RNA激活介导E-钙粘蛋白上调表达的抗肿瘤作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分小激活RNA的设计与筛选
     目的基于小激活RNAs (saRNAs)的肿瘤治疗策略,为p12、p27、p57三个抑癌基因筛选出具有激活功能并相对高效的候选saRNAs分子。方法利用国外文献提供的saRNA设计规则,为每个靶基因设计2~3对候选saRNA分子,对照组双链RNA设计成与人基因组序列非同源。将上述合成的候选saRNAs分子转染膀胱癌5637、T24细胞系或前列腺癌PC3、DU145细胞系,每一种细胞系均包括对照组(转染对照组saRNAs)和saRNAs组(转染候选saRNAs)。利用RT-PCR法检测转染后靶基因mRNA表达水平,根据靶基因表达水平筛选出功能性saRNAs,我们将“功能性saRNAs"定义为使靶基因mRNA表达量增加至少两倍(RT-PCR法)。
     结果转染各候选saRNAs后各靶基因1mRNA的表达水平相对于对照组无明显增强,没有达到“功能性saRNAs"的标准。
     结论saRNAs的筛选还比较困难,其设计规则有待进一步完善。
     第二部分E-钙粘蛋白小激活RNA的抗肿瘤作用
     目的评价已证实的E-钙粘蛋白(E-cadherin)小激活RNA (dsEcad-215)对膀胱癌5637细胞及前列腺癌PC3细胞的肿瘤抑制作用。
     方法将与E-cadherin基因启动子DNA序列互补的双链RNA分子(dsEcad-215)分别转染入5637细胞和PC3细胞中,采用RT-PCR法及Western blotting法检测E-cadherin在mRNA及蛋白水平上的表达;采用Transwell小室法及划痕法检测dsEcad-215转染后肿瘤细胞侵袭、迁移能力的改变。
     结果dsEcad-215转染5637细胞和PC3细胞72 h后E-cadherin表达显著上调,RNAa有效;5637细胞和PC3细胞对细胞外基质的侵袭能力及迁移能力也明显下降。
     结论RNAa技术激活E-cadherin基因表达并抑制膀胱癌及前列腺癌细胞侵袭、转移等恶性行为,可作为恶性肿瘤基因治疗的一种有效手段。
     第三部分小激活RNA上调E-钙粘蛋白表达的机制研究
     目的探讨dsEcad-215上调E-cadherin基因表达的相关分子机制
     方法采用基因特异性RT-PCR检测5637细胞E-cadherin启动子相关非编码正义或反义RNA的表达,以及dsEcad-215转染后其表达量的变化;利用染色质免疫共沉淀技术检测dsEcad-215转染后E-cadherin启动子区域相关组蛋白修饰状态的变化;采用RT-PCR法检测dsEcad-215作用后干扰素通路OAS1及OAS3基因表达的变化。
     结果E-cadherin启动子区域存在非编码正义和反义RNA; dsEcad-215转染后E-cadherin启动子相关非编码反义和反义RNA的表达未发生明显变化,E-cadherin启动子区域组蛋白3赖氨酸9(H3K9)和组蛋白3赖氨酸4(H3K4)二甲基化的水平明显降低,干扰素通路中OAS1和OAS3基因的表达没有明显升高。
     结论dsEcad-215转染5637细胞后并没有影响非编码正义和反义RNA的表达水平,而可能与其结合后改变其空间结构和功能从而影响组蛋白甲基化的修饰,如H3K9和H3K4两个位点二甲基化水平减弱而激活转录。dsEcad-215没有激活干扰素途径而诱发非特异性反应。
     第四部分小激活RNA上调E-钙粘蛋白表达抑制肿瘤细胞侵袭及迁移的机制研究
     目的探讨E-cadherin上调表达抑制肿瘤细胞侵袭、迁移的相关分子机制
     方法利用Western blot检测Ecad-215转染后β-catenin蛋白在膀胱癌5637细胞及前列腺癌PC3细胞胞膜、胞浆及胞核中表达变化;利用细胞免疫荧光法进一步验证β-catenin蛋白在细胞内的重新分布;利用RT-PCR法检测mmp-7及cyclin D1基因mRNA的表达水平。
     结果dsEcad-215转染5637及PC3细胞72h后,细胞质和胞核β-catenin蛋白表达水平降低,胞膜β-catenin蛋白表达水平升高,而总的蛋白表达水平不变;细胞免疫荧光实验进一步证实dsEcad-215作用后P-catenin蛋白从胞质、胞核重新分布于细胞膜上。mmp-7和cycylin D1基因mRNA表达水平降低。
     结论dsEcad-215上调E-cadherin表达,引起β-catenin蛋白从胞核胞浆转移至胞膜,导致其靶基因转录活性降低,从而抑制肿瘤细胞侵袭。
Part 1 The design and screening of small activating RNA
     Aim To screen the relatively efficient candidate small activating RNAs (saRNAs) molecules that can activate the target tumor-suppressor genes including p12, p27 and p57.
     Materials and methods Based on the design rules provided by the foreign literature, we designed 2-3 pairs of small double-stranded RNA (dsRNA) for each target gene, and the control dsRNA is non-homologous to the whole human genome. The candidate dsRNAs were transfected into 5637 or T24 bladder cancer cell lines and PC3 or DU145 prostate cancer cell lines. The expression of target gene was determined with RT-PCR measuring the mRNA levels. The functional saRNA which defined as to increase target gene expression twice was selected.
     Results All the candidate dsRNAs did not activate the target gene significantly and fulfill the standard of functional saRNAs.
     Conclusion It is difficult to screen out the functional saRNAs and the design rules of saRNA should be revised.
     Part 2 The antitumor effects of E-cadherin activation by saRNA
     Aim To evaluate the antitumor effects of confirmed functional saRNA (dsEcad-215) on 5637 bladder cancer cells and PC3 prostate cancer cells.
     Materials and methods dsEcad-215 which is complementary to the E-cadherin promoter was transfected into 5637 and PC3 cells for 72 h. The mRNA and protein expression levels of E-cadherin were determined with RT-PCR and Western blotting. The invasive and migrative ability of tumor cells were measured using Transwell chamber and scratch test.
     Results The expression of E-cadherin increased after transfection of dsEcad-215, suggesting that the RNAa was effective. The invasive ability to extracellular matrix and migration capacity of 5637 and PC3 cells decreased significantly.
     Conclusion Induction of E-cadherin expression by saRNA leads to suppression of migration and invasion of 5637 and PC3 cells in vitro.The RNAa could be used as an effective tool of gene therapy against cancer.
     Part 3 The mechanism of up-regulation of E-cadherin by saRNA
     Aim To explore the molecular mechanisms of up-regulation of E-cadherin by RNA activation.
     Materials and methods The E-cadherin promoter-associated non-coding sense or antisense RNA was detected with gene-specific RT-PCR. The histone modification status of E-cadherin promoter region after dsEcad-215 transfection was determined with chromatin immunoprecipitation. Using RT-PCR assay, the OAS1 and OAS3 expression which involved in interferon pathway were measured.
     Results Both promoter-associated non-coding sense and antisense RNAs were detected, and transfection of dsEcad-215 caused no change of expression. Chromatin immunoprecipitation demonstrated that loss of histone 3 dimethylation at lysine-9 and lysine-4 were associated with gene activation. dsEcad-215 did not induced the expression of OAS1 or OAS3.
     Conclusion Transfection with dsEcad-215 in 5637 cells did not affect the non-coding sense and antisense RNA expression levels. dsEcad-215 may bind to the non-coding RNAs, and changed its spatial structure and function thus affecting the modification of histone methylation, such as loss of H3K9 and H3K4 dimethylation levels, resulting in transcription activation. dsEcad-215 did not induced the interferon pathways.
     Part 4 The mechanism of inhibition of cell invasion and migration by E-cadherin activation
     Aim To investigate the molecular mechanisms of inhibition of cell invasion and migration by E-cadherin activation.
     Materials and methods The relocalization ofβ-catenin was determined by measuring its expression in cell membrane, cytoplasm and nuclei in PC3 cells. The immunofluorescence assay was used to validate the re-distribution ofβ-catenin. The mRNA expression levels of mmp7, and cyclin D1 were measured using RT-PCR.
     Results After transfection with dsEcad-215 for 72 h, there was a decrease in cytoplasmic and nuclearβ-catenin concentration, and an increase ofβ-catenin concentration in membrane fraction in PC3 cells treated with dsEcad-215 compared with control and mock groups, whereas totalβ-catenin in the cell homogenate was not affected. The immunofluorescence data further demonstrated that dsEcad-215 induced plasma membrane relocation ofβ-catenin. mmp7 and cyclinDl were downregulated by 72 h of exposure to 50 nM dsEcad-215 compared with control and mock groups.
     Conclusion Our study showed that upregulation of E-cadherin by saRNA caused the relocalization ofβ-catenin from cytoplasm and nucleus to the plasma membrane in PC3 cells, and then suppressed the transactivation of downstreamβ-catenin/TCF target genes, thus inhibited cell invasion and migration.
引文
1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391(6669),806-11.
    2. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006, 103(46),17337-42.
    3. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE and Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007,3(3),166-73.
    4. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R and Li LC. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther.2008,7(3),698-703.
    5. Whitson JM, Noonan EJ, Pookot D, Place RF and Dahiya R. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer.2009,125(2),446-52.
    6. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, et al. Up-regulation of p21 WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett.2008,265(2),206-14.
    1. Mattick JS. Challenging the dogma:the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays.2003,25(10),930-9.
    2. Mattick JS. RNA regulation:a new genetics? Nat Rev Genet.2004,5(4), 316-23.
    3. Costa FF. Non-coding RNAs:new players in eukaryotic biology. Gene.2005, 357(2),83-94.
    4. Morris KV, Chan SW, Jacobsen SE and Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science.2004, 305(5688),1289-92.
    5. Kuwabara T, Hsieh J, Nakashima K, Taira K and Gage FH. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell.2004,116(6),779-93.
    6. Jopling CL, Yi M, Lancaster AM, Lemon SM and Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science.2005, 309(5740),1577-81.
    7. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006, 103(46),17337-42.
    8. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE and Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007,3(3),166-73.
    9. Dykxhoorn DM, Palliser D and Lieberman J. The silent treatment:siRNAs as small molecule drugs. Gene Ther. 2006,13(6),541-52.
    10. Garber K. Genetics. Small RNAs reveal an activating side. Science.2006, 314(5800),741-2.
    11. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R and Li LC. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther. 2008,7(3),698-703.
    12. Whitson JM, Noonan EJ, Pookot D, Place RF and Dahiya R. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer.2009,125(2),446-52.
    13. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, et al. Up-regulation of p21 WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett.2008,265(2),206-14.
    14. Todd R, McBride J, Tsuji T, Donoff RB, Nagai M, Chou MY, et al. Deleted in oral cancer-1 (doc-1), a novel oral tumor suppressor gene. FASEB J.1995,9(13), 1362-70.
    15. Kohno Y, Patel V, Kim Y, Tsuji T, Chin BR, Sun M, et al. Apoptosis, proliferation and p12(doc-1) profiles in normal, dysplastic and malignant squamous epithelium of the Syrian hamster cheek pouch model. Oral Oncol. 2002,38(3),274-80.
    16. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell.1994,78(1),59-66.
    17. Rabbani F, Koppie TM, Charytonowicz E, Drobnjak M, Bochner BH and Cordon-Cardo C. Prognostic significance of p27Kip1 expression in bladder cancer. BJU Int.2007,100(2),259-63.
    18. Chu IM, Hengst L and Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer.2008, 8(4),253-67.
    19. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev.1995,9(6),650-62.
    20. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS and Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol.2004,22(3), 326-30.
    21. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, et al. RNAa is conserved in mammalian cells. PLoS One.5(1), e8848.
    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun MJ. Cancer statistics,2009. CA Cancer J Clin.2009,59(4),225-49.
    2. Pasin E, Josephson DY, Mitra AP, Cote RJ and Stein JP. Superficial bladder cancer:an update on etiology, molecular development, classification, and natural history. Rev Urol.2008,10(1),31-43.
    3. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006, 103(46),17337-42.
    4. Birchmeier W and Behrens J. Cadherin expression in carcinomas:role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta.1994,1198(1),11-26.
    5. Imao T, Koshida K, Endo Y, Uchibayashi T, Sasaki T and Namiki M. Dominant role of E-cadherin in the progression of bladder cancer. J Urol.1999,161(2), 692-8.
    6. Davies G, Jiang WG and Mason MD. E-cadherin and associated molecules in the invasion and progression of prostate cancer. Oncol Rep.1998,5(6),1567-76.
    7. Birchmeier W. E-cadherin as a tumor (invasion) suppressor gene. Bioessays. 1995,17(2),97-9.
    8. Lowy AM, Knight J and Groden J. Restoration of E-cadherin/beta-catenin expression in pancreatic cancer cells inhibits growth by induction of apoptosis. Surgery.2002,132(2),141-8.
    9. Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W and van Roy F. Genetic manipulation of · E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell.1991,66(1),107-19.
    10. Abal M, Llaurado M, Doll A, Monge M, Colas E, Gonzalez M, et al. Molecular determinants of invasion in endometrial cancer. Clin Transl Oncol.2007,9(5), 272-7.
    11. Liotta LA and Kohn E. Cancer invasion and metastases. JAMA.1990,263(8), 1123-6.
    12. Syrigos KN, Krausz T, Waxman J, Pandha H, Rowlinson-Busza G, Verne J, et al. E-cadherin expression in bladder cancer using formalin-fixed, paraffin-embedded tissues:correlation with histopathological grade, tumour stage and survival. Int J Cancer.1995,64(6),367-70.
    1. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006, 103(46),17337-42.
    2. Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol.2006,13(9),787-92.
    3. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008,15(8),842-8.
    4. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE and Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007,3(3),166-73.
    5. Younger ST, Pertsemlidis A and Corey DR. Predicting potential miRNA target sites within gene promoters. Bioorg Med Chem Lett.2009,19(14),3791-4.
    6. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al. Antisense transcription in the mammalian transcriptome. Science.2005, 309(5740),1564-6.
    7. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature.2007,447(7146),799-816.
    8. Gingeras TR. Origin of phenotypes:genes and transcripts. Genome Res.2007, 17(6),682-90.
    9. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature.2008,451(7175),202-6.
    10. Han J, Kim D and Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A.2007,104(30),12422-7.
    11. Morris KV, Santoso S, Turner AM, Pastori C and Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet.2008,4(11), e1000258.
    12. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R and Li LC. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther.2008,7(3),698-703.
    13. Whitson JM, Noonan EJ, Pookot D, Place RF and Dahiya R. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer.2009,125(2),446-52.
    14. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, et al. Up-regulation of p21 WAF1/Cipl by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett.2008,265(2),206-14.
    15. Ting AH, Schuebel KE, Herman JG and Baylin SB. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet.2005,37(8),906-10.
    16. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G and Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell.2004,15(2),185-97.
    17. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science.2004, 305(5689),1437-41.
    18. Kuwabara T, Hsieh J, Nakashima K, Taira K and Gage FH. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell.2004,116(6),779-93.
    1. Wheelock MJ and Johnson KR. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol.2003,19(207-35.
    2. Li YJ and Ji XR. Relationship between expression of E-cadherin-catenin complex and clinicopathologic characteristics of pancreatic cancer. World J Gastroenterol.2003,9(2),368-72.
    3. Roylance R, Droufakou S, Gorman P, Gillett C, Hart IR, Hanby A, et al. The role of E-cadherin in low-grade ductal breast tumourigenesis. J Pathol.2003,200(1), 53-8.
    4. Hashimoto M, Niwa O, Nitta Y, Takeichi M and Yokoro K. Unstable expression of E-cadherin adhesion molecules in metastatic ovarian tumor cells. Jpn J Cancer Res.1989,80(5),459-63.
    5. Karayiannakis AJ, Syrigos KN, Polychronidis A and Simopoulos C. Expression patterns of alpha-, beta-and gamma-catenin in pancreatic cancer:correlation with E-cadherin expression, pathological features and prognosis. Anticancer Res. 2001,21(6A),4127-34.
    6. Zhai B, Yan HX, Liu SQ, Chen L, Wu MC and Wang HY. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol.2008,14(37),5665-73.
    7. Krishnadath KK, Tilanus HW, van Blankenstein M, Hop WC, Kremers ED, Dinjens WN, et al. Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis. J Pathol.1997, 182(3),331-8.
    8. Hao X, Palazzo JP, Ilyas M, Tomlinson I and Talbot IC. Reduced expression of molecules of the cadherin/catenin complex in the transition from colorectal adenoma to carcinoma. Anticancer Res.1997,17(3C),2241-7.
    9. Byrne RR, Shariat SF, Brown R, Kattan MW, Morton RJ, Wheeler TM, et al. E-cadherin immunostairiing of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J Urol.2001,165(5), 1473-9.
    10. Ross JS, del Rosario AD, Figge HL, Sheehan C, Fisher HA and Bui HX. E-cadherin expression in papillary transitional cell carcinoma of the urinary bladder. Hum Pathol.1995,26(9),940-4.
    11. Moersig W, Horn S, Hilker M, Mayer E and Oelert H. Transfection of E-cadherin cDNA in human lung tumor cells reduces invasive potential of tumors. Thorac Cardiovasc Surg.2002,50(1),45-8.
    12. Huang CX, Chen S, Ying M and Shen ZH. Expression of Exogenous E-cadherin Regulates Anchorage-independent Growth in Human Lung Adenocarcinoma Cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai).2001, 33(5),559-562.
    13. Frixen UH,Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol.1991,113(1),173-85.
    14. Takao S, Che X, Fukudome T, Natsugoe S, Ozawa M and Aikou T. Down-regulation of E-cadherin by antisense oligonucleotide enhances basement membrane invasion of pancreatic carcinoma cells. Hum Cell.2000,13(1), 15-21.
    15. Peifer M and Polakis P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science.2000,287(5458),1606-9.
    16. Orsulic S, Huber O, Aberle H, Arnold S and Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci.1999,112 (Pt 8)(1237-45.
    17. Grosheva I, Shtutman M, Elbaum M and Bershadsky AD. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases:a link between cell-cell contact formation and regulation of cell locomotion. J Cell Sci.2001, 114(Pt 4),695-707.
    18. Luo J, Lubaroff DM and Hendrix MJ. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res.1999,59(15),3552-6.
    19. Auersperg N, Pan J, Grove BD, Peterson T, Fisher J, Maines-Bandiera S, et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci U S A.1999,96(11),6249-54.
    20. Fagotto F, Funayama N, Gluck U and Gumbiner BM. Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J Cell Biol.1996,132(6),1105-14.
    21. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES and Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res.2008,68(10),3645-54.
    22. Fang YJ, Lu ZH, Wang GQ, Pan ZZ, Zhou ZW, Yun JP, et al. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer, Int J Colorectal Dis. 2009,24(8),875-84.
    23. Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, et al. Targeting matrilysin and its impact on tumor growth in vivo:the potential implications in breast cancer therapy. Clin Cancer Res.2005,11(16),6012-9.
    1. Mattick JS. Challenging the dogma:the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays.2003,25(10),930-9.
    2. Mattick JS. RNA regulation:a new genetics? Nat Rev Genet.2004,5(4), 316-23.
    3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391(6669),806-11.
    4. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006, 103(46),17337-42.
    5. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE and Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007,3(3),166-73.
    6. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, et al. RNAa is conserved in mammalian cells. PLoS One.5(1), e8848.
    7. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008,15(8),842-8.
    8. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al. Antisense transcription in the mammalian transcriptome. Science.2005, 309(5740),1564-6.
    9. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al.
    Epigenetic silencing of tumour suppressor gene pl5 by its antisense RNA. Nature.2008,451(7175),202-6.
    10. Morris KV, Santoso S, Turner AM, Pastori C and Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet.2008,4(11), e1000258.
    11. Vasudevan S, Tong Y and Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science.2007,318(5858),1931-4.
    12. Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A.2008,105(5),1608-13.
    13. Andersen ND, Monahan TS, Malek JY, Jain M, Daniel S, Caron LD, et al. Comparison of gene silencing in human vascular cells using small interfering RNAs. J Am Coll Surg.2007,204(3),399-408.
    14. Younger ST, Pertsemlidis A and Corey DR. Predicting potential miRNA target sites within gene promoters. Bioorg Med Chem Lett.2009,19(14),3791-4.
    15. Bumcrot D, Manoharan M, Koteliansky V and Sah DW. RNAi therapeutics:a potential new class of pharmaceutical drugs. Nat Chem Biol.2006,2(12),711-9.
    16. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R and Li LC. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther.2008,7(3),698-703.
    1-7. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, et al. Up-regulation of p21WAF1/Cipl by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett.2008,265(2),206-14.
    18. Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, et al. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun.2008,375(4), 566-70.
    1. Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, et al. Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. J Biol Chem.2006,281(44),33650-63.
    2. Hajra KM and Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer.2002,34(3),255-68.
    3. Hashimoto M, Niwa O, Nitta Y, Takeichi M and Yokoro K. Unstable expression of E-cadherin adhesion molecules in metastatic ovarian tumor cells. Jpn J Cancer Res.1989,80(5),459-63.
    4. Karayiannakis AJ, Syrigos KN, Polychronidis A and Simopoulos C. Expression patterns of alpha-, beta-and gamma-catenin in pancreatic cancer:correlation with E-cadherin expression, pathological features and prognosis. Anticancer Res. 2001,21(6A),4127-34.
    5. Pignatelli M, Ansari TW, Gunter P, Liu D, Hirano S, Takeichi M, et al. Loss of membranous E-cadherin expression in pancreatic cancer:correlation with lymph node metastasis, high grade, and advanced stage. J Pathol.1994,174(4),243-8.
    6. Zhai B, Yan HX, Liu SQ, Chen L, Wu MC and Wang HY. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol.2008,14(37),5665-73.
    7. Krishnadath KK, Tilanus HW, van Blankenstein M, Hop WC, Kremers ED, Dinjens WN, et al. Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis. J Pathol.1997, 182(3),331-8.
    8. Hao X, Palazzo JP, Ilyas M, Tomlinson I and Talbot IC. Reduced expression of molecules of the cadherin/catenin complex in the transition from colorectal adenoma to carcinoma. Anticancer Res.1997,17(3C),2241-7.
    9. Tamura S, Shiozaki H, Miyata M, Kadowaki T, Inoue M, Matsui S, et al. Decreased E-cadherin expression is associated with haematogenous recurrence and poor prognosis in patients with squamous cell carcinoma of the oesophagus. Br J Surg.1996,83(11),1608-14.
    10. Tsuda H, Zhang WD, Shimosato Y, Yokota J, Terada M, Sugimura T, et al. Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. Proc Natl Acad Sci U S A.1990,87(17),6791-4.
    11. Iida A, Isobe R, Yoshimoto M, Kasumi F, Nakamura Y and Emi M. Localization of a breast cancer tumour-suppressor gene to a 3-cM interval within chromosomal region 16q22. Br J Cancer.1997,75(2),264-7.
    12. Oda T, Kanai Y, Oyama T, Yoshiura K, Shimoyama Y, Birchmeier W, et al. E-cadherin gene mutations in human gastric carcinoma cell lines. Proc Natl Acad Sci U S A.1994,91(5),1858-62.
    13. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, et al. E-cadherin germline mutations in familial gastric cancer. Nature.1998, 392(6674),402-5.
    14. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T and Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A.1995,92(16),7416-9.
    15. Ropponen KM, Kellokoski JK, Pirinen RT, Moisio KI, Eskelinen MJ, Alhava EM, et al. Expression of transcription factor AP-2 in colorectal adenomas and adenocarcinomas; comparison of immunohistochemistry and in situ hybridisation. J Clin Pathol. 2001,54(7),533-8.
    16. Miyoshi A, Kitajima Y, Surni K, Sato K, Hagiwara A, Koga Y, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer.2004,90(6),1265-73.
    17. Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W and van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell.1991,66(1),107-19.
    18. Huang CX, Chen S, Ying M and Shen ZH. Expression of Exogenous E-cadherin Regulates Anchorage-independent Growth in Human Lung Adenocarcinoma Cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai).2001, 33(5),559-562.
    19. Ferreira P, Oliveira MJ, Beraldi E, Mateus AR, Nakajima T, Gleave M, et al. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp Cell Res.2005,310(1),99-104.
    20. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K; Ravdel L, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res.2006,66(2),944-50.
    21. Okamura N, Mori Y, Endo T, Ito E and Kudo R. [Experimental studies on the cell adhesion molecule E-cadherin and in vitro invasion of endometrial carcinoma cell lines]. Nippon Sanka Fujinka Gakkai Zasshi.1996,48(5), 335-42.
    22. Takao S, Che X, Fukudome T, Natsugoe S, Ozawa M and Aikou T. Down-regulation of E-cadherin by antisense oligonucleotide enhances basement membrane invasion of pancreatic carcinoma cells. Hum Cell.2000,13(1), 15-21.
    23. Goffin J and Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol.2002,13(11),1699-716.
    24. Margot JB, Ehrenhofer-Murray AE and Leonhardt H. Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol.2003,4(7.
    25. Lyko F and Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst.2005,97(20),1498-506.
    26. Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF and Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res.2001,61(1),249-55.
    27. Saikawa Y, Kubota T, Maeda S, Otani Y, Kumai K and Kitajima M. Inhibition of DNA methyltransferase by antisense oligodeoxynucleotide modifies cell characteristics in gastric cancer cell lines. Oncol Rep.2004,12(3),527-31.
    28. Corn PG, Smith BD, Ruckdeschel ES, Douglas D, Baylin SB and Herman JG E-cadherin expression is silenced by 5' CpG island methylation in acute leukemia. Clin Cancer Res.2000,6(11),4243-8.
    29. Nojima D, Nakajima K, Li LC, Franks J, Ribeiro-Filho L, Ishii N, et al. CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol Carcinog.2001,32(1),19-27.
    30. Nam JS, Ino Y, Kanai Y, Sakamoto M and Hirohashi S.5-aza-2'-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis.2004,21(1),49-56.
    31. Park HJ, Shin DH, Chung WJ, Leem K, Yoon SH, Hong MS, et al. Epigallocatechin gallate reduces hypoxia-induced apoptosis in human hepatoma
    cells. Life Sci.2006,78(24),2826-32.
    32. Peng G, Wargovich MJ and Dixon DA. Anti-proliferative effects of green tea polyphenol EGCG on Ha-Ras-induced transformation of intestinal epithelial cells. Cancer Lett.2006,238(2),260-70.
    33. Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K and Hirano S. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol.2006,37(3),298-311.
    34. Hurtubise A and Momparler RL. Evaluation of antineoplastic action of 5-aza-2'-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs.2004,15(2),161-7.
    35. Shaker S, Bernstein M and Momparler RL. Antineoplastic action of 5-aza-2'-deoxycytidine (Dacogen) and depsipeptide on Raji lymphoma cells. Oncol Rep.2004,11(6),1253-6.
    36. Gagnon J, Shaker S, Primeau M, Hurtubise A and Momparler RL. Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs.2003,14(3), 193-202.
    37. Kondo K, Kohno N, Yokoyama A and Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res.1998,58(9),2014-9.
    38. Schroder C, Eckert K and Maurer HR. Tributyrin induces growth inhibitory and differentiating effects on HT-29 colon cancer cells in vitro. Int J Oncol.1998, 13(6),1335-40.
    39. Masuda T, Saito H, Kaneko F, Atsukawa K, Morita M, Inagaki H, et al. Up-regulation of E-cadherin and I-catenin in human hepatocellular carcinoma cell lines by sodium butyrate and interferon-alpha. In Vitro Cell Dev Biol Anim. 2000,36(6),387-94.
    40. Shen WJ, Dai DQ, Teng Y and Liu HB. Regulation of demethylation and re-expression of RASSF1A gene in gastric cancer cell lines by combined treatment of 5-Aza-CdR and NaB. World J Gastroenterol.2008,14(4),595-600.
    41. Takai N, Ueda T, Nishida M, Nasu K and Narahara H. M344 is a novel synthesized histone deacetylase inhibitor that induces growth inhibition, cell cycle arrest, and apoptosis in human endometrial cancer and ovarian cancer cells. Gynecol Oncol.2006,101(1),108-13.
    42. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol.2000,2(2),84-9.
    43. Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R and Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem.2001,276(27),24661-6.
    44. Roy HK, Iversen P, Hart J, Liu Y, Koetsier JL, Kim Y, et al. Down-regulation of SNAIL suppresses MIN mouse tumorigenesis:modulation of apoptosis, proliferation, and fractal dimension. Mol Cancer Ther.2004,3(9),1159-65.
    45. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F and Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res.2005,65(14),6237-44.
    46. Peinado H, Ballestar E, Esteller M and Cano A. Snail mediates E-cadherin repression by the recruitment of the Si:n3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol.2004,24(1),306-19.
    47. Takeno S, Noguchi T, Fumoto S, Kimura Y, Shibata T and Kawahara K. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snail overexpression, and clinicopathologic implications. Am J Clin Pathol.2004,122(1),78-84.
    48. Shariat SF, Matsumoto K, Kim J, Ayala GE, Zhou JH, Jian W, et al. Correlation of cyclooxygenase-2 expression with molecular markers, pathological features and clinical outcome of transitional cell carcinoma of the bladder. J Urol.2003, 170(3),985-9.
    49. Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, et al. Cyclooxygenase-2-dependent regulation of E-cadherin:prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res.2006,66(10),5338-45.
    50. Chen Q, Shinohara N, Abe T, Harabayashi T and Nonomura K. Impact of cyclooxygenase-2 gene expression on tumor invasiveness in a human renal cell carcinoma cell line. J Urol.2004,172(6 Pt 1),2153-7.
    51. Jiang MC, Liao CF and Lee PH. Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochem Biophys Res Commun.2001,282(3),671-7.
    52. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006,355(9),873-84.
    53. Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A and Paradiso A. The complexity of targeting EGFR signalling in cancer:from expression to turnover. Biochim Biophys Acta.2006,1766(1),120-39.
    54. Lu Z, Ghosh S, Wang Z and Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell.2003,4(6), 499-515.
    55. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM and Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol.1999,26(4 Suppl 12),60-70.
    56. Nguyen DM, Desai S, Chen A, Weiser TS and Schrump DS. Modulation of metastasis phenotypes of non-small cell lung cancer cells by 17-allylamino 17-demethoxy geldanamycin. Ann Thorac Surg.2000,70(6),1853-60.
    57. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia de Herreros A, et al. Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res.2001,61(4), 1671-7.
    58. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS and Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell.2003,113(2),207-19.
    59. Oesterreich S, Deng W, Jiang S, Cui X, Ivanova M, Schiff R, et al. Estrogen-mediated down-regulation of E-cadherin in breast cancer cells. Cancer Res.2003,63(17),5203-8.
    60. Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A, et al. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res.2005,65(12),5445-53.
    61. Eckert K, Fuhrmann-Selter T and Maurer HR. Docetaxel enhances the expression of E-cadherin and carcinoembryonic antigen (CEA) on human colon cancer cell lines in vitro. Anticancer Res.1997,17(1A),7-12.
    62. Zhou JR, Yu L, Zhong Y, Nassr RL, Franke AA, Gaston SM, et al. Inhibition of orthotopic growth and metastasis of androgen-sensitive human prostate tumors in mice by bioactive soybean components. Prostate.2002,53(2),143-53.
    63. Yang SZ, Kohno N, Kondo K, Yokoyama A, Hamada H, Hiwada K, et al. Adriamycin activates E-cadherin-mediated cell-cell adhesion in human breast cancer cells. Int J Oncol.1999,15(6),1109-15.
    64. Ebara T, Mitsuhashi N, Saito Y, Akimoto T and Niibe H. Change in E-cadherin expression after X-ray irradiation of a human cancer cell line in vitro and in vivo. Int J Radiat Oncol Biol Phys.1998,41(3),669-74.
    65. Turner JR, Torres CM, Wang HH, Shahsafaei A, Richards WG, Sugarbaker D, et al. Preoperative chemoradiotherapy alters the expression and prognostic significance of adhesion molecules in Barrett's-associated adenocarcinoma. Hum Pathol.2000,31(3),347-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700