GA_3调控日本结缕草叶片衰老过程相关基因的分离与初步功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本结缕草(Zoysia japonica Steud.)是一种具有极大应用潜力的草坪草,特别在我国,日本结缕草资源位居世界首位,它具有适合地域广、抗逆性强,低维护及发达的地下根系等特征,在现代城市绿化和运动场建设及水土保持中,都占有重要地位。但日本结缕草也有苗期生长缓慢、绿色期很短等缺点,尤其绿期短已经成为限制其大量应用的瓶颈。因此,本文对延长结缕草的绿期进行研究和探索,发现GA。(赤霉素)在缓解结缕草叶片衰老中的作用,并分离GA3调控叶片衰老相关基因,对于揭示赤霉素抗衰老机理,改良草坪草特性,缓解草坪草叶片衰老都具有重要的理论意义和实践价值。
     首先,选用从同一克隆分化而来的结缕草,进行黑暗诱导前的GA。喷施处理。结果发现黑暗可以有效诱导结缕草的叶片衰老,具体表现在叶绿素含量降低、可溶性糖含量升高、叶片细胞死亡的加剧,同时出现MDA的增加和H2O2的累积。然而,对于GA。喷施后的结缕草叶片,以上指标都出现了显著的改善,表现出缓解黑暗诱导的叶片衰老,并且由黑暗诱导引起的氧化伤害也明显的减少。这个结果说明,尽管GA3缓解结缕草叶片衰老的原因尚不明确,但是确定了GA。在结缕草叶片衰老中的负调控作用。
     为了深入研究GA3缓解结缕草叶片衰老的分子事件,寻找参与过程的功能基因,利用抑制性差减杂交(SSH)技术,以GA3喷施后黑暗处理的结缕草叶片的RNA为"tester",未经处理的RNA为"driver",构建参与GA3缓解黑暗诱导叶片衰老相关基因的差减cDNA文库,共筛选到22个与GA3缓解黑暗诱导衰老有关的基因。根据blast分析结果进行基因功能预测,可将这22个基因分为5类,包括:(1)基本代谢相关基因;(2)参与信号转导过程基因;(3)细胞骨架相关基因;(4)无相似性EST;(5)未知功能基因。
     根据候选基因的功能推测和前人有关叶片衰老的研究结果,选取了5个可能与GA。缓解黑暗诱导衰老有关的基因(AN—氨连接合成酶基因、V-ATPase-液泡膜上H-ATPas e基因、SAMs-S-腺苷甲硫氨酸合成酶基因、CRY2-隐花色素2基因,OMT—-0-转甲基酶基因),采用RT-PCR技术分析了它们的时空表达模式(衰老的内部诱因)和外界胁迫(衰老的外部诱因)下的表达模式。从实验中初步发现,CRY2基因在幼嫩的叶片中上调表达,同时在外界胁迫的后期出现上调表达,并且在GA3和黑暗处理下出现了单因素上调表达,双因素下调表达的有趣调控模式。因此,认为CRY2基因是一个与叶片衰老最为相关的基因,并挑选其作为感兴趣的基因进行深入的功能分析。
     通过RACE-PCR技术扩增到CRY2基因的cDNA全长,对其编码的蛋白质氨基酸序列进行生物信息学分析,认为该基因属于隐花色素基因家族,它含有三个保守结构域:DNA光裂解酶,DNA光裂解酶FAD结合区和隐花色素C端,蓝光紫外光感受区域。同时,发现该基因与水稻的CRY2相似性最高;从进化关系上看,与玉米的CRY2的亲缘关系最近。因此,认为克隆到的基因为日本结缕草的ZjCRY2基因,通过对其进行生物信息学分析,发现其无信号肽及跨膜结构域,推测它是一个广谱表达而非膜定位的蛋白。由于前人没有报道CRY2基因与叶片衰老有关联,故利用拟南芥cry2突变体,从发育过程和黑暗诱导的叶片衰老这两个方面进行研究,证实CRY2基因参与调控自然发育过程中的叶片衰老进程。
     最后,为了对ZjCRY2基因的功能进行深入研究,并获得具有生产实践意义的抗衰老转基因结缕草,分别构建了ZjCRY2基因的过表达载体和RNAi敲除载体,对结缕草的胚性愈伤进行基因枪轰击转化。通过4个月的筛选继代,已经获得抗性愈伤,现在正在进行再生筛选,预计2个月之后获得转基因结缕草植株。
     综上所述,本文通过对GA。缓解黑暗诱导的结缕草叶片衰老现象进行深入的功能基因组学研究,发现了5个参与衰老调控的基因,并分析他们的表达模式,最后确定了其中CRY2基因参与GA3和黑暗作用下的衰老调控过程。利用RACE技术成功获得结缕草CRY2的全长cDNA序列,并且通过生物信息学的分析证明其是结缕草的ZjCRY2基因,并且利用拟南芥突变体cry2进行了功能预测。最后,构建了ZjCRY2基因的过表达和RNAi载体,并进行了转化,并即将获得转基因结缕草植株。因此,本研究的发现,将对未来结缕草抗衰老和园林植物叶片持绿的理论研究和生产应用奠定基础。
Zoysiagrass (Zoysia japonica Steud.) is a kind of turfgrass with great potential applications. Especially in China, the resource of zoysiagrass lines for the first in the total of the world, and also it is suitable for the regional wide with strong resistance, low cost of maintenance and developed the underground root system. Therefore, it plays important role in the modern construction of urban greening and playgrounds, and even in water and soil conservation. However, the disadvantages of zoysiagrass as short green period has become the bottleneck of its application. In this study, aim for the extension of green stage in zoysiagrass, we found GA3 could alleviate leaf senescence induced by darkness, and separated GA3 regulation related gene, which gives more understanding on antiaging mechanism in GA3 pathway, and also is important theoretical and practical value.
     Here, we first show that zoysiagrass seedlings treated with GA3 could delay the leaf senescence induced by darkness. The zoysiagrass seedlings subjected to darkness manifested in sharp chlorophyll and protein loss, improved contents of MDA and H2O2, also exhibited higher cell death folds. However, the seedlings treated by GA3 exogenous before darkness stress displayed better phenotype than control. Although mechanism of GA3 on leaf senescence is unknown, it is first time reported that the GA3 plays negative role in the leaf senescence of zoysiagrass.
     To study expression of genes responsive to staying green in zoysiagrass, suppression subtractive hybridization (SSH) was used to identify differentially expressed genes between non-GA3-treated and GA3-treated seedlings subjected to darkness. A total of 307 ESTs were generated, of which 226 ESTs clustered into 54 contigs and 81 were singlets. Total 22 differentially expressed genes selected by subtractions were classified into five categories according to their putative functions generated by BLAST analysis, they were "General metabolism", "Signal transduction", "Cytoskeleton"; "Sequences without identity" and "Unknown function".
     Expression of five selected genes, OMT, SAMs, V-ATPase, CRY2 (gene of cryptochrome 2) and An were examined by RT-PCR, when the zoysiagrass were under normal senescence and senescence induced by environment. RT-PCR results demonstrated that the differential expressions of these genes were attributable to delaying senescence. Especially, the CRY2 exhibited higher expression in the young leaves, and up-regulated on the later stage of environment stress, and also display interested expression pattern under GA3 exogenous and darkness stress, so the CRY2 is selected for further research.
     The full length cDNA of CRY2 was obtained by RACE-PCR, and the protein encoded by CRY2 was analyzed by bioinformatics. The results showed that CRY2 belongs to the family of cryptochrome with three conserved functional domain such as DNA photolyse, FAD-binding superfamily and crypochrome C terminal superfamily. In addition, CRY2 showed high homology with OsCRY2 in rice and the phylogenetic analysis demonstrated similar pattern. Therefore, CRY2 was regarded as the ZjCRY2, a gene of cryptochrome 2 in zoysiagrass. Besides the bioinformatics analysis, the investigation on the senescence of Arabidopsis cry2 mutant was carried out, and the results also proved the CRY2 (AtCRY2) could participate in the regulation of developmental leaf senescence.
     Further, the over expression and RNAi expression vectors of ZjCRY2 were constructed for transformation. After embryogenic calli were pre-cultured, they were genetic transformated by biolistic bombardment. For about 4 months of subculture, the transgenic calluses with hygromycin resistance were obtained, and the transgenic seedlings would be obtained after another two months.
     In this study, five genes associated with leaf senescence in zoysiagrass were found through the SSH. The expression patterns of these genes were analyzed, and the CRY2 was selected finally and regarded as the functional gene related to GA3 and darkness crosstalk on the leaf senescence. Also, we obtained the full length cDNA of CRY2, and confirmed the CRY2 is the gene of cryptochrome 2 in zoysiagrass as the ZjCRY2 by bioinformatics analysis. The function of ZjCRY2 associated with leaf senescence was further predicted by analysis of Arabidopsis cry2 mutant. Finally, the vectors of over expression and RNAi expression of ZjCRY2 were constructed, and the transgenic calluses were obtained. All the results in this study, could contribute to the further research on the GA3 signal pathway related to leaf senescence and the application of transgenic turfgrass and ornamental plant with enhanced resistance to leaf senescence.
引文
1. 费菲.春节期间切花芍药促成栽培[J].中国花卉园艺,2008,(22):30.
    2. 顾克余,翟虎渠.抑制性扣除杂交技术(SSH)及其在基因克隆上的研究进展[J].生物技术通报,1999,15(2):13-16.
    3. 罗文波,于淑娟.抑制性扣除杂交技术(SSH)及其研究进展[J].生物技术,2000,10(3):37-40.
    4. 方芳,胡英考,张飞雄.基因陷阱[J].生命的化学,2003,23(3):208-210.
    5. 易军,许彩霞.石蒜鲜切花贮运技术初探[J].林业科技开发,2004,18(2):24-26.
    6. 杨晓琴.高档鲜切花百合保鲜配方的研究[J].安徽农业科学,2004,32(6):1174-1175.
    7. 张秋菊,韩英.青霉素和赤霉素对香石竹切花保鲜的生理效应[J].湖南农业大学学报(自然科学版),2005,31(2):170-172.
    8. 张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展,2000,20(4):3-5.
    9. 张治礼,张银东,郑学勤.植物叶片抗衰老基因工程研究[J].华南热带农业大学学报,2002,8(1):40-43,70.
    10. Abeles F B, L J Dunn, P Morgens, A Callahan, R E Dinterman, et al. Induction of 33-kd and 60-kd peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiology [J]. 1988,87(3):609-615.
    11. Achard P, J P Renou, R Berthome, N P Harberd and P Genschik. Plant DELLAS restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology[J].2008,18(9):656-660.
    12. Aharoni N, A Back, S Benyehoshua and A E Richmond. Exogenous gibberellic-acid and cytokinin isopentenyladenine retardants of senescence in romaine lettuce. Journal of the American Society for Horticultural Science[J].1975,100(1):4-6.
    13. Aharoni N, O Dvir, D Chalupowicz and Z Aharon. Coping with postharvest physiology of fresh culinary herbs. International Symposium on Medicinal and Aromatic Plants[J].1993,344):69-78.
    14. Ahmad M, J A Jarillo, L J Klimczak, L G Landry, T Peng, et al. An enzyme similar to animal type ii photolyases mediates photoreactivation in Arabidopsis. Plant Cell[J].1997,9(2):199-207.
    15. Andersson A, J Keskitalo, A Sjodin, R Bhalerao, F Sterky, et al. A transcriptional timetable of autumn senescence. Genome Biology[J].2004,5(4):13.
    16. Arteca R N, J M Arteca, T W Wang and C D Schlagnhaufer. Physiological, biochemical, and molecular changes in pelargonium cuttings subjected to short-term storage conditions. Journal of the American Society for Horticultural Science[J].1996,121(6):1063-1068.
    17. Bachem C W B, R S vanderHoeven, S M deBruijn, D Vreugdenhil, M Zabeau, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant Journal[J].1996,9(5): 745-753.
    18. Bai L J, C J Ye, J Y Lu, D E Yang, H Xue, et al. Ipt gene transformation in petunia by an Agrobacterium mediated method. Journal of Immunoassay & Immunochemistry[J].2009,30(2): 224-231.
    19. Barna B, A C Smigocki and J C Baker. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in nicotiana spp. Phytopathology[J].2008,98(11):1242-1247.
    20. Barth C, M De Tullio and P L Conklin. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany[J].2006,57(8):1657-1665.
    21. Bate N J, S J Rothstein and J E Thompson. Expression of nuclear and chloroplast photosynthesis-specific genes during leaf senescence. Journal of Experimental Botany [J].1991, 42(239):801-811.
    22. Beevers L and F S Guernsey. Interaction of growth regulators in senescence of nasturtium leaf disks. Nature[J].1967,214(5091):941-941.
    23. Blanc G, A Barakat, R Guyot, R Cooke and I Delseny. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell[J].2000,12(7):1093-1101.
    24. Bleecker A B and S E Patterson. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell[J].1997,9(7):1169-1179.
    25. Bode S, C C Quentmeier, P N Liao, T Barrosc and P J Walla. Xanthophyll-cycle dependence of the energy transfer between carotenoid dark states and chlorophylls in npq mutants of living plants and in lhc ii. Chemical Physics Letters[J].2008,450(4-6):379-385.
    26. Borrell A, G Hammer and E Van Oosterom. Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? Annals of Applied Biology[J].2001,138(1): 91-95.
    27. Buchanan-Wollaston V, S Earl, E Harrison, E Mathas, S Navabpour, et al. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnology Journal[J].2003,1(1):3-22.
    28. Buchanan-Wollaston V, T Page, E Harrison, E Breeze, P O Lim, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant Journal[J].2005, 42(4):567-585.
    29. Buchanan-wollaston V. Isolation of cDNA clones for genes that are expressed during leaf senescence in brassica napus identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiology [J].1994,105(3):839-846.
    30. Buchanan-Wollaston V and C Ainsworth. Leaf senescence in brassica napus:Cloning of senescence related genes by subtractive hybridisation. Plant Molecular Biology [J].1997,33(5): 821-834.
    31. Butt A, C Mousley, K Morris, J Beynon, C Can, et al. Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of peronospora parasitica and pseudomonas syringae. Plant Journal[J].1998,16(2):209-221.
    32. Calderini O, T Bovone, C Scotti, F Pupilli, E Piano, et al. Delay of leaf senescence in medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports[J].2007,26(5):611-615.
    33. Cao J, F Jiang, Sodmergen and K M Cui. Time-course of programmed cell death during leaf senescence in eucommia ulmoides. Journal of Plant Research[J].2003,116(1):7-12.
    34. Cercos M, S Santamaria and J Carbonell. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea. Plant Physiology [J].1999, 119(4):1341-1348.
    35. Chan L F, L F O Chen, H Y Lu, C H Lin, H C Huang, et al. Growth, yield and shelf-life of isopentenyltransferase (ipt)-gene transformed broccoli. Canadian Journal of Plant Science[J].2009, 89(4):701-711.
    36. Chen L F O, J Y Hwang, Y Y Charng, C W Sun and S F Yang. Transformation of broccoli (brassica oleracea var. Italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation. Molecular Breeding[J].2001,7(3):243-257.
    37. Chen W Q, N J Provart, J Glazebrook, F Katagiri, H S Chang, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell[J].2002,14(3):559-574.
    38. Cheng X X, X M Dai, H M Zeng, Y X Li, W Tang, et al. Gene expression involved in dark-induced leaf senescence in zoysiagrass (zoysia japonica). Plant Biotechnology Reports[J].2009,3(4): 285-292.
    39. Chung B C, S Y Lee, S A Oh, T H Rhew, H G Nam, et al. The promoter activity of SEN1, a senescence-associated gene of Arabidopsis, is repressed by sugars. Journal of Plant Physiology[J]. 1997,151(3):339-345.
    40. Clark D G, C Dervinis, J E Barret, H Klee and M Jones. Drought-induced leaf senescence and horticultural performance of transgenic SAG12-ipt petunias. Journal of the American Society for Horticultural Science[J].2004,129(1):93-99.
    41. Clough S J and A F Bent. Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal[J].1998,16(6):735-743.
    42. Costet L, S Dorey, B Fritig and S Kauffmann. A pharmacological approach to test the diffusible signal activity of reactive oxygen intermediates in elicitor-treated tobacco leaves. Plant and Cell Physiology [J].2002,43(1):91-98.
    43. Dai N, A Schaffer, M Petreikov, Y Shahak, Y Giller, et al. Over expression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell[J].1999,11(7):1253-1266.
    44. Davies K M and D Grierson. Identification of cDNA clones for tomato (lycopersicon-esculentum mill) messenger-RNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta[J].1989,179(1):73-80.
    45. del Rio L A, G M Pastori, J M Palma, L M Sandalio, F Sevilla, et al. The activated oxygen role of peroxisomes in senescence. Plant Physiology [J].1998,116(4):1195-1200.
    46. Diachenko L B, J Ledesma, A A Chenchik and P D Siebert. Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA. Biochemical and Biophysical Research Communications[J].1996,219(3):824-828.
    47. Doelling J H, J M Walker, E M Friedman, A R Thompson and R D Vierstra. The apg8/12-activating enzyme apg7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. Journal of Biological Chemistry[J].2002,277(36):33105-33114.
    48. Drake R, I John, A Farrell, W Cooper, W Schuch, et al. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Molecular Biology [J].1996, 30(4):755-767.
    49. Drew M C, C J He and P W Morgan. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science[J].2000,5(3):123-127.
    50. Faiss M, J Zalubilova, M Strnad and T Schmulling. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant Journal[J].1997,12(2):401-415.
    51. Ferrante A, A Mensuali-Sodi and G Serra. Effect of thidiazuron and gibberellic acid on leaf yellowing of cut stock flowers. Central European Journal of Biology[J].2009,4(4):461-468.
    52. Fletcher R A, T Oegema and R F Horton. Endogenous gibberellin levels and senescence in taraxacum officinale. Planta[J].1969,86(1):98-98.
    53. Franklin K A and P H Quail. Phytochrome functions in Arabidopsis development. Journal of Experimental Botany[J].2010,61(1):11-24.
    54. Fujiki Y, Y Yoshikawa, T Sato, N Inada, M Ito, et al. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiologia Plantarum[J]. 2001,111(3):345-352.
    55. Fukuda H. Xylogenesis:Initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology[J].1996,47:299-325.
    56. Gan S S and R M Amasino. Inhibition of leaf senescence by autoregulated production of cytokinin. Science[J].1995,270(5244):1986-1988.
    57. Garciaespana A, J Carbonell and V Rubio. Carbamoyl phosphate synthetase, ornithine transcarbamylase, and aspartate-transcarbamylase activities in the pea ovary-changes with senescence of the unpollinated ovary or with fruit-set induced by gibberellic-acid. Plant Physiology[J].1989,90(4):1565-1569.
    58. Gepstein S, G Sabehi, M J Carp, T Hajouj, M F O Nesher, et al. Large-scale identification of leaf senescence-associated genes. Plant Journal[J].2003,36(5):629-642.
    59. Godiard L, L Sauviac, N Dalbin, L Liaubet, D Callard, et al. Cyp76c2, an Arabidopsis thaliana cytochrome p450 gene expressed during hypersensitive and developmental cell death. Febs Letters[J].1998,438(3):245-249.
    60. Graham I A, C J Leaver and S M Smith. Induction of malate synthase gene-expression in senescent and detached organs of cucumber. Plant Cell[J].1992,4(3):349-357.
    61. Grbic V and A B Bleecker. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant Journal[J].1995,8(4):595-602.
    62. Guo S L, H B Yin, X Zhang, F Y Zhao, P H Li, et al. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, ssvp, from the halophyte suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Molecular Biology[J].2006,60(1): 41-50.
    63. Guo Y, Z Cai and S Gan. Transcriptome of Arabidopsis leaf senescence. Plant Cell and Environment[J].2004,27(5):521-549.
    64. Guo Y F and S S Gan. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal[J].2006,46(4):601-612.
    65. Gurskaya N G, L Diatchenko, A Chenchik, P D Siebert, G L Khaspekov, et al. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: Cloning of jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Analytical Biochemistry [J].1996,240(1):90-97.
    66. Hajouj T, R Michelis and S Gepstein. Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiology [J].2001,126(3):1341-1341.
    67. Hamada A, M Shono, T Xia, M Ohta, Y Hayashi, et al. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte atriplex gmelini. Plant Molecular Biology[J].2001,46(1): 35-42.
    68. Han S S. Growth-regulators delay foliar chlorosis of Easter lily leaves. Journal of the American Society for Horticultural Science[J].1995,120(2):254-258.
    69. Han S S. Growth regulators reduce leaf yellowing in Easter lily caused by close spacing and root rot. Hortscience[J].2000,35(4):657-660.
    70. Hanaoka H, T Noda, Y Shirano, T Kato, H Hayashi, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology[J]. 2002,129(3):1181-1193.
    71. Hanfrey C, M Fife and V Buchanan-Wollaston. Leaf senescence in brassica napus: Expression of genes encoding pathogenesis-related proteins. Plant Molecular Biology[J].1996,30(3):597-609.
    72. He Y H, H Fukushige, D F Hildebrand and S S Gan. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiology[J].2002,128(3):876-884.
    73. He Y H and S S Gan. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell[J].2002,14(4):805-815.
    74. He Y H, W N Tang, J D Swain, A L Green, T P Jack, et al. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology[J].2001,126(2):707-716.
    75. Hensel L L, V Grbic, D A Baumgarten and A B Bleecker. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidoposis. Plant Cell[J]. 1993,5(5):553-564.
    76. Henzi M X, M C Christey and D L McNeil. Morphological characterisation and agronomic evaluation of transgenic broccoli (brassica oleraceal. Var. Italica) containing an antisense ACC oxidase gene. Euphytica[J].2000,113(1):9-18.
    77. Hewelt A, E Prinsen, J Schell, H Vanonckelen and T Schmulling. Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants-implications of gene dosage effects. Plant Journal[J].1994,6(6):879-891.
    78. Hicklenton P R. GA3 and benzylaminopurine delay leaf yellowing in cut Alstroemeria stems. Hortscience[J].1991,26(9):1198-1199.
    79. Higuchi Y, K Sage-Ono, A Hoshino, S Iida, H Kamada, et al. Isolation and expression analysis of cryptochrome homologs in pharbitisnil, a short day plant. Plant and Cell Physiology[J].2004,45: S67-S67.
    80. Himelblau E and R M Amasino. Delivering copper within plant cells. Current Opinion in Plant Biology[J].2000,3(3):205-210.
    81. Hinderhofer K and U Zentgraf. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta[J].2001,213(3):469-473.
    82. Hirose F, K Harada, H Shimada and M Takano. Light-induced phosphorylation of cryptochrome 2 in rice. Plant and Cell Physiology [J].2005,46:S167-S167.
    83. Hong S B, R Sexton and M L Tucker. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiology[J].2000, 123(3):869-881.
    84. Hong Y W, T W Wang, K A Hudak, F Schade, C D Froese, et al. An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence. Proceedings of the National Academy of Sciences of the United States of America[J].2000,97(15):8717-8722.
    85. Horton R F and N Bourguoin. Leaf senescence in juvenile ivy. Plant Physiology and Biochemistry[J].1992,30(1):119-122.
    86. Huber D J. Postharvest senescence-an introduction to the symposium. Hortscience[J].1987,22(5): 853-854.
    87. Hung K T and C H Kao. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology [J].2003,160(8):871-879.
    88. Hung K T and C H Kao. Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of Plant Physiology [J].2004,161(12):1347-1357.
    89. Huynh L N, T VanToai, J Streeter and G Banowetz. Regulation of flooding tolerance of SAG12: Ipt Arabidopsis plants by cytokinin. Journal of Experimental Botany[J].2005,56(415):1397-1407.
    90. Imaizumi T, T Kanegae and M Wada. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern adiantum capillus-veneris. Plant Cell[J].2000, 12(1):81-95.
    91. Itoh H, M Tanaka-Ueguchi, H Kawaide, X B Chen, Y Kamiya, et al. The gene encoding tobacco gibberellin 3 beta-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. Plant Journal[J].1999,20(1):15-24.
    92. Jacob-Wilk D, D Holland, E E Goldschmidt, J Riov and Y Eyal. Chlorophyll breakdown by chlorophyllase:Isolation and functional expression of the chlase 1 gene from ethylene-treated citrus fruit and its regulation during development. Plant Journal[J].1999,20(6):653-661.
    93. Jang J C, P Leon, L Zhou and J Sheen. Hexokinase as a sugar sensor in higher plants. Plant Cell[J]. 1997,9(1):5-19.
    94. Jing H C, J H M Schippers, J Hille and P P Dijkwei. Ethylene-induced leaf senescence depends on age-related changes and old genes in Arabidopsis. Journal of Experimental Botany[J].2005, 56(421):2915-2923.
    95. Jing H C, M J G Sturre, J Hille and P P Dijkwel. Arabidopsis onsets of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant Journal[J].2002,32(1):51-63.
    96. John C F, K Morris, B R Jordan, B Thomas and S A H Mackerness. Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. Journal of Experimental Botany[J].2001,52(359):1367-1373.
    97. Jones A M and J L Darigl. Logjam at the Styx: Programmed cell death in plants. Trends in Plant Science[J].1996,1(4):114-119.
    98. Jordi W, H M Dekhuijzen, G M Stoopen and J H M Overbeek. Role of other plant organs in gibberellic acid-induced delay of leaf senescence in Alstroemeria cut flowers. Physiologia Plantarum[J].1993,87(3):426-432.
    99. Jordi W, C S Pot, G M Stoopen and A H C M Schapendonk. Effect of light and gibberellic-acid on photosynthesis during leaf senescence of Alstroemeria cut flowers. Physiologia Plantarum[J].1994, 90(2):293-298.
    100. Jordi W, G M Stoopen, K Kelepouris and W M Vanderkrieken. Gibberellin-induced delay of leaf-senescence of Alstroemeria cut flowering stems is not caused by an increase in the endogenous cytokinin content. Journal of Plant Growth Regulation[J].1995,14(3):121-127.
    101.Kamachi K, T Yamaya, T Hayakawa, T Mae and K Ojima. Changes in cytosolic glutamine-synthetase polypeptide and its messenger-RNA in a leaf blade of rice plants during natural senescence. Plant Physiology [J].1992,98(4):1323-1329.
    102. Kappers I F, W Jordi, F M Maas, G M Stoopen and L H W van der Plas. Gibberellin and phytochrome control senescence in alstroemeria leaves independently. Physiologia Plantarum[J]. 1998,103(1):91-98.
    103. Karimi M, D Inze and A Depicker. Gateway vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science[J].2002,7(5):193-195.
    104. Khodakovskaya M, R Vankova, J Malbeck, A Z Li, Y Li, et al. Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the leacol gene promoter. Plant Cell Reports[J].2009,28(9):1351-1362.
    105. Kim H J, H Ryu, S H Hong, H R Woo, P O Lim, et al. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America[J].2006,103(3):814-819.
    106. Kim SG,S Y Kim and C M Park. A membrane-associated NAC transcription factor regulates salt-responsive flowering via flowering locus in Arabidopsis. Planta[J].2007,226:647-654.
    107. King G A, D C Woollard, D E Irving and W M Borst. Physiological-changes in Asparagus spear tips after harvest. Physiologia Plantarum[J].1990,80(3):393-400.
    108. Kishishita S, K Shimizu, K Murayama, T Terada, M Shirouzu, et al. Structures of two archaeal diphthine synthases: Insights into the post-translational modification of elongation factor 2. Acta Crystallographica Section D-Biological Crystallography[J].2008,64:397-406.
    109. KleberJanke T and K Krupinska. Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta[J].1997,203(3):332-340.
    110. Klink V P, P Hosseini, P Matsye, N W Alkharouf and B F Matthews. A gene expression analysis of syncytia laser microdissected from the roots of the glycine max (soybean) genotype undergoing a resistant reaction after infection by heterodera glycines (soybean cyst nematode). Plant Molecular Biology[J].2009,71(6):525-567.
    111. Koch J R, A J Scherzer, S M Eshita and K R Davis. Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiology [J].1998,118(4):1243-1252.
    112. Kolarovic L, P Valentovic, M Luxova and O Gasparikova. Changes in antioxidants and cell damage in heterotrophic maize seedlings differing in drought sensitivity after exposure to short-term osmotic stress. Plant Growth Regulation[J].2009,59(1):21-26.
    113. Krebs M, D Beyhl, E Gorlich, K A S Al-Rasheid, I Marten, et al. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America[J].2010,107(7):3251-3256.
    114. Kumar V, D J Mills, J D Anderson and A K Mattoo. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proceedings of the National Academy of Sciences of the United States of America[J].2004,101(29):10535-10540.
    115. Li Q, P R H Robson, A J E Bettany, I S Donnison, H Thomas, et al. Modification of senescence in ryegrass transformed with ipt under the control of a monocot senescence-enhanced promoter. Plant Cell Reports[J].2004,22(11):816-821.
    116. Li Y, G Hagen and T J Guilfoyle. Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Developmental Biology[J].1992,153(2): 386-395.
    117. Lim P O, H J Kim and H G Nam. Leaf senescence. Annual Review of Plant Biology[J].2007, 58:115-136.
    118. Lim P O and H G Nam. The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Current Topics in Developmental Biology, Vol 67[J].2005,67:49-83.
    119. Lim P O, H R Woo and H G Nam. Molecular genetics of leaf senescence in Arabidopsis. Trends in Plant Science[J].2003,8(6):272-278.
    120. Lin J F and S H Wu. Molecular events in senescing Arabidopsis leaves. Plant Journal[J].2004, 39(4):612-628.
    121. Lincoln C, J Long, J Yamaguchi, K Serikawa and S Hake. A knotted 1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell[J].1994,6(12):1859-1876.
    122. Liu H T, X H Yu, K W Li, J Klejnot, H Y Yang, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in arabidopsis. Science[J].2008,322(5907):1535-1539.
    123. Lohman K N, S S Gan, M C John and R M Amasino. Molecular analysis of natural leaf senescence in Arabidopsis-thaliana. Physiologia Plantarum[J].1994,92(2):322-328.
    124. Ma Q H and Y C Liu. Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth. Plant Cell Reports[J].2009 28(11):1759-1765.
    125. Ma Q H, R Zhang, C H Hocart, D S Letham and T J V Higgins. Seed-specific expression of the isopentenyl transferase gene (ipt) in transgenic tobacco. Australian Journal of Plant Physiology[J]. 1998,25(1):53-59.
    126. McCabe M S, L C Garratt, F Schepers, W Jordi, G M Stoopen, et al. Effects of P-SAG12-ipt gene expression on development and senescence in transgenic lettuce. Plant Physiology [J].2001,127(2): 505-516.
    127. McCabe M S, L C Garratt, F Schepers, W J R M Jordi, G M Stoopen, et al. Effects of P-SAG12-ipt gene expression on development and senescence in transgenic lettuce. Plant Physiology [J].2001, 127(2):505-516.
    128. McKenzie M J, V Mett, P H S Reynolds and P E Jameson. Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiology[J].1998,116(3):969-977.
    129. Mclaughlin J C and S M Smith. Metabolic-regulation of glyoxylate-cycle enzyme-synthesis in detached cucumber cotyledons and protoplasts. Planta[J].1994,195(1):22-28.
    130. Medford J I, R Horgan, Z Elsawi and H J Klee. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell[J].1989,1(4):403-413.
    131. Miao Y, T Laun, P Zimmermann and U Zentgraf. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology[J].2004,55(6):853-867.
    132. Miller J D, R N Arteca and E J Pell. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology[J].1999,120(4):1015-1023.
    133.Mira H, N Martinez and L Penarrubia. Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper, senescence and ozone. Planta[J].2002,214(6):939-946.
    134. Mizutani H, K Saraboji, S M M Sony, M N Ponnuswamy, T Kumarevel, et al. Systematic study on crystal-contact engineering of diphthine synthase:Influence of mutations at crystal-packing regions on x-ray diffraction quality. Acta Crystallographica Section D-Biological Crystallography [J].2008, 64:1020-1033.
    135. Moore B, L Zhou, F Rolland, Q Hall, W H Cheng, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science[J].2003,300(5617):332-336.
    136. Morel J B and J L Dangl. The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation[J].1997,4(8):671-683.
    137. Morris K, S A H Mackerness, T Page, C F John, A M Murphy, et al. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal[J].2000,23(5):677-685.
    138. Muramoto Y, A Watanabe, T Nakamura and T Takabe. Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene[J].1999,234(2):315-321.
    139. Nakabayashi K, M Ito, T Kiyosue, K Shinozaki and A Watanabe. Identification of CLP genes expressed in senescing Arabidopsis leaves. Plant and Cell Physiology[J].1999,40(5):504-514.
    140. Nam H G The molecular genetic analysis of leaf senescence. Current Opinion in Biotechnology[J]. 1997,8(2):200-207.
    141.Navabpour S, M B Bagherieh-Najjar and H Soltanloo. Identification of novel genes expressed in brassica napus during leaf senescence and in response to oxidative stress. International Journal of Plant Production[J].2007,1(1):33-42.
    142. Noh Y S and R M Amasino. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology[J].1999,41(2):181-194.
    143. Nooden. The phenomena of senescence and aging. senescence and aging in plants[J].1988,1-50.
    144. Nooden L D, J J Guiamet and I John. Senescence mechanisms. Physiologia Plantarum[J].1997, 101(4):746-753.
    145. Obregon P, R Martin, A Sanz and C Castresana. Activation of defence-related genes during senescence:A correlation between gene expression and cellular damage. Plant Molecular Biology[J].2001,46(1):67-77.
    146. Oh S. A, J H Park, G I Lee, K H Paek, S K Park, et al. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant Journal[J].1997,12(3):527-535.
    147. Okushima Y, I Mitina, H L Quach and A Theologis. Auxin response factor 2 (ARF2):A pleiotropic developmental regulator. Plant Journal[J].2005,43(1):29-46.
    148. Ono K, Nishi,Y.,Watanable,A. and Terashima,l. Possible mechanisms of adaptive leaf senescence. Plant Biol[J].2001,3:234-243.
    149. Ori N, M T Juarez, D Jackson, J Yamaguchi, G M Banowetz, et al. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knottedl under the control of a senescence-activated promoter. Plant Cell[J].1999,11(6):1073-1080.
    150. Page T, G Griffiths and V Buchanan-Wollaston. Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiology [J].2001,125(2):718-727.
    151. Park J H, S A Oh, Y H Kim, H R Woo and H G Nam. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Molecular Biology[J].1998,37(3):445-454.
    152. Parthier B. Jasmonates-hormonal regulators or stress factors in leaf senescence. Journal of Plant Growth Regulation[J].1990,9(1):57-63.
    153.Pasquali G, V Orbovic and J Grosser. Transgenic grapefruit plants expressing the p-apetala3-ipt (GP) gene exhibit altered expression of PR genes. Plant Cell Tissue and Organ Culture[J].2009, 97(2):215-223.
    154. Perrotta G, L Ninu, F Flamma, J L Weller, R E Kendrick, et al. Tomato contains homologues of Arabidopsis cryptochromes 1 and 2. Plant Molecular Biology [J].2000,42(5):765-773.
    155. Pic E, B T de la Serve, F Tardieu and O Turc. Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiology [J].2002,128(1):236-246.
    156. Pogson B J, C G Downs and K M Davies. Differential expression of 2 1-aminocyclopropane-l-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiology[J].1995,108(2):651-657.
    157. Pontier D, S S Gan, R M Amasino, D Roby and E Lam. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology[J].1999,39(6): 1243-1255.
    158. Quirino B F, Y S Noh, E Himelblau and R M Amasino. Molecular aspects of leaf senescence. Trends in Plant Science[J].2000,5(7):278-282.
    159. Quirino B F, J Normanly and R M Amasino. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology[J].1999,40(2):267-278.
    160. Quirino B F, W D Reiter and R D Amasino. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Molecular Biology[J].2001,46(4): 447-457.
    161. Ranwala A P and W B Miller. Effects of gibberellin treatments on flower and leaf quality of cut hybrid lilies. Proceedings of the Eighth International Symposium on Flowerbulbs[J].2002,570: 205-210.
    162. Rao M V and K R Davis. The physiology of ozone induced cell death. Planta[J].2001,213(5): 682-690.
    163. Rao M V, H Lee and K R Davis. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant Journal[J].2002,32(4):447-456.
    164. Richmond A E and A Lang. Effect of kinetin on protein content and survival of detached xanthium leaves. Science[J].1957,125(3249):650-651.
    165. Riese M, O Zobell, H Saedler and P Huijser. SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss physcomitrella patens. Planta[J].2008, 227(2):505-515.
    166. Robatzek S and I E Somssich. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence and defence-related processes. Plant Journal[J].2001,28(2):123-133.
    167. Robatzek S and I E Somssich. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development[J].2002,16(9):1139-1149.
    168. Rolland F, B Moore and J Sheen. Sugar sensing and signaling in plants. Plant Cell[J].2002, 14:S185-S205.
    169. Rosenvasser S, S Mayak and H Friedman. Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of pelargonium cuttings, and the effect of gibberellic acid. Plant Science[J].2006,170(4):873-879.
    170. Ryu S B and X M Wang. Expression of phospholipased during castor bean leaf senescence. Plant Physiology [J].1995,108(2):713-719.
    171. Schmulling T, S Beinsberger, J Degreef, J Schell, H Vanonckelen, et al. Construction of a heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant-tissue. Febs Letters[J].1989,249(2):401-406.
    172. Sexton R and J A Roberts. Cell biology of abscission. Annual Review of Plant Physiology and Plant Molecular Biology[J].1982,33:133-162.
    173. Shalitin D, H Y Yang, T C Mockler, M Maymon, H W Guo, et al. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature[J].2002,417(6890):763-767.
    174. Simeonova E, A Sikora, M Charzynska and A Mostowska. Aspects of programmed cell death during leaf senescence of mono and dicotyledonous plants. Protoplasma[J].2000,214(1-2): 93-101.
    175. Simpson J P, R Di Leo, P K Dhanoa, W L Allan, A Makhmoudova, et al. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: Comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. Journal of Experimental Botany[J].2008,59(9):2545-2554.
    176. Smart C M, S E Hosken, H Thomas, J A Greaves, B G Blair, et al. The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiologia Plantarum[J].1995, 93(4):673-682.
    177. Smart C M, S R Scofield, M W Bevan and T A Dyer. Delayed leaf senescence in tobacco plants transformed with TMR, a gene for cytokinin production in Agrobacterium. Plant Cell[J].1991, 3(7):647-656.
    178. Smigocki A C. Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Molecular Biology [J].1991,16(1):105-115.
    179. Steinitz B, A Ackerman and A Hagiladi. Improved storability of pelargonium cuttings having root primordia. Gartenbauwissenschaft[J].1987,52(6):266-270.
    180. Stessman D, A Miller, M Spalding and S Rodermel. Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynthesis Research[J].2002,72(1):27-37.
    181. Stintzi A and J Browse. The Arabidopsis male-sterile mutant, OPR3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences of the United States of America[J].2000,97(19):10625-10630.
    182. Surplus S L, B R Jordan, A M Murphy, J P Carr, B Thomas, et al. Ultraviolet-B-induced responses in Arabidopsis thaliana:Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell and Environment[J].1998,21(7):685-694.
    183. Sykorova B, G Kuresova, S Daskalova, M Trckova, K Hoyerova, et al. Senescence-induced ectopic expression of the A-tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. Journal of Experimental Botany[J].2008,59(2):377-387.
    184. Synkova H, S Semoradova, R Schnablova, E Witters, M Husak, et al. Cytokinin-induced activity of antioxidant enzymes in transgenic pssu-ipt tobacco during plant ontogeny. Biologia Plantarum[J]. 2006,50(1):31-41.
    185. Takahashi Y, T Berberich, K Yamashita, Y Uehara, A Miyazaki, et al. Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the tobacco mosaic virus-induced hypersensitive response and during leaf and flower-senescence. Plant Molecular Biology[J].2004,54(4):613-622.
    186. Tamaoki M, S Kusaba, Y KanoMurakami and M Matsuoka. Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant and Cell Physiology [J].1997,38(8):917-927.
    187. Tang D Z, K M Christiansen and R W Innes. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology [J].2005,138(2):1018-1026.
    188. Tavakoli N, C Kluge, D Golldack, T Mimura and K J Dietz. Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunite as well as subunita. Plant Journal[J].2001,28(1):51-59.
    189. Taylor C B, P A Bariola and P J Green. RNS2-a senescence-associated RNase of Arabidopsis that diverged from the s-RNase before speciation. Plant Physiology[J].1993,102(1):11-11.
    190. Thomas H. Sid-a mendelian locus controlling thylakoid membrane disassembly in senescing leaves of festuca-pratensis. Theoretical and Applied Genetics[J].1987,73(4):551-555.
    191. Thomas H and C J Howarth. Five ways to stay green. Journal of Experimental Botany [J].2000, 51:329-337.
    192. Thomas H, H J Ougham and TGE Davies. Leaf senescence in a nonyellowing mutant of festuca-pratensis transcripts and translation products. Journal of Plant Physiology[J].1992,139(4): 403-412.
    193. Thompson J E, C D Froese, E Madey, M D Smith and Y W Hong. Lipid metabolism during plant senescence. Progress in Lipid Research[J].1998,37(2-3):119-141.
    194. Tsuchiya T, H Ohta, K Okawa, A Iwamatsu, H Shimada, et al. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America[J]. 1999,96(26):15362-15367.
    195. Tucker E B, M Lee, S Alli, V Sookhdeo, M Wada, et al. UV-A induces two calcium waves in physcomitrella patens. Plant and Cell Physiology[J].2005,46(8):1226-1236.
    196. Turner J G, C Ellis and A Devoto. The jasmonate signal pathway. Plant Cell[J].2002, 14:S153-S164.
    197. Ueda J and J Kato. Isolation and identification of a senescence-promoting substance from wormwood (artemisia-absinthiuml). Plant Physiology[J].1980,66(2):246-249.
    198. Uenaka H, M Wada and A Kadota. Four distinct photoreceptors contribute to light-induced side branch formation in the moss physcomitrella patens. Planta[J].2005,222(4):623-631.
    199. Van der Graaff E, R Schwacke, A Schneider, M Desimone, UI Flugge, et al. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology [J].2006,141(2):776-792.
    200. van Doom W G. Plant programmed cell death and the point of no return. Trends in Plant Science[J]. 2005,10(10):478-483.
    201. Wang K L C, H Li and J R Ecker. Ethylene biosynthesis and signaling networks. Plant Cell[J]. 2002,14:S131-S151.
    202. Wang T W, L Lu, D Wang and J E Thompson. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. Journal of Biological Chemistry[J].2001,276(20):17541-17549.
    203. Weaver L M, S S Gan, B Quirino and R M Amasino. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology[J].1998,37(3):455-469.
    204. Wesley S V, C A Helliwell, N A Smith, M B Wang, D T Rouse, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant Journal[J].2001,27(6):581-590.
    205. Whyte P and L C Luckwill. A sensitive bioassay for gibberellins based on retardation of leaf senescence in rumex obtusifolius. Nature[J].1966,210(5043):1360-1360.
    206. Wingler A, A von Schaewen, R C Leegood, P J Lea and W P Quick. Regulation of leaf senescence by cytokinin, sugars, and light effects on NADH-dependent hydroxypyruvate reductase. Plant Physiology[J].1998, 116(1):329-335.
    207. Woo H R, K M Chung, J H Park, S A Oh, T Ahn, et al. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell[J].2001,13(8):1779-1790.
    208. Woo H R, C H Goh, J H Park, B T de la Serve, J H Kim, et al. Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant Journal[J].2002,31(3):331-340.
    209. Woolhouse H W. The biochemistry and regulation of senescence in chloroplasts. Canadian Journal of Botany-Revue Canadienne De Botanique[J].1984,62(12):2934-2942.
    210. Xiao W Y, J Sheen and J C Jang. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology[J].2000,44(4):451-461.
    211. Xie D X, B F Feys, S James, M Nieto-Rostro and J G Turner. Coil: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science[J].1998,280(5366):1091-1094.
    212. Xu Y, J Tian, T Gianfagna and B R Huang. Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (agrostis stoloniferal.) under heat stress. Plant Growth Regulation[J].2009,57(3):281-291.
    213. Yamaguchi M, B Valliyodan, J Zhang, M E Lenoble, O Yu, et al. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell and Environment[J].2010,33(2):223-243.
    214. Yamaguchi S, M W Smith, R G S Brown, Y Kamiya and T P Sun. Phytochrome regulation and differential expression of gibberellin 3 beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell[J].1998,10(12):2115-2126.
    215. Yang S H, T Berberich, H Sano and T Kusano. Specific association of transcripts of TBZFand TBZ17, tobacco genes encoding basic region leucine zipper-type transcriptional activators, with guard cells of senescing leaves and/or flowers. Plant Physiology[J].2001,127(1):23-32.
    216. Yang T B and B W Poovaiah. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. Journal of Biological Chemistry [J].2000,275(49): 38467-38473.
    217. Ye Z Z, R Rodriguez, A Tran, H Hoang, D de los Santos, et al. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Science[J].2000,158(1-2):115-127.
    218. Yen C H and C H Yang. Evidence for programmed cell death during leaf senescence in plants. Plant and Cell Physiology[J].1998,39(9):922-927.
    219. Yoshida S, M Ito, J Callis, I Nishida and A Watanabe. A delayed leaf senescence mutant is defective in arginyl-tRNA:Protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant Journal[J].2002,32(1):129-137.
    220. Yoshida S, M Ito, I Nishida and A Watanabe. Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana. Plant and Cell Physiology[J].2001,42(2):170-178.
    221. Yoshida S, M Ito, I Nishida and A Watanabe. Identification of a novel gene hysl/cpr5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. Plant Journal[J].2002,29(4): 427-437.
    222. Zandonadi D B, L P Canellas and A R Facanha. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta[J]. 2007,225(6):1583-1595.
    223. Zeevaart J A D and R A Creelman. Metabolism and physiology of abscisic-acid. Annual Review of Plant Physiology and Plant Molecular Biology[J].1988, 39:439-473.
    224. Zhang J, T Van Toai, L Huynh and J Preiszner. Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Molecular Breeding[J].2000,6(2):135-144.
    225. Zhang Y C, S F Gong, Q H Li, Y Sang and H Q Yang. Functional and signaling mechanism analysis of rice cryptochrome 1. Plant Journal[J].2006,46(6):971-983.
    226. Zhu Y X, Y F Zhang, J C Luo, P J Davies and D T H Ho. PPF-1, a post-floral-specific gene expressed in short-day-grown G2 pea, may be important for its never-senescing phenotype. Gene[J].1998,208(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700