783-1789.
    27.Knott J:Effect of localized photoperiod on spinach.Proc Am Soc Hortic Sc 1934,31:152-154.
    28.Chailakhyan M:On the hormonal theory of plant development.Dokl Acad Sci USSR 1936,12:443-447.
    29.Huang T,B(o|¨)hlenius H,Eriksson S,Parcy F,Nilsson.O:The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.Science 2005,309:1694-1696.
    30.Corbesier L,Vincent C,Jang S,Fornara F,Fan Q,Searle I,Giakountis A,Farrona S,Gissot L,Turnbull C et al:FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis.Science 2007,316(5827):1030-1033.
    31.Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamaguchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T:FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science 2005,309(5737):1052-1056.
    32.Wigge PA,Kim MC,Jaeger KE,Busch W,Schmid M,Lohmann JU,Weigel D:Integration of spatial and temporal information during floral induction in Arabidopsis.Science 2005,309(5737):1056-1059.
    33.Yano M,Katayose Y,Ashikari M,Yamanouchi U,Monna L,Fuse T,Baba T,Yamarnoto K,Umehara Y,Nagamura Y et al:Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell 2000,12:2473-2484.
    34.Liu J,Yu J,McIntosh L,Kende H,Zeevaart J:Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering.Plant physiology 2001,125:1821-1830.
    35.Griffiths S,Dunford R,Coupland G,Laurie D:The evolution of CONSTANS-like gene families in barley,rice,and Arabidopsis.Plant physiology 2003,131:1855-1867.
    36.Takahashi Y,Shomura A,Sasaki T,Yano M:Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA 2001,98:7922-7927.
    37.Kojima S,Takahashi Y,Kobayashi Y,Monna L,Sasaki T,Araki T,Yano M:Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions.Plant Cell Physiol 2002,43:1096-1105.
    38.Izawa T,Oikawa T,Tokutomi S,Okuno K,Shimamoto K:Phytochromes confer the photoperiodic control of flowering in rice(a shortday plant).Plant J 2000,22:391-399.
    39.Hayama R,Izawa T,Shimamoto K:Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method.Plant Cell Physiol 2002,43:494-504.
    40.Hayama R,Yokoi S,Tamaki S,Yano M,Shimamoto K:Adaptation of photoperiodic control pathways produces short-day flowering in rice.Nature 2003,422:719-722.
    41.Izawa T,Takahashi Y,Yano M:Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis.Curr Opin Plant Biol 2003,6:113-120.
    42.Izawa T,Oikawa T,Sugiyama N,Tanisaka T,Yano M,Shimamoto K:Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice.Genes &development 2002,16:2006-2020.
    43.Garner W,Allard H:Further studies in photoperiodism,the response of the plant to relat ive length of day and night..J A gric Res 1923,23(2):871-920.
    44.Sun H,Liu Y,Hu P,Hou W,Wu C,Cao D,Han T:Cloning and characterization of GmBFT,a soybean BFT homologue encoding the phosphatidylethanolamine-binding protein.Mitochondrial DNA 2008,(accepted).
    45.LI X,Wu C,Ma Q,Zhang S,Li C,Zhang X,Han T:Morphology and Anatomy of the Diferentiation of Flower Buds and the Process of Flowering Reversion in Soybean cv.Zigongdongdou.31 2005,11:1437-1442.
    46.Wu C,Ma Q,Yam K-M,Cheung M-Y,Xu Y,Han T,Lam H-M,Chong K:In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean(Glycine max[L.]Merr.)flowering reversion system.Planta 2006,223:725-735.
    47.Battey N,Lyndon R:Reversion of flowering.Bot Rev 1990,56:162-189.
    48.韩天富,盖钧镒,王金陵,周东兴:大豆开花逆转现象的发现.作物学报1998,24:168-171.
    49.韩天富,王金陵:大豆开花后光周期反应的研究.植物学报1995,37:863-869.
    50.Thomas B,Vince-Prue D:Photoperiodism in Plants.Academic Press,San Diego,CA,USA 1997:63-84.
    51.Washburn C,Thomas J:Reversion of flowering in Glycine max(Fabaceae).Am J Bot 2000,87:1425-1438.
    52.Song Q,Marek L,Shoemaker R,Lark K,Concibido V,Delannay X,Specht J,Cregan P:A new integrated genetic linkage map of the soybean.Theor Appl Genet 2004,109:122-128.
    53.Shoemaker R,Keim P,Vodkin L,Retzel E,Clifton S,Waterston R,Smoller D,Coryell V,Khanna A,Erpelding J et al:A compilation of soybean ESTs:generation and analysis.Genome 2002,45:329-338.
    54.Cheng T,Saka H,Dinh.TV-:Plant regeneration from soybean cotyledonary node segments in culture.Plant Sci Lett 1980,19:912-991.
    55.Kartha K,Pahl K,Leung N,Mroginski L:Plant regeneration from meristems of grain legumes:soybean,cowpean,peanut,chickpea and bean.Can J Bot 1981,59:16712-16791.
    56.Barwale U,Kerns H,Widholm J:Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis.Planta 1986,67:4732-4811.
    57.Wright M,Williams M,Pierson P,Carnes M:Initiation and propagation of Glycine max L.Merr.:Plants from tissue-cultured epicotyls.Plant Cell,Tissue and Organ Culture 1987,8:832-901.
    58.Hinchee M,Ward DC-,Newell C,McDonnell R,Sato S,Gasser C,Fischoff D,Re D,Fraley R,Horsch R:Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer BIO TECHNOL 1988,6:9152-9221.
    59.McCabe D,Swain W,Martinell B,Christou.P:Stable transformation of soybean(Glycine max)by particle acceleration.BIO TECHNOL 1988,6:9232-9261.
    60.Kim J,LaMotte C,E H:Plant regeneration In Vitro from primary leaf nodes of soybean (Glycine max ) seedlings.J Plant Physiol 1990,136 6642-6691.
    61.Di R,Purcell V,Collins G,Ghabrial S:Production of transgenic soybean lines expreing the bean pod mottle virus coat protein precursor gene.Plant cell reports 1996,15:7462-7501.
    62.Christou P:Soybean transformation by electric discharge particle acceleration.Physiol Plant 1990 79:2102-2121.
    63.Wei Z,Xu Z:Plant regeneration from protoplasts of soybean(Glycine max L.) Plant cell reports 1988,7:3482-3511.
    64.Dhir S,Dhir S,Widholm J:Regeneration of fertile plants from protoplasts of soybean(Glycine max L.Merr.):genotypic differences in culture response.Plant cell reports 1992,11:2852-2891.
    65.Christianson M,Warnick D,Carlson P:A morpho-genetically competent soybean suspension culture Science 1983,222:6322-6341.
    66.Ranch J,Oglesby L,Zielinski A:Plant regeneration from embryo-derived tissue cultures of soybean by somatic embryogenesis.In Vitro Cell Dev Biol 1985,21:6532-6571.
    67.Finer J,Nagasawa A:Development of an embryogenic susbension culture of soybean[Glycine max(L.) Merrill]Plant Cell Tissue Organ Cult 1988 15:1252-1261.
    68.Klein T,Wolf E,Wu R,Sanford J:High velocity microprojectiles for delivering nucleic acids into living cells.Nature 1987,327(7):70-73.
    69.Sato S,Newell C,Kolacz K,Tredo L,Finer J,Hinchee M:Stable transformation via particle bombardment in two different soybean regeneration systems.Plant cell reports 1993,12:408-413.
    70.Moore P,Moore A,Collins G:Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons.Plant cell reports 1994,13:556-560.
    71.Hinchee M,Connor-Ward D,Newell C,McDonnell R,Sato S,Gasser C,Fischhoff D,Re D,Fraley R,Horsch R:Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer.Biotechnology 1988,6:915-922.
    72.Clemente T,La Valle B,Howe A,Conner-Wardb D,Rozmanb R,Hunterb P,Broylesb D,Kastenb D,Hincheeb M:Progeny analysis of glyphosate-selected transgenic soybeans derived from Agrobacterium-mediated transformation.Crop science 2000,40:797-803.
    73.Zhang Z,Xing A,Staswick P,Clemente T:The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean.Plant Cell Tiss Org Cult 1999,56:37-46.
    74.Olthoft P,Somer D:L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells.Plant cell reports 2001,20:706-711.
    75.Olhoft PM,Flagel LE,Donovan CM,Somers DA:Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.Planta 2003,216(5):723-735.
    76.Ko TS,Lee S,Krasnyanski S,Korban SS:Two critical factors are required for efficient transformation of multiple soybean cultivars:Agrobacterium strain and orientation of immature cotyledonary explant.TAG Theoretical and applied genetics 2003,107(3):439-447.
    77.De Buck S,Jacobs A,Van Montagu M,Depicker A:Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts.Mol Plant Microbe Interact 1998,ll(6):449-457.
    78.Liu SJ,Wei ZM,Huang JQ:The effect of co-cultivation and selection parameters on Agrobactenum -mediated transformation of Chinese soybean varieties.Plant cell reports 2008,27(3):489-498.
    79.Chen SC,Liu HW,Lee KT,Yamakawa T:High-efficiency Agrobactenum rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.Plant cell reports 2007,26(1):29-37.
    80.Trick H,Dinkins R,Santarem E,Di R,Samoyolov V,Meurer C,Walker D,Parrott W,Finer J,Collins G:Recent advances in soybean transformation.Plant Tissue Culture and Biotechnology 1997,9:9-26.
    81.Olhoft P,Flagel L,Donovan C,Somers D:Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.Planta 2003,216(5):723-735.
    82.Okpuzor J,Omidiji O:Peroxidase polyphenol oxidase association in Dioscorea esculenta.Z Naturforsch 1998,53C:957-960.
    83.Stewart CN,Jr.,Adang MJ,All JN,Boerma HR,Cardineau G,Tucker D,Parrott WA:Genetic transformation,recovery,and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene.Plant Physiol 1996,112(1):121-129.
    84.AragAo F,Sarokin L,Vianna G,Rech E:Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merrill]plants at a high frequency.TheroAppl Genet 2000,101:1-6.
    85.Hildebrand E:Life history of the hairy-root organism in relation to its pathogenesis on nursery apple trees.J Agric Res 1934,48:857-885.
    86.Chilton M-D,Tepfer DA,Petit A,David C,Casse-Delbart F,Tempe J:Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells.Nature 1982,295(5848):432-434.
    87.Kereszt A,Li D,Indrasumunar A,Nguyen CD,Nontachaiyapoom S,Kinkema M,Gresshoff PM:Agrobacterium rhizogenes-mediated transformation of soybean to study root biology.Nature protocols 2007,2(4):948-952.
    88.Petit A,David C,Dahl G,Ellis J,Guyon P,Casse-Delbart F,Tempe J:Futher extention of the opine concept :plasmids in Agrobacterium rhizogenes cooperate for opine degradation.Mol Gen Genet 1983,190:204-214.
    89.McCullen CA,Binns AN:Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer.Annual review of cell and developmental biology 2006,22:101-127.
    90.Willmitzer L,Sanchez-Serrano J,Buschfeld E,Schell J:DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue.Mol Gen Genet 1982,186:16-22.
    91.Christey M:Use of Ri-mediated transformation for production of transgenic plants.In Vitro Cell Dev Biol Plant 2001,37:687-700.
    92.Christey MC,Braun RH:Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation.Methods in molecular biology (Clifton,NJ 2005,286:47-60.
    93.Waditee R,Hibino T,Nakamura T,Incharoensakdi A,Takabe T:Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium,making it capable of growth in sea water.PNAS 2002,99(6):4109-4114.
    94.Giri A,Narasu M:Transgenic hairy roots.Recent trends and applications.Biotechnol Adv 2000, 18:1-22.
    95.Hu Z,M Du:Hairy root and its application in plant genetic engineering.J Int Plant Biol 2006,48:121-127.
    96.Georgiev M,Pavlov A,Bley T:Hairy root type plant in vitro systems as sources of bioactive substances.Appl Microbiol Biotechnol Adv 2007,74:1175-1185.
    97.Estrada-Navarrete G,Alvarado-Affantranger X,Olivares JE,Diaz-Camino C,Santana O,Murillo E,Guillen G,Sanchez-Guevara N,Acosta J,Quinlo C et ai.Agrobacterium rhizogenes transformation of the Phaseolus spp.:a tool for functional genomics.Mol Plant Microbe Interact 2006,19(12):1385-1393.
    98.Simpson R,Spielmann A,Margossian L,McKnight T:A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes.Plant Mol Biol 1986,6:403-415.
    99.Stiller J,Martirani L,Tuppale S,Chian R-J,Chiurazzi M,Gresshoff PM:High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonkus.Journal of experimental botany 1997,48(312):1357-1365.
    100.Tomilov A,Tomilova N,Yoder JI:Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence.Planta 2007,225(5):1059-1071.
    101.Lambert C,Tepfer D:Use of Agrobacterium rhizogenes to creste chimeric apple trees through genetic grafting.BioTechnology 1991,9:80-83.
    102.Hansen J,Jurgensen J,Stougaard J,Marcker K:Hairy roots- a short cut to transgenic root nodules.Plant cell reports 1989,8:12-15.
    103.Collier R,Fuchs B,Walter N,Kevin Lutke W,Taylor CG:Ex vitro composite plants:an inexpensive,rapid method for root biology.Plant J 2005,43(3):449-457.
    104.Taylor CG,Fuchs B,Collier R,Lutke WK:Generation of composite plants using Agrobacterium rhizogenes.Methods in molecular biology (Clifton,NJ 2006,343:155-167.
    105.Alpizar E,Dechamp E,Espeout S,Royer M,Lecouls AC,Nicole M,Bertrand B,Lashermes P,Etienne H:Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots.Plant cell reports 2006,25:959-967.
    106.Subramanian S,Stacey G,Yu O:Distinct,crucial roles of flavonoids during legume nodulation.Trends Plant Sci 2007,12:282-285.
    107.Narayanan R,Atz R,Denny R,Young N,Somers D:Expression of soybean cyst nematode resistance in transgenic hairy roots of soybean.Crop science 1999,39:1680-1686.
    108.Hwang C,Bhakta A,Truesdell G,Pudlo W,Williamson V:Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death.The Plant cell 2000,12:1319-1329.
    109.Han T,Wu C,Tong Z,Mentreddy R,Tan K,Gai J:Postflowering photoperiod regulates vegetative growth and reproductive development of soybean.Environmental and Experimental Botany 2006,55:120-129.
    110.Liu X,Gorovsky M:Mapping the 5' and 3' ends of Tetrahymena thermophila mRNA using RNA ligase mediated amplication of cDNA ends.Nucleic Acids Res 1993,21(21):4954-4960.
    111.Borden K:RING fingers and B-boxes:zinc-binding protein-protein interaction domains.Biochem Cell Biol 1998,76:351-358.
    112.Robson F,Costa M,Hepworth S,Vizir I,Pineiro M,Reeves P,Putterill J,Coupland G:Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.Plant J 2001,28:619-631.
    113.Wu C,Ma Q,Yam KM,Cheung MY,Xu Y,Han T,Lam HM,Chong K:In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.]Merr.) flowering reversion system.Planta 2006,223(4):725-735.
    114.Brunner AM,Yakovlev I A,Strauss SH:Validating internal controls for quantitative plant gene expression studies.BMC plant biology 2004,4:14.
    115.Drosten C,Panning M,Drexler JF,Hansel F,Pedroso C,Yeats J,de Souza Luna LK,Samuel M,Liedigk B,Lippert U et al:Ultrasensitive monitoring of HIV-1 viral load by a low-cost real-time reverse transcription-PCR assay with internal control for the 5' long terminal repeat domain.Clinical chemistry 2006,52(7):1258-1266.
    116.Di Trani L,Bedini B,Donatelli I,Campitelli L,Chiappini B,De Marco MA,Delogu M,Buonavoglia C,Vaccari G:A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control.BMC infectious diseases 2006,6:87.
    117.Nicot N,Hausman JF,Hoffmann L,Evers D:Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.Journal of experimental botany 2005,56(421):2907-2914.
    118.Radonic A,Thulke S,Mackay IM,Landt O,Siegert W,Nitsche A:Guideline to reference gene selection for quantitative real-time PCR.Biochemical and biophysical research communications2004,313(4):856-862.
    119.Vandesompele J,De Preter K,Pattyn F,Poppe B,Van Roy N,De Paepe A,Speleman F:Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multipleinternal control genes.Genome biology 2002,3(7):RESEARCH0034.
    120.De Ketelaere A,Goossens K,Peelman L,Burvenich C:Technical note:validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes.Journal of dairy science 2006,89(10):4066-4069.
    121.Silver N,Best S,Jiang J,Thein SL:Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR.BMC molecular biology 2006,7:33.
    122.Ginzinger DG:Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream.Experimental hematology 2002,30(6):503-512.
    123.de Kok JB,Roelofs RW,Giesendorf BA,Pennings JL,Waas ET,Feuth T,Swinkels DW,Span PN:Normalization of gene expression measurements in tumor tissues:comparison of 13 endogenous control genes.Laboratory investigation;a journal of technical methods and pathology 2005,85(1):154-159.
    124.Thellin O,Zorzi W,Lakaye B,De Borman B,Coumans B,Hennen G,Grisar T,Igout A,Heinen E:Housekeeping genes as internal standards:use and limits.Journal of biotechnology 1999,75(2-3):291-295.
    125.Schmittgen TD,Zakrajsek BA:Effect of experimental treatment on housekeeping gene expression:validation by real-time,quantitative RT-PCR.Journal of biochemical and biophysical methods 2000,46(1-2):69-81.
    126.Tricarico C,Pinzani P,Bianchi S,Paglierani M,Distante V,Pazzagli M,Bustin SA,Orlando C:Quantitative real-time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.Analytical biochemistry 2002,309(2):293-300.
    127.Singh R,Green MR:Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase.Science(New York,NY 1993,259(5093):365-368.
    128.Ishitani R,Sunaga K,Hirano A,Saunders P,Katsube N,Chuang DM:Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture.Journal of neurochemistry 1996,66(3):928-935.
    129.Andersen CL,Jensen JL,Orntoft TF:Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization,applied to bladder and colon cancer data sets.Cancer research 2004,64(15):5245-5250.
    130.Walker NJ:Tech.Sight.A technique whose time has come.Science(New York,NY 2002,296(5567):557-559.
    131.Ohl F,Jung M,Xu C,Stephan C,Rabien A,Burkhardt M,Nitsche A,Kristiansen G,Loening SA,Radonic A et al:Gene expression studies in prostate cancer tissue:which reference gene should be selected for normalization? Journal of molecular medicine(Berlin,Germany) 2005,83(12):1014-1024.
    132.Jain M,Nijhawan A,Tyagi AK,Khurana JP:Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR.Biochemical and biophysical research communications 2006,345(2):646-651.
    133.Steinau M,Rajeevan MS,Unger ER:DNA and RNA references for qRT-PCR assays in exfoliated cervical cells.J Mol Diagn 2006,8(1):113-118.
    134.Reid KE,Olsson N,Schlosser J,Peng F,Lund ST:An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development.BMC plant biology 2006,6:27.
    135.Czechowski T,Stitt M,Altmann T,Udvardi MK,Scheible WR:Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.Plant physiology 2005,139(1):5-17.
    136.Hochstrasser M:Evolution and function of ubiquitin-like protein-conjugation systems.Nature cell biology 2000,2(8):E153-157.
    137.Filby AL,Tyler CR:Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish.BMC molecular biology 2007,8:10.
    138.Han T,Wang J:Studies on the post-flowering photoperiodic responses in soybean.Acta Botanica Sinica 1995,37(11):863-869.
    139.Han T,Wu C,Tong Z,Mentreddy RS,Tan K,Gai J:Postflowering photoperiod regulates vegetative growth and reproductive development of soybean.Enviromental and Experimental Botany 2006,55:120-129.
    140.Bernier G:The control of floral evocation and morphogenesis.Ann Rev Plant Physiol Plant Mol Biol 1988,39:175-219.
    141.Pouteau S,Nicholas D,Tooke F,Coen E,Battey N:The induction and maintenance of flowering in Impatiens.Development 1997,124:3343-3351.
    142.吴存祥,韩天富:植物开花逆转研究进展.植物学通报2002,19(5):523-529.
    143.Coen E:The role of homeotic genesinflower developmentan and evolution.Ann Rev Plant Physiol Plant Mol Biol 1991,42:241-279.
    144.Ma H:To be or not to be,a flower control of floral meristem identity.Treads in Genet 1998, 14:26-32.
    145.Young ND,Mudge J,Ellis TH:Legume genomes:more than peas in a pod.Current opinion in plant biology 2003,6(2):199-204.
    146.Stark A,Madar Z:Phytoestrogens:a review of recent findings.J Pediatr Endocrinol Metab 2002,15(5):561-572.
    147.Graham PH,Vance CP:Legumes:importance and constraints to greater use.Plant physiology 2003,131(3):872-877.
    148.Pereira A:A transgenic perspective on plant functional genomics.Transgenic research 2000,9(4-5):245-260;discussion 243.
    149.Somers DA,Samac DA,Olhoft PM:Recent advances in legume transformation.Plant physiology 2003,131(3):892-899.
    150.Lee MH,Yoon ES,Jeong JH,Choi YE:Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters.Plant cell reports 2004,22(11):822-827.
    151.Crane C,Wright E,Dixon RA,Wang ZY:Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots.Planta 2006,223(6):1344-1354.
    152.Akashi R,Hoffmann-Tsay S-S,Hoffmann F:Selection of a super-growing legume root culture that permits controlled switching between root cloning and direct embryogenesis.Theor Appl Genet 1998,96:758-764.
    153.Akashi R,Kawano T,Hashiguchi M,Kutsuna Y,Hoffmann-Tsay S-S,Hoffmann F:Super roots in Lotus corniculatus:A unique tissue culture and regeneration system in a legume species.Plant and Soil 2003,255:27-33.
    154.Tanaka H,Toyama J,Hashiguchi M,Kutsuna Y,Tsuruta S,Akashi P,,Hoffmann F:Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation.Journal of plant physiology 2008,165(12):1313-1316.
    155.Yu JN,Huang J,Wang ZN,Zhang JS,Chen SY:An Na~+/H~+ antiporter gene from wheat plays an important role in stress tolerance.Journal of biosciences 2007,32(6):1153-1161.
    156.Kim KH,Lee YH,Kim D,Park YH,Lee JY,Hwang YS,Kim YH:Agrobacterium-mediated genetic transformation of Perilla frutescens.Plant cell reports 2004,23(6):386-390.
    157.Barik DP,Mohapatra U,Chand PK:Transgenic grasspea(Lathyrus sativus L.):factors influencing agrobacterium-mediated transformation and regeneration.Plant cell reports 2005,24(9):523-531.
    158.Chen L,Zhang B,Xu Z:Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat(Fagopyrum esculentum).Transgenic research 2008,17(1):121-132.
    159.Vickers CE,Schenk PM,Li D,Mullineaux PM,Gresshoff PM:pGFPGUSPlus,a new binary vector for gene expression studies and optimising transformation systems in plants.Biotechnology letters 2007,29(11):1793-1796.
    160.Chabaud M,de Carvalho-Niebel F,Barker DG:Efficient transformation of Medicago truncatula cv.Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1.Plant cell reports 2003,22(1):46-51.
    161.Geier T,Sangwan RS:Histology and chimerai segregation reveal cell-specific differences in the competence for shoot regeneration and Agrobacterium-mediated transformation in Kohleria internode explants.Plant cell reports 1996,15:386-390.
    162.Baron C,Domke N,Beinhofer M,Hapfelmeier S:Elevated temperature differentially affects virulence,VirB protein accumulation,and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains.Journal of bacteriology 2001,183(23):6852-6861.
    163.Cao D,Hou W,Song S,Sun H,Wu C,Gao Y,Han T:Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean.Plant Cell Tissue Organ Cult 2008(DOI 10.1007/s11240-008-9458-x).
    164.Kar S,Johnson TM,Nayak P,Sen SK:Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea(Cicer arietinun L.).Plant cell reports 1996,16:32-37.
    165.Husnain T,Malik T,Riazuddian S,Gordon MP:Studies on expression of marker genes in chickpea.Plant Cell Tissue Organ Culture 1997,49:7-16.
    166.Karthikeyan AS,Sarma KS,Veluthambi K:Agrobacterium tumefaciens mediated transformation of Vigna mungo(L.) Hepper.Plant cell reports 1996,15:328-331.
    167.Fullner KJ,Nester EW:Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens.Journal of bacteriology 1996,178(6):1498-1504.
    168.Bercetche J,Chriqui D,Adam S,David C:Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes(strains 1855,2659 and 8198) on carrot,pea and tobacco.Plant Sci 1987,52:195-210.
    169.Choi PS,Kim YD,Choi KM,Chung HJ,Choi DW,Liu JR:Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus.Plant cell reports 2004,22(11):828-831.
    170.Tomes DT:A tissue culture procedure for propagation and maintenance of Lotus corniculatus genotypes.Canadian Journal of Botany 1979,57:137-140.
    171.Lee H,Suh SS,Park E,Cho E,Ahn JH,Kim SG,Lee JS,Kwon YM,Lee I:The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.Genes & development 2000,14(18):2366-2376.
    172.Lee S,Kim J,Han JJ,Han MJ,An G:Functional analyses of the flowering time gene OsMADS50,the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice.Plant J 2004,38(5):754-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700