高压下Ⅱ-Ⅵ族化合物CdX(X=S、Se、Te)的电输运性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Electrical Transport Property of Ⅱ-Ⅵ Group CdX (X=S, Se, Te) under High Pressure
  • 作者:贺春元
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2007
  • 导师:高春晓
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-12-01
  • 答辩委员会主席:范希武
摘要
本论文利用薄膜沉积和光刻技术,创建了基于金刚石对顶砧装置的高压原位阻抗谱测量方法。通过选择薄膜电极,克服了电极不稳定性对阻抗测量的影响,在金刚石对顶砧上实现了高压原位阻抗谱测量,将测量的压力范围从几个GPa提高到30GPa,为高温高压下物质电输运性质的研究创造了条件,是一项技术创新。利用这一技术创新,本论文系统地研究了II-VI族化合物CdX(X=S、Se、Te)在高压下的电输运性质,给出了高压下CdX各个亚稳相的电阻率随压力的变化关系,对各相的导电属性进行了标定,确定了金属化的压力,绘出了禁带宽度随压力的变化曲线,特别是对多晶样品中晶界对电阻的贡献进行了分离,给出了晶界电阻随压力的变化规律,并给予了合理的物理解释。本论文的研究表明:直流法和交流阻抗谱法都能有效地反映晶体在高压下发生的相变;高压下晶体本身性质的变化会对晶界的性质产生显著的影响,导致晶界电阻和弛豫频率的改变。
With the development of science and technology, more and more measurement can be performed in diamond anvil cells (DACs), such as X-ray diffraction, Raman scattering, Brillouin scattering et can all be in-situ measured at high pressure and high temperature. These increasingly mature techniques have led to a great improvement in the research of high pressure physics. However, the development of high pressure electrical measurement is slow and it focuses on the DC (direct current) measurement. The high pressure AC (alternate current) impedance spectroscopy (IS) measurement technology is still a blank. Although there are some reports about the high pressure IS measurement performed in high pressure apparatus with big sample chamber, the pressure and temperature can be realized is restricted, usually not beyond 10GPa and 1500K. In this thesis, for solving above problems, using the mature film deposition and photolithograph techniques, we introduce IS measurement technique into DACs, set up a high pressure IS measurement system, and realize high pressure ACIS measurement. By this technology innovation, the electrical transport behavior is investigated systematically at high pressure on the samples of CdS, CdSe and CdTe.
     Using thin film sputtering and photolithograph techniques we adopt integration method and directly integrate the measurement circuit on the anvil of DAC. We substitute film electrode for bulk electrode like metal foil or lead and check the contact condition using the V-I (voltage-ampere) test all-the-time. The results indicate that the electrode test remains linear. This proves that the electrode was stable at high pressure and has no effect on the IS measurement. In addition, by open and short circuit tests, we supply the parameters of parasitic impedance of our system. The results indicate that the inductance from leads appears obvious only at the frequency high than 104Hz, and is only 60ohm at the highest frequency. So when the sample to be measured has a low conductance, the leads inductance can be neglected. But when the conductance is higher than several hundreds ohm-1, it must be concerned. The parasitic impedance from sample chamber is 100kohm at frequency low than 1MHz. For the sample with high conductance, it can be neglected. For the sample with low conductance or in high frequency region, the parasitic impedance can be eliminated by a parallel capacitance. So for different matters measured, we adopt corresponding method, and the effect of measurement system on the impedance measurement is excluded.
     The investigation results of the electrical transport property of II-VI group semiconductors CdX(X=S、Se、Te)under high pressure is followed: From the DC measurement results we find that our experimental results are much more abundant than before. We observe the sharp drop of resistivity at 2GPa (CdS), 2.6GPa (CdSe), 3.5GPa and 10GPa (CdTe) which is agreeable with previous results. They are due to the structural phase transitions of samples. For CdS three new inflexions of resistivity are observed at 8GPa, 14GPa and 21GPa, respectively. They are caused by the change of energy band structure of CdS at high pressure. For CdSe and CdTe, abnormal changes of resistivity appear at 9.8GPa, 17GPa and 7GPa, 15GPa, 22GPa, respectively, which are never reported. We think they attribute to the electronic phase transition of CdSe and CdTe.
     The temperature dependence of the DC resistance at high pressure shows that for CdS, its high pressure phases all exhibit semiconducting characteristic. For CdSe, it has a positive temperature coefficient in the temperature range from ambient temperature to 150K. For CdTe, its rock-salt phase shows typical semiconducting property. At 11GPa CdTe still has positive temperature coefficient due to the existence of mixed phases. By fitting to the curve of the temperature dependence of resistivity, the activation energy and band gap can be figured out. For CdSe, we find that the decrease trend of band gap with pressure is more and more slow, and deduce that the metallization pressure is above 70GPa. For CdTe, the activation energy of rock-salt phase increases with pressure, and the band gap at 6.4GPa is figured out to be about 445meV.
     From the ACIS measurement results we find that for the three samples, there are all two impedance semicircle arcs in the Nyquist representation. It indicates that there exist two conduction processes, grain interior conduction and grain boundary conduction. Just because of the different resistivity of samples at high pressure, the ratio of the two impedance arcs is different. By choosing appropriate representation and equal circuit, the pressure dependence of grain interior conductance is obtained. The results indicate that the phase transitions observed by DC measurement can be observed by ACIS measurement. This indicates that these two measurement methods obtain the same results. They all reflect the electrical property of sample itself. The ACIS can distinguish the grain boundary effect and obtain the accurate sample resistance.
     The impedance spectroscopy study of CdS under high pressure shows that the grain boundary resistance and grain boundary relaxation frequency which all descript the grain boundary property appear obvious change before and after phase transition occurred. Before the phase transition the grain boundary resistance decreased with pressure promptly, while after the phase transition it decreased much smoothly. The relaxation frequency of grain boundary firstly increased with pressure, and was followed by a transition region and then increased with pressure again. By fitting to the pressure dependence of grain boundary relaxation frequency we obtained the pressure dependence of grain boundary activation energy. Before phase transition the activation energy of the grain boundary increases with pressure and then remains constant from 8.0GPa to 11.60GPa. After 11.60GPa, on the contrary, the activation energy decreases with pressure. This indicates that in the pressure range of 3.7GPa ~ 8.0GPa, the pressure has a positive contribution to the activation energy and makes the transport of charge carriers difficult. After 11.60GPa the activation energy decreases with increasing pressure and the transport of charge carriers through the boundary becomes easier. So it indicates that pressure and the change of crystal itself all affect the property of grain boundary obviously, and induce the change of gain boundary resistance and relaxation frequency.
     From the dielectric property study of CdS under high pressure we find that under high pressure two extrinsic relaxation processes were observed: contact relaxation and grain boundary relaxation processes. The grain boundary relaxation always existed at high pressure, while the contact relaxation disappeared after 11.59GPa. By excluding these two extrinsic relaxation processes, the pressure dependence of static average dielectric constant was obtained, which reflected the intrinsic dielectric property of CdS under high pressure. Between 2.7GPa and 3.69GPa, the dielectric constant rises with pressure, this attributes to the structural phase transition from wurtzite to rock-salt phase [21], after that it has a slight decrease with pressure up to about 10GPa. At 10.53GPa the dielectric constant rises again and then followed by a slow decrease until 13.89GPa. With the pressure further increasing, the dielectric constant decreases gradually from 1.9×105 at 13.89GPa to 7.5×104 at 19.70GPa and levels above 19.70GPa. The complex change of dielectric constant is due to the change of band gap fromΣν→Χc to Lν→Χc at high pressure.
     In summary, we integrate a microcircuit on DACs for high pressure impedance spectroscopy measurement, and have a test on CdS, CdSe and CdTe. The result of this thesis not only expands the pressure range of impedance spectroscopy measurement from several GPa to decade GPa, but also set up the technology basis of high pressure and high temperature impedance spectroscopy measurement.
引文
[1] 曹楚南,张鉴清 著 电化学阻抗谱导论,北京:科学出版社,2002。
    [2] E. Krasicka, D. Inman and R. V. Kumar, Copper deoxidation with calcium carbide melts: electrochemical reactions, J. Appl. Electrochem. 2001, 31(10):1155.
    [3] Z. Ezerskis and Z. Jusys, Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: A cyclic voltammetry study, J. Appl. Electrochem. 2001, 31(10): 1117.
    [4] E. Chassaing, F. Basile and G. Lorthioir, Study of Ti(III) solutions in various molten alkali chlorides. I. Chemical and electrochemical investigation, J. Appl. Electrochem. 1981, 11(2): 187.
    [5] F. R. Clayton, G. Mamamtov and D. L. Maning, Electrochemical studies of titanium in molten fluorides, J. Electrochem. Soc. 1973, 120(9): 1193.
    [6] 刘永辉,电化学测试技术[M],北京:北航出版社,1986,63-233。
    [7] 张祖训,汪尔康.电化学原理和方法[M],北京:科学出版社,2000,55-98。
    [8] 王淑兰,交流阻抗谱研究熔渣及陶瓷材料的性质[D],东北大学,1999,1-69。
    [9] 吴浩青,李永航.电化学动力学[M],北京:高等教育出版社,1995,145-171。
    [10] 田昭武,电化学研究方法[M],北京:科技出版社,1984,250-276。
    [11] 崔晓莉,江志裕,交流阻抗谱的表示及应用[J],上海师范大学学报(自然科学版),2001,30(4):53-54。
    [12] 张亚利,孙典亭,电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则[J],青岛大学学报,2000,15(3):1-7。
    [13] 张亚利,孙典亭,郭国霖等,电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则{11}含有 Warbug 阻抗的等效电路的变换[J],高等学校化学学报,2000,21 (7):1086- 1092。
    [14] 宋光铃,曹楚南,林海潮,电化学控制条件下不可逆过程交流阻抗的统一换算电路和电化学参数解析[J],中国腐蚀与防护学报,1994,14(2):113-122。
    [15] G. R. Olhoeft, Low-frequency electrical properties, Geophysics, 1985, 50(12), 2492-2503.
    [16] R. J. Knight and A. Nur, The dielectric constant of sandstones, 60 kHz to 4 MHz, Geophysics, 1987, 52 (5):644-654.
    [17] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of polycrystalline olivine compacts, J. Geophys. Res. 1991, 96(B10): 16205-16222.
    [18] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity, Phys. Chem. Minerals, 1993,19(11): 545-561.
    [19] J. J. Roberts and J. A. Tyburczy, Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport, Phys. Chem. Minerals, 1993, 20: 19-26.
    [20] J. S. Hubener and R. G. Dillenburg, Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra, American Mineralogist, 1995, 80: 46-64.
    [21] Y. S. Xu, B. T. Poe and T. S. Shankland, Electrical conductivity of olivine, Wadsleyite, and Ringwoodite under upper-mantle conditions, Science, 1998, 280: 1415-1418.
    [22] T. J. Shankland and H. S. Waff, Partital melting and electrical conductivity anomalies in the upper mantle, J. Geophys. Res.1977, 82: 5409-5417.
    [23] R. N. Schock, A. G. Dura, H. C. Heard, M. Manghnani and S. Akimoto, High pressure Research: Application in Geophysics [C]. Academic, San Diego, 1977, 39-51.
    [24] D. C. Presnall, C. L. Simmons, and H. Porath, Changes in electrical conductivity of a synthetic basalt during melting, J. Geophys. Res. 1972, 77: 5665-5672.
    [25] H. S. Waff, Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res. 1974, 79(26): 4003-4010.
    [26] B. J. Wanamaker and A. G. Duba, Electrical conductivity of polycrystalline olivine containing a silicate glass, Geophys. Res. Lett. 1993, 20(19): 2107.
    [27] J. J. Roberts and J. A. Tyburczy, Partial-melt electrical conductivity: influence of melt composition, J. Geophys. Res. 1999, 104(B4): 7055-7065.
    [28] G. M. Partzsch, F. R. Schilling and J. Arndt, The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations, Tectonophysics, 2000, 317: 189-203.
    [29] J. Maumus, N. Bagdassarov and H. S. Schmeling, Electrical conductivity and partial melting of mafic rocks under pressure, Geochimica et Cosmochimica Acta, 2005, 69(19): 4703-4718.
    [30] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of minerals and partial-melts, Surv. Geophys. 1994, 15: 239-262.
    [31] G. Nover, S. Heikamp, D. Freund. Natural Hazards, 2000, 21: 317.
    [32] Xu Yousheng, Xie Hongsen, Guo Jie, et al., The conductivity of NaCl solution at 0. 4~5. 0 GPa and 25~500℃, Science in China (Series D), 1997, 40(4): 398-402.
    [33] Zheng Haifei, Xie Hongsen, Xu Yousheng, et al., Measurement of electrical conductivity of 0.001 mol NaCl solution under high pressure, Chinese Science Bulletin, 1997, 42(18): 1563-1565.
    [34] 苏根利,谢鸿森,丁东业 等, 高温高压下流体中离子缔合常数的确定 高压物理学报, 1999, 13(Suppl):147-150.
    [35] Hong-Sen Xie, Wen-Ge Zhou, Mao-Xu Zhu, Yong-Gang Liu, Zhi-Dan Zhao and Jie Guo, Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure, J. Phys.: Condens. Matter, 2002, 14(44): 11359-11363.
    [36] N. Bagdassarov and G. Lentz, High pressure behaviour of KHSO studied by electrical impedance spectroscopy, 4Solid State Communications, 2005, 136(1): 16-21.
    [37] N.S.Bagdassarov and N. Dele′pine, α–β Inversion in quartz from low frequency electrical impedance spectroscopy, Journal of Physics and Chemistry of Solids, 2004, 65(8-9): 1517-1526.
    [38] N. Bagdassarov, N. C, H. Freiheit and A. Putnis, Ionic conductivity and pressure dependence of trigonal-to-cubic phase transition in lithium sodium sulphate, Solid State Ionics, 2001, 143(3-4): 285-296.
    [39] 苏根利,谢鸿森,李和平等,高温高压下流体中电解质活度系数的确定[J]。矿物岩石地球化学通报,2000,19(2):25-29。
    [40] 苏根利,谢鸿森,丁东业等,高温高压下流体中离子缔合常数确定[J]。高压物理学报,1999,13(增刊):147-150。
    [41] J. A. Xu, H. K. Mao, and P. M. BELL, High-Pressure Ruby and Diamond Fluorescence: Observations at 0.21 to 0.55 Terapascal, Science, 1986, 232: 1404-1406.
    [42] R. S. Hixson, D. A. Boness, J. W. Shaner and J. A. Moriarty, Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression, Phys. Rev. Lett. 1989, 62(6): 637-640.
    [43] A. P. Jeptcoat, R. J. Hemley and H. M. Mao, X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa, Physica B, 1988, 150: 115-121.
    [44] R. J. Hemley, H. K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland and D. Hauserman, X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures, Science, 1997, 276: 1242-1245.
    [45] R. Richet, J. Xu, and H.K. Mao, Quasi-hydrostatic compression of ruby to 500 Kbar, Phys. Chem. Minerals, 1988, 16: 207-211.
    [46] J. S. Huebner and R. G. Dillenburg, Impedance spectra of hot dry silicate minerals and rock: Qualitative interpretation of spectra, American Mineralogist, 1995, 80: 46-64.
    [47] C.J.M. Rooymans, Structure of the high pressure phase of CdS, CdSe and InSb, Phys. Lett. 1963, 4(3): 186-187.
    [48] Toshihiro Suzuki, Takehiko Yagi, and Syun-iti Akimoto, Compression behavior of CdS and BP up to 68 GPa, J. Appl. Phys. 1983, 54(2): 748-751.
    [49] Stanley W.W.Liu and Sohrab Rabii, Relativistic electronic structure of the NaCl polymorph of CdS, Phys. Rev. B, 1976, 13(4):1675-1680.
    [50] A. L. Edwards and H. G. Drickamer, Effect of Pressure on the Absorption Edges of Some III-V, II-VI, and I-VII Compounds, Phys. Rev. 1961, 122(4): 1149-1157.
    [51] B. Batlogg, A. Jayaraman, J.E. Van Cleve and R.G. Maines, Optical absorption, resistivity, and phase transformation in CdS at high pressure, Phys. Rev. B, 1983, 27(6): 3920-3923.
    [52] G. A. Samara and A. A. Giardini, Compressibility and Electrical Conductivity of Cadmium Sulfide at High Pressures, Phys.Rev.1965, 140(1A): A388-A395.
    [53] Phillip Cervantes and Quentin Williams, Band structure of CdS and CdSe at high pressure, Phys. Rev. B, 1996, 54(24): 17585-17590.
    [54] Jo?o C. C. Abrantes, Jo?o A. Labrincha, and J. R. Frade, An alternative representation of impedance spectra of ceramics, Materials Research Bulletin, 2000, 35(5): 727-740.
    [55] S. Minomura, G. A. Samara, H. G. Drickamer, Temperature Coefficient of Resistance of the High Pressure Phases of Si, Ge, and Some III–V and II–VI Compounds, J. Appl. Phys. 1962, 33(11): 3196-3197.
    [56] A. Jayaraman, W. Klement Jr., and G.C. Kennedy, Melting and Polymorphic Transitions for Some Group II-VI Compounds at High Pressures, Phys. Rev. 1963,130(6): 2277-2283.
    [57] C. F. Cline and D. R. Stephens, Volume Compressibility of BeO and Other II-VI Compounds, J. Appl. Phys. 1965, 36(9): 2869-2873.
    [58] A. Onodera, Rev. Phys. Chem. Japan 1969,32: 65.
    [59] W.C. Yu and P.J. Gielisse, High pressure polymorphism in CdS, CdSe and CdTe, Mat. Res. Bull, 1971, 6(7): 621-638.
    [60] J. R. Mei and V. Lemos, Photoluminescence on CdSe and CdTeunder hydrostatic pressure, Solid State Comm. 1984, 52(9): 785-788.
    [61] S. H. Tlobert and A. P. Alivisatos, Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals, Science, 1994, 265: 373-376.
    [62] S. A. Al’fer and V. F. Skums, Inorg. Mater. 2001, 37: 1237.
    [63] R.J. Nelmes, M.I. McMahon, Semiconductors and Semimetals, 1998, 54: 145.
    [64] I. M.Tsidilk’kovskii, V. V. Shchennikov, and N. G. Gluzman, Fiz.Tverd.Tela (Leningrad) 27, 439 (1985), Sov. Phys. Solid State, 1985, 27: 269.
    [65] O. A. Ignatchenko, A. N. Babushkin, Phys. Solid State, 1993, 35: 1109.
    [66] Zakharov. Oleg, Rubio. Angel and L. Cohen Marvin, Calculated structural and electronic properties of CdSe under pressure, Phys. Rev. B, 1995, 51(8): 4926-4930.
    [67] Jing Zhu Hu, A new high pressure phase of CdTe, Solid State Communications, 1987, 63(6): 471-474.
    [68] R. J. Nelmes, M. I. McMahon, N. G. Wright, and D. R. Allan, Observation of a high-pressure cinnabar phase in CdTe, Phys. Rev. B, 1993, 48(2): 1314-1317.
    [69] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phase transitions in CdTe to 5 GPa, Phys. Rev. B, 1993, 48(22): 16246-16251.
    [70] R. J. Nelmes, M. I. Mcmahon, N. G. Wright, and D. R. Allan, Phase transitions in CdTe to 28 GPa, Phys. Rev. B, 1995, 51(22): 15723-15731.
    [71] Michel C?té, Oleg Zakharov, Angel Rubio, and Marvin L. Cohen,Ab initio calculations of the pressure-induced structural phase transitionsfor four II-VI compounds, Phys. Rev. B, 1997, 55(19): 13025-13031.
    [72] H. S. Güder, S. Gilliland, J. A. Sans, A. Segura, J. González, I. Mora, V. Mu?oz, and A. Mu?oz, Electronic structure and optical properties of CdTe rock-salt high pressure phase, phys. stat. sol. (b), 2003, 235(2): 509–513.
    [73] A. Segura, Correlation between spectroscopic and transport experiments under pressure in II-VI semiconductor (CdTe,ZnO), J. A. Sans, Joint 20th AIRAPT – 43th EHPRG, June 27 – July 1, Karlsruhe/Germany 2005.
    [74] G. A. Samara, Temperature and pressure dependences of the dielectric constants of semiconductors, Phys. Rev. B, 1983, 27(6): 3494-3505.
    [75] G. A. Samara, Temperature and Pressure Dependence of the Dielectric Constants of the Thallous Halides, Phys. Rev. 1968, 165(3): 959-969.
    [76] G. A. Samara, Temperature and pressure dependences of the dielectric properties of PbF2 and the alkaline-earth fluorides, Phys. Rev. B, 1976,13(10): 4529-4544.
    [77] A. Segura and A. Chevy, Large increase of the low-frequency dielectric constant of gallium sulfide under hydrostatic pressure, Phys. Rev. B, 1994-I, 49(7): 4601-4604.
    [78] D. Errandonea, A. Segura, V. Mu?oz and A. Chevy, Effects of pressure and temperature on the dielectric: Role of the electronic contributionTransitions in KH2PO4 and RbH2PO4 to 14 GPa Observed by Capacitance Change in a Diamond Anvil Cell, J. Appl. Phys. 1991, 70(11): 6804.
    [80] H. G. Kreul, S. Urban and A. Würflinger, Dielectric studies of liquid crystals under high pressure: Static permittivity and dielectric relaxation in the nematic phase of pentylcyanobiphenyl (5CB), Phys. Rev. A, 1992, 45(12): 8624-8631.
    [81] M. Paluch, J. Ziolo, S. J. Rzoska and P. Habdas, High-pressure and temperature dependence of dielectric relaxation in supercooled di-isobutyl phthalate, Phys. Rev. E, 1996, 54(4): 4008-4010.
    [82] M. Paluch, S. J. Rzoska, P. Habdas and J. Ziolo, Isothermal and high-pressure studies of dielectric relaxation in supercooled glycerol, J. Phys.: Condens. Mattter, 1996, 8(50): 10885-10890.
    [83] Y. Kobayashi and S.Endo, K.Deguchi, O.Shimomura and T.Kikegawa, Crystal systems and dielectric constants of high-pressure phases of KH2 PO4 , Phys. Rev. B, 1997, 55(5): 2850-2853.
    [84] P. Janik, M. Paluch, J. Ziolo, W. Sulkowski, and L. Nikiel, Low-frequency dielectric relaxation in rubber, Phys. Rev. E, 2001, 64(4): 042502-042505.
    [85] Tatiana Psurek, Stella Hensel-Bielowka and jerzy Ziolo, Marian Paluch, Poland, Decoupling of the dc conductivity and ( -) structural relaxation time in a fragile glass-forming liquid under high pressure, J. Chem. Phys. 2002, 116(22): 9882-9888.
    [86] M. Paluch, C. M. Roland, S. Pawlus, Temperature and pressure dependence of the -relaxation in polymethylphenylsiloxane, J. Chem. Phys. 2002, 116(24): 10932-10937.
    [87] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya, and L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb), J. Appl. Phys. 2003, 93(7): 4130-4136.
    [88] R. H. Chen, Chen-Chieh Yen, C. S. Shern, and T. Fukami, Studies of high-temperature phase transition, electrical conductivity, and dielectric relaxation in (NH4)H2PO4 single crystal, J. Appl. Phys. 2005, 98: 044104.
    [89] Naohiko Yasuda, Md. M. Rahman, Hidehiro Ohwa, Mituyoshi Matsushita, Yohachi Yamashita, Makoto Iwata, Hikaru Terauchi, and Yoshihiro Ishibashi, Pressure-induced suppression of piezoelectric response in a Pb(Zn1/3Nb2/3)O3–PbTiO3 binary system single crystal near a morphotropic phase boundary, Appl. Phys. Lett. 2006, 89:192903.
    [90] Ove Andersson and Akira Inaba, Dielectric properties of high-density amorphous ice under pressure, Phys. Rev. B, 2006,74:184201.
    [91] Yanzhang Ma, Jianjun Liu, Chunxiao Gao, W. N. Mei, Allen D. White and Jahan Rasty, X-ray diffraction measurements in a rotational diamond anvil cell, Appl. Phys. Lett. 2006, 88:191903.
    [92] Aleksandra Drozd-Rzoska, Sylwester J. Rzoska, and Sebastian Pawlus, Dielectric relaxation in compressed glassy and orientationally disordered mixed crystals, Phys. Rev. B, 2006, 74: 064201-064217.
    [93] Ove Andersson, Dielectric Relaxation of Low-Density Amorphous Ice under Pressure, Phys. Rev. Lett. 2007, 98: 057602.
    [94] Guan zhenduo, Zhang zhongtai, and Jiao jinsheng, in Physical Property of Inorganic Materials, Qinghua university publish, ISBN 7-302-00955-1/O·125.
    [95] P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Origin of apparent colossal dielectric constants, Phys. Rev. B, 2002, 66(5): 052105.
    [96] E. H. Rhoderick, in Metal-Semiconductor Contacts, edited byChangtai Wang, Science publish, 1984.
    [97] P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, and A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12 , Phys. Rev. B, 2004, 70:172102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700