微流控芯片及有机发光二极管荧光检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从分析方法和仪器搭建两方面入手,以体现微流控芯片系统快速、高通量、微型化和集成化几个特点为目标,进行了一些探索性工作:
     针对电场力驱动细胞进样效率低的问题,利用储液池液面差引起的静压力驱动细胞向微通道中进样,然后在静压力和电场力共同作用下实现细胞的聚焦和迁移,在十字型微流控芯片上实现了流式细胞检测技术,并用于紫外线照射诱导HeLa细胞凋亡和坏死情况的半定量检测。
     将传统流式细胞仪的各组成部分集成在一块微流控芯片上,发展了以细胞自身的重力为动力,驱动细胞在竖直放置的芯片微管道中运动的模式,避免了电场力驱动时对细胞的损伤作用引起的细胞凋亡,保持了细胞的活性。还发展了根据细胞表面带电荷情况不同,在重力和电场力共同作用下进行细胞分选的模式,并采用流体力学方法对细胞在重力场和电场中的受力和运动情况进行了分析。该系统不必外加泵阀等设备,进一步减小了体积,简化了结构。
     上述微流控芯片流式细胞检测系统虽然通过微加工技术实现功能单元的集成,使得体积大为降低,但该系统采用的激光诱导荧光检测器体积庞大,成为芯片系统微型化的关键问题。针对这一问题,以有机发光二极管(OLED)为激发光源,搭建了用于微流控芯片的微型化荧光检测系统。针对OLED发射光谱范围宽的弱点,设计加工了厚度仅为300μm的激发光滤光片,将干扰荧光检测的激发光滤除~95%。对于Alexa532染料,在进样体积为0.7 nL时,得到的检测限为14 fmol,系统的灵敏度与文献报道的结果相比大幅提高。
     根据OLED器件具有便于加工和可集成的特点,进一步以OLED作为二维光源,建立了微流控芯片等电聚焦(IEF)电泳荧光柱成像检测系统。与文献报道的柱成像检测系统相比体积大为降低,结构也大大简化。该系统可以对IEF过程进行实时动态监测,并实现了快速分离分析,15 s内完成整个聚焦过程和检测。荧光蛋白R-phycoerythrin的检出限约为2.5×10~(-9) mol/L,即进样体积75 nL的绝对检出量约45 pg。此外,还发展了三通道IEF柱成像检测,提高了系统的样品分析通量。
Several novel microfluidic systems including integrated flow cytometors and miniaturized fluorescence detectors using organic light emitting diode as single point or two dimensional light sources were developed for cellular manipulation, apoptotic analysis and whole column imaging detection, respectively.
     A simple cross-channel microchip was employed for flow cytometry and single cell fluorescence detection, where cells were introduced into micro-channels and driven passing through the detector by combined effect of hydrodynamic and electric power. This miniaturized flow cytometor was applied to estimate the damage degree of HeLa cells exposed to ultraviolet (UV) radiation for 10, 20 and 40 min respectively by the number of cells determined and their fluorescence intensity.
     As cells were found damaged in electric field when electric force was employed for driving cells in flow cytometor, a novel microfluidic device based on gravity driving was developed for flow cytometry and cell sorting. In the experiments, cells flowed spontaneously under their own gravity in an upright-put microchip, passed through the detection point and then entered into the sorting electric field one by one at average velocity of 0.55 mm/s for cell sorting. In order to study the dynamical and kinematical characteristics of single cell in gravity and electric field, physical and numerical module based on Newton’s Law of motion was established and optimized. This system was also applied to estimate necrotic and apoptotic effect of UV radiation on HeLa cells and results shown that UV radiation induced membrane damage contributed to apoptosis and necrosis of HeLa cells.
     However, a bulky laser induced fluorescence detection system was still an obstacle for further miniaturization of microfluidic systems. Therefore, a simply fabricated microfluidic device using a green organic light emitting diode (OLED) and thin film interference filter as integrated excitation source was then presented and applied to fluorescence detection of proteins. A layer-by-layer compact systemconsisting of glass/PDMS microchip, pinhole, excitation filter and OLED were designed and equipped with a coaxial optical fiber for fluorescence detection. A 300μm thick excitation filter was employed for eliminating nearly 95% of the unwanted light emitted by OLED which had overlaped with fluorescence spectrum of the dyes. The distance between OLED illuminant and microchannels was limited to ~1mm for sensitive detection. This system was used for fluorescence detection of Rhodamine6G, Alexa532 and BSA conjugates in 4% linear polyacrymide (LPA) buffer (in 1×TBE, pH8.3) and 1.4 fmol of mass detection limit at 0.7nL injection volume for Alexa532 was obtained.
     Although sensitivity achieved by the above OLED induced fluorescence detection system was roughly six orders of magnitude poorer than good laser-induced fluorescence detection in capillary electrophoresis because of its low irradiance and purity, OLEDs have the potential to be used as a two dimensional light source for whole column imaging detection in isoelectric focusing (IEF) systems, which is problematic for lasers and high performance LEDs. So an integrated and simplified microfluidic device using OLED array as the two dimensional light source for single- and multi-channel whole column imaging detection was developed and used for IEF of R-phycoerythrin. The IEF conditions were optimized and the total analysis time was extremely reduced to 15s for 1cm long microchannels at 700V/cm of electric field strength without the presence of electroosmotic flow (EOF). The compression of pH gradient caused by electrolytes drawning into the microchannels was efficiently restrained when 1% of hydroxylpropylmethyl cellulose (HPMC) in 2% ampholyte was used as the carrier for IEF. Under optimized IEF conditions, the detection limit of this system was~2.5×10~(-9)9 mol/Lor 45 pg at 75nL per column injection of R-phycoerythrin.
引文
1. Manz A, Graber N, Widmer H M. Miniaturized total analysis systems: a novel concept for chemical sensing. Sens. Actuator. B, 1990, B1: 244~248
    2. Ruzicka J, Hansen E H. Integrated Microconduits For Flow Injection Analysis, Anal. Chim. Acta, 1984, 161:1~25
    3. 方肇伦. 微流控分析芯片的制作及应用. 北京: 化学工业出版社,2005
    4. 方肇伦. 微流控分析芯片. 北京: 科学出版社,2003
    5. Auroux P A, Iossifidis D, Reyes D R, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 2002, 74(12): 2623~2636
    6. Auroux P A, Iossifidis D, Reyes D R, et al. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 2002, 74(12): 2637~2652
    7. Vilkner T, Janasek D and Manz A. Micro total analysis systems. recent developments. Anal. Chem. 2004, 76(12): 3373~3386
    8. Dittrich P S and Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nature. 2006, 5: 210~218
    9. Eiichiro T, Kiichi S, Manabu T, et al. Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal. Chem. 2002, 74(7): 1560~1564
    10. Yang M S, Li C W, Yang J. Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem. 2002, 74(16): 3991~4001
    11. Huang W H, Cheng W, Zhang Z, et al. Transport, Location, and Quantal Release Monitoring of Single Cells on a Microfluidic Device. Anal. Chem. 2004, 76(2): 483~488
    12. Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab chip. 2004, 4(1): 47~52
    13. Li P C H, Harrison D J. Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects. Anal. Chem. 1997, 69(8), 1564~1568
    14. Lin C H, Lee G B. Micromachined flow cytometers with embedded etched optic fibers for optical detection. J. Micromech. Microeng. 2003, 13(3): 447~453
    15. Lee G B, Hung C I, Ke B J, et al. Hydrodynamic focusing for a micromachined flow cytometer. J. Fluids Engineering. 2001, 123(3): 672~679
    16. Chung S, Park S J, Kim J K, et al. Plastic microchip flow cytometer based on 2-and 3-dimensional hydrodynamic flow focusing. Microsyst. Technol. 2003, 9(8): 525~533
    17. Pamme N, Koyama R, Manz A. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip. 2003, 3(3): 187~192
    18. Wolff A, Perch-Nielsen I R, Larsen U D, et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter . Lab Chip. 2003, 3(1): 22~27
    19. Ocvirk G, Salimi-Moosavi H, Szarka R J, et al. beta-galactosidase assays of single-cell lysates on a microchip: A complementary method for enzymatic analysis of single cells. Proceedings. IEEE, 2004, 92(1): pp115~125
    20. McClain M A, Culbertson C T, Jacobson S C, et al. Flow cytometry of escherichia coli on microfluidic devices. Anal. Chem. 2001, 73(21): 5334~5338
    21. Schrum D P, Culbertson C T, Jacobson S C, et al. Microchip flow cytometry using electrokinetic focusing. Anal. Chem. 1999, 71(19): 4173-4177
    22. Fu L M, Yang R J, Lin C H, et al. Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal. Chim. Acta. 2004, 507(1): 163~169
    23. Fiedler S, Shirley S G, Schnelle T, et al. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 1998, 70(9): 1909~1915
    24. Cui L, Zhang T, Morgan H. Optical particle detection integrated in a dielectrophoretic lab-on-a-chip. J. Micromech. Microeng., 2002, 12(1): 7~12
    25. Wang X B, Yang J, Huang Y, et al. Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. 2000, 72(4): 832~839
    26. Dürr M, Kentsch J, Müller T, et al. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, 2003, 24(4): 722~731
    27. Müller T, Gradl G, Howitz S, et al. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 1999, 14(3): 247~256
    28. Cui L, Holmes D, Morgan H. The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis, 2001, 22(18), 3893~3901
    29. Lapizco-Encinas B H, Simmons B A, Cummings E B, et al. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal. Chem. 2004, 76(6): 1571~1579
    30. Wakamoto Y, Umehara S, Matsumura K, et al. Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers. Sens. Actuator. B. 2003, 96: 693~700
    31. Flynn R A, Birkbeck A L, Gross M, et al. Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers. Sens. Actuator. B. 2002, 87: 239~243
    32. Wang M M, Tu E, Raymond D E, et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 2005, 23 (1): 83~87
    33. Dittrich P S, Schwille P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem. 2003, 75(21): 5767~5774
    34. Wang Z, El-Ali J, Engelund M, et al. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip, 2004, 4: 372~377
    35. Lee G B, Lin C H, Chang S H. Micromachine-based multi-channel flow cytometers for cell/particle counting and sorting. J. Micromech. Microeng. 2005, 15: 447~454
    36. Larsen U, Blankenstein G, Branebjerg J. Solid state sensors and actuators, TRANSDUCERS’97. Chicago, 1997, 2: pp1319~1322
    37. Gawad S, Schild L, Renaud Ph. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip. 2001, 1: 76~82
    38. Saleh O A, Sohna L L. Quantitative sensing of nanoscale colloids using a microchip coulter counter. Rev. Sci. Instrum. 2001, 72(12): 4449~4451
    39. Chun H, Chung T D, Kim H C. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Anal. Chem. 2005, 77(8): 2490~2495
    40. Fu A Y, Spence C, Scherer A, et al. Microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 1999, 17: 1109~1111
    41. Fu A Y, Chou H P, Spence C, et al. An integrated microfabricated cell sorter. Anal. Chem. 2002, 74(11): 2451~2457
    42. Giordano B C, Jin L, Couch A J, et al. Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions. Anal. Chem. 2004, 76(16): 4705~4714
    43. Jin Y, Luo G A. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Electrophoresis. 2003, 24: 1242~1252
    44. Jiang G F, Attiya S, Ocvirk G, et al. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis. Biosens. Bioelectron. 2000, 14(10~11): 861~869
    45. Li H F, Lin J M, Su R G, et al. A compactly integrated laser-induced fluorescence detector for microchip electrophoresis. Electrophoresis. 2004, 25: 1907~1915
    46. He B, Tait N, Regnier F. Fabrication of nanocolumns for liquid chromatography. Anal.Chem. 1998, 70(18): 3790~3797
    47. Xiang F, Lin Y, Wen J, et al. An integrated microfabricated device for dual microdialysis and on-line esi-ion trap mass spectrometry for analysis of complex biological samples, Anal. Chem. 1999, 71(8): 1485~1490
    48. Lazar I M, Ramsey R S, Sundberg S, et al. Subattomole-sensitivity microchip nanoelectrospray source with time-of-flight mass spectrometry detection. Anal. Chem. 1999, 71(17): 3627~3631
    49. Liu J, Tseng K, Garcia B, et al. Electrophoresis separation in open microchannels: a method for coupling electrophoresis with MALDI-MS. Anal. Chem. 2001, 73(9): 2147~2151
    50. Ross P L, Davis P A, Belgrader P. Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 1998, 70(6): 2067~2073
    51. 金亚,罗国安. 微流控芯片与电喷雾质谱联用接口的制作与应用. 分析仪器,2003, 2: 4~10
    52. Kameoka J, Craighead H G, Zhang H W, et al. A polymeric microfluidic chip for ce/ms determination of small molecules. Anal. Chem. 2001, 73(9): 1935~1941
    53. Mogensen K B, Petersen N J, Hubner J, et al. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis. 2001, 22(18): 3930~3938
    54. Salimi-Moosavi H, Jiang Y T, Lester L, et al, A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis. 2000, 21(7): 1291~1299
    55. Ludwig M, Kohler F, Belder D. High-speed chiral separations on a microchip with UV detection. Electrophoresis. 2003, 24(18): 3233~3238
    56. Nakanishi H, Nishimoto T, Arai A, et al. Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems. Electrophoresis. 2001, 22(2): 230~234
    57. Petersen N J, Mogensen K B, Kutter J P. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis. 2002, 23(20): 3528~3536
    58. Végvári á, Hjertén S. A hybrid microdevice for electrophoresis and electrochromatography using UV detection. Electrophoresis. 2002, 23(20): 3479~3486
    59. Schulze P, Ludwig M, Kohler F, et al. Deep UV Laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem. 2005, 77(5): 1325~1329
    60. 金亚, 罗国安. 微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用. 高等学校化学学报. 2003, 24(7): 1180~1184
    61. ?lvecká E, Maser M, Kaniansky D, et al. Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis. 2001, 22(15): 3347~3353
    62. Wang J, Zima J, Lawrence N S, et al. Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of V-type nerve agents. Anal. Chem. 2004,76(16): 4721~4726
    63. Garcia C D, Henry C S. Comparison of pulsed electrochemical detection modes coupled with microchip capillary electrophoresis. Electroanalysis. 2005,17 (3): 223~230
    64. Hompesch R W, Garcia C D, Weiss D J, et al. Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. Analyst. 2005, 130 (5): 694~700
    65. Tanyanyiwa J, Abad-Villar E M, Hauser P C. Contactless conductivity detection of selected organic ions in on-chip electrophoresis. Electrophoresis. 2004, 25(6): 903~908
    66. Tanyanyiwa J, Hauser P C. Capillary and microchip electrophoresis of basic drugs with contactless conductivity detection. Electrophoresis. 2004, 25(17): 3010~3016
    67. Yan J L, Yang X R, Wang E K. Electrogenerated chemiluminescence on microfluidic chips. Anal. Bioanal. Chem. 2005, 381: 48~50
    68. 聂 舟, 何治柯, 庞代文, 等. 微流控芯片化学发光检测系统研究. 分析科学学报. 2003, 19(4): 321~323
    69. Liu B F, Ozaki M, Utsumi Y, et al. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal. Chem. 2003, 75(1): 36~41
    70. Davidsson R, Genin F, Bengtsson M, et al. Microfluidic biosensing systems Part I. Development and optimisation of enzymatic chemiluminescent m-biosensors based on silicon microchips. Lab Chip. 2004, 4: 481~487
    71. Liu B F, Ozaki M, Hisamoto H, et al. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal. Chem. 2005, 77(2): 573~578
    72. 颜流水, 梁宁, 罗国安, 等. 整体式PDMS 电泳芯片快速成型及高灵敏化学发光检测氨基酸. 高等学校化学学报. 2003, 24(7): 1193~1197
    73. Qiu H B, Yin X B, Yan J L, et al. Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis. Electrophoresis. 2005, 26(3): 687~693
    74. Verpoorte E. Chip vision-optics for microchips. Lab Chip. 2003, 3(3): 42N~52N
    75. Nussbaum Ph, V?lkel R, Herzig H P, et al. Design, fabrication and testing of microlens arrays for sensors and Microsystems. Pure Appl. Opt. 1997, 6: 617~636
    76. Roulet J C, V?lkel R, Herzig H P, et al. Microlens systems for fluorescence detection inchemical Microsystems. Opt. Eng. 2001, 40(5): 814~821
    77. Roulet J C, V?lkel R, Herzig H P, et al. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems. Anal. Chem. 2002, 74(14): 3400~3407
    78. Camou S, Fujita H, Fujii T. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip, 2003, 3: 40~45
    79. Yang P D, Wirnsberger G, Huang H C, et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science. 2000, 287(21): 465~467
    80. Mogensen K B, Jorgensen A M. et al. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels. Rev. Sci. Instrum. 2001, 72(1): 229~233
    81. Ruano J M, Benoit V, Aitchison J S, et al. Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices. Anal. Chem. 2000, 72(5): 1093~1097
    82. Ruano J M, Glidle A, Cleary A, et al. Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform. Biosens. Bioelectron. 2003, 18: 175~184
    83. Mogensen K B, Kwok Y C, Eijkel J C T, et al. A microfluidic device with an integrated waveguide beam splitter for velocity measurements of flowing particles by fourier transformation. Anal. Chem. 2003, 75(18): 4931~4936
    84. Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis device. Science. 1998, 282(16): 484~487
    85. Hsueh Y T, Collins S D, Smith R L. DNA quantification with an electrochemiluminescence microcell. Sens. Actuator. B. 1998, 49: 1~4
    86. Schabmueller C G J, Pollard J R, Evans A G R, et al. Integrated diode detector and optical fibres for in situ detection within micromachined polymerase chain reaction chips. J. Micromech. Microeng. 2001, 11: 329~333
    87. Webster J R, Burns M A, Burke D T, et al. Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal. Chem. 2001, 73(7): 1622~1626
    88. Chabinyc M L, Chiu D T, McDonald J C, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 2001, 73: 4491~4498
    89. Adams M L, Enzelberger M, Quake S, et al. Microfluidic integration on detector arrays for absorption and fluorescence micro spectrometers. Sens. Actuator. A. 2003, 104 (1): 25~31
    90. 富景林,方群,黄艳贞. 高等学校化学学报(增刊). 2004, 25: 95
    91. Camou S, Kitamura M, Arakawa Y, et al. Integration of OLED light source and optical fibers on a pdms based microfluidic device for on-chip fluorescence detection. 7th International Conference on Miniaturized Chemical and Blochemlcal Analysts Systems. 2002, California, USA, pp.383~386
    92. Kim JH, Shin KS, Paek KK, et al. An advanced microchip with organic light emitting diodeintegrated on a microchannel for application in the fluorescence detection. Proceedings of micro TAS 2004. Cambridge, UK, pp.428~430
    93. Edel JB, Beard NP, Hofmann O, et al. Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis. Lab Chip, 2004, 4:136~140
    94. Wang S L, Huang X J, Fang Z L. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal. Chem. 2001, 73: 4545-4549
    95. Wehr T, Rodríguez-Díaz R, Zhu M D. Capillary electrophoresis of proteins. Marcel Dekker: Basel, 1998
    96. Zhu M D, Wehr T, Levi V, et al. Capillary electrophoresis of abnormal haemoglobins associated with alpha-thalassemias. J. Chromatogr. A 1993, 652: 119~129
    97. Huang T L, Shieh P C H, Cooke N. Isoelectric-focusing of proteins in capillary electrophoresis with pressure-driven mobilization. Chromatographia 1994, 39(9-10): 543~548
    98. Tang Q, Lee C S. Effects of electroosmotic flow on zone mobilization in capillary isoelectric focusing. J. Chromatogr. A. 1997, 78(1-2): 113~118
    99. Wang T, Hartwick R A. Whole Column Absorbance Detection in Capillary Isoelectric Focuslng. Anal. Chem. 1992, 64(15): 1745~1747
    100.Beale S C, Sudmeier S J. Spatial-scanning laser fluorescence detection for capillary electrophoresis. Anal. Chem. 1995, 67 (18): 3367~3371
    101.Wu J, Tragas C, Watson A, et al. Capillary isoelectric focusing with whole column detection and a membrane sample preparation system. Anal. Chim. Acta. 1999, 383: 67~78
    102.Wu J, Pawliszyn J. Dual Detection for Capillary Isoelectric Focusing with Refractive Index Gradient and Absorption Imaging Detectors. Anal. Chem. 1994, 66(6): 867~873
    103.Mao Q L, Pawliszyn J. Capillary isoelectric focusing with whole column imaging detection for analysis of proteins and peptides. J. Biochem. Biophys. Methods. 1999, 39(1~2): 93~110
    104.Wu X Z, Wu J, Pawliszyn J. Fluorescence imaging detection for capillary isoelectric-focusing. Electrophoresis. 1995, 16(8): 1474~1478
    105.Huang T, Pawliszyn J. Axially illuminated fluorescence imaging detection for capillary isoelectric focusing on Teflon capillary. Analyst. 2000, 125(7): 1231~1233
    106.Sze N S K, Huang T, Pawliszyn J. Laser-induced fluorescence detection of noncovalently labeled protein in capillary isoelectric focusing. J. Sep. Sci. 2002, 25(15~17): 1119~1122
    107.Liu Z, Pawliszyn J. Capillary isoelectric focusing of proteins with liquid core waveguide laser-induced fluorescence whole column imaging detection. Anal. Chem. 2003, 75(18): 4887~4894
    108.Liu Z, Pawliszyn J. Coupling of solid-phase microextraction and capillary isoelectricfocusing with laser-induced fluorescence whole column imaging detection for protein analysis. Anal. Chem. 2005, 77(1): 165~171
    109.Hofmann O, Che D P, Cruickshank K A, et al. Adaptation of Capillary Isoelectric Focusing to Microchannels on a Glass Chip. Anal. Chem. 1999, 71(3): 678~686
    110.Cui H C, Horiuchi K, Dutta P, et al. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip. Anal. Chem. 2005, 77(5): 1303~1309
    111.Cui H C, Horiuchi K, Dutta P, et al. Multistage isoelectric focusing in a polymeric microfluidic chip, Anal. Chem. 2005, 77(24): 7878~7886
    112.Macounová K, Cabrera C R, Yager P. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Anal. Chem. 2001, 73(7): 1627~1633
    113.Wang Y C, Choi M H, Han J Y. Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves. Anal. Chem. 2004, 76(15): 4426~4431
    114.Herr A E, Molho J I, Drouvalakis K A, et al. On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. Anal. Chem. 2003, 75(5): 1180~1187
    115.Chen X X, Wu H W, Mao C D, et al. A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal. Chem. 2002, 74(8): 1772~1778
    116.Mao Q L, Pawliszyn J. Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection, Analyst, 1999, 124: 637~641
    117.Wu X Z, Sze N S K, Pawliszyn J. Miniaturization of capillary isoelectric focusing. Electrophoresis. 2001, 22: 3968~3971
    118.Manz A, Miyahara Y, Miura J, et al. Design of an. open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuator. 1990, B1: 249~255.
    119.Jacobson S C, Moore A W, Ramsey J M. fused quartz substrates for microchip electrophoresis. Anal. Chem. 1995, 67 (13): 2059~2063
    120.Fluri K, Fitzpatrick G, Chiem N, et al. Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. Anal. Chem. 1996, 68 (23): 4285~4290
    121.Jacobson S C, Hergenr?der R, Koutny L B, et al. open-channel electrochromatography on a microchip. Anal. Chem. 1994, 66 (14): 2369~2373
    122.Jacobson S C, Hergenr?der R, Koutny L B, et al. High-speed separations on a microchip. Anal. Chem. 1994, 66 (7): 1114~1118
    123.Effenhauser C S, Bruin G J M, Paulus A. Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal. Chem. 1997, 69(17): 3451~3457.
    124.颜流水, 梁 宁, 罗国安, 等. 整体式PDMS 电泳芯片快速成型及高灵敏化学发光检测氨基酸. 高等学校化学学报, 2003, 24(7): 1193~1197
    125.Duffy D C, McDonald J C, Schueller O J A. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70(23): 4974~4984.
    126.Martynova L, Locascio L E, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 1997, 69(23): 4783~4789
    127.Roberts M A, Rossier J S, Bercier P, et al. UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69(11): 2035~2042.
    128.Barker S L R, Tarlov M J, Canavan H, et al. Plastic Microfluidic Devices Modified with Polyelectrolyte Multilayers. Anal. Chem. 2000, 72(20): 4899~4903
    129.He B, Tait N, Regnier F. Fabrication of nanocolumns for liquid chromatography. Anal. Chem. 1998, 70(18): 3790~3797
    130.He B, Tait N, Regnier F. Microfabricated filters for microfluidic analytical systems. Anal. Chem. 1999, 71(7): 1464~1468
    131.Wu H K, Odom T W, Whitesides G M. Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask. J. Am. Chem. Soc. 2002, 124: 7288~7289
    132.Wu H K, Odom T W, Whitesides G M. Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography. Anal. Chem. 2002, 74(14): 3267~3273
    133.Anderson J R, Chiu D T, Jackman R J, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 2000, 72(14): 3158~3164.
    134.Martynova L, Locascio LE, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 1997, 69 (23): 4783~4789
    135.杜晓光, 关艳霞, 王福仁, 等. 聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法. 高等学校化学学报. 2003, 24(11): 1962~1966
    136.Liu Y J, Ganser D, Schneider A, et al. Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem. 2001, 73 (17): 4196~4201
    137.Xia Y, Whitesides G M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37: 550 ~575
    138.Roberts M A, Rossier J S, Bercier P, et al. UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. Anal. Chem. 1997, 69(11): 2035~2042
    139.Ford S M, Kar B, McWhorter S, et al. Microcapillary electrophoresis devices fabricated using polymeric substrates and X-ray lithography. J. Microcol. Sep. 1998, 10 (5): 413~422
    140.Lin Y C, Li M, Chung M T, et al. Real-time microchip polymerase-chain-reaction system. Sens. Mater. 2002, 14 (4): 199~208
    141.Berthold A, Nicola L, Sarro P M, et al. Glass-to-glass anodic bonding with standard ICtechnology thin films as intermediate layers. Sens. Actuator. 2000, 82: 224~228
    142.Ostman P, Marttila S J, Kotiaho T, et al. Microchip atmospheric pressure chemical ionization source for mass spectrometry. Anal. Chem. 2004, 76 (22): 6659~6664
    143.殷学锋, 沈宏, 方肇伦. 制造玻璃微流控芯片的简易加工技术. 分析化学. 2003, 31(1): 116~119
    144.Jia Z J, Fang Q, Fang Z L. Bonding of Glass Microfluidic Chips at Room Temperatures. Anal. Chem. 2004, 76(18): 5597~5602
    145.Nakanishi H, Nishimoto T, Kanai M, et al. Condition optimization, reliability evaluation of SiO2-SiO2HF bonding and its application for UV detection micro flow cell. Sens. Actuator. A. 2000, 83 (1~3): 136~141
    146.Wang H Y, Foote R S, Jacobson S C, et al. Low temperature bonding for microfabrication of chemical analysis devices. Sens. Actuator. B. 1997, 45 (3): 199~207
    147.Sayah A, Solignac D, Cueni T, et al. Development of novel low temperature bonding technologies for microchip chemical analysis applications. Sens. Actuator. A. 2000, 84: 103~108
    148.孟斐, 陈恒武, 方 群, 等. 聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究, 高等学校化学学报. 2002, 23(7): 1264~1268
    149.Chen L, Ren J C, Bi R, et al. Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips. Electrophoresis. 2004, 25: 914~921
    150.Unger M A, Chou H P, Thorsen T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000, 288(5463): 113~116
    151.叶美英, 方群, 殷学峰, 等. 聚二甲基硅氧烷基质微流控芯片封接技术的研究. 高等学校化学学报, 2002, 23(12): 2243~2246
    152.Bink K, Walch A, Feuchtinger A, et al. TO-PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections. Histochem. Cell Biol. 2001, 115(4): 293~299
    153.Doornbos R M P, Degrooth B G, Kraan Y M, et al. Visible diode-lasers can be used for flow cytometric immunofluorescence and DNA analysis. Cytometry. 1994, 15 (3): 267~271
    154.Miller M L, Andringa A, Dixon K, et al. Insights into UV-induced apoptosis: ultrastructure, trichrome stain and spectral imaging. Micron. 2002, 33(2): 157~166
    155.Ziegler A, Jonason A S, Leffell D J, et al. sunburn and p53 in the onset of skin-cancer. Nature. 1994, 372(6508): 773~776
    156.Aragane Y, Kulms D, Metze D, et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J. Cell Biol. 1998, 140(1): 171~182
    157.Kulms D, Poppelmann B, Schwarz T. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way. J. Biol. Chem., 2000, 275(20): 15060~15066
    158.Kulms D, Poppelmann B, Yarosh D, et al. Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc. Natl. Acad. Sci. U. S. A. 1999, 96(14): pp. 7974~7979
    159.Weigl B H, Bardell R, Schulte T, et al. Passive microfluidics: Ultra-low-cost plastic disposable lab-on-a-chips. Micro Total Analysis Systems 2000, Dordrecht, The Netherlands, pp: 299~302
    160.黄艳贞, 方群, 李丹妮. 可连续换样的集成化重力驱动微流控芯片连续流动分析系统. 第二届全国微全分析系统学术会议. 杭州, 2004, pp. 143~144
    161.Hjertén S. High-performance electrophoresis. Elimination of electroendosmosis and solute adsorption. J. Chromatogr. 1985, 347: 191~198
    162.Rowe R C, Sheskey J P, Weller P J. Handbook of Pharma excipients. Pharmaceutical Press, American Pharmaceutical association, 2003
    163.Dittrich P S, Schwille P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem. 2003, 75(21): 5767~5774
    164.Qiu Y, Gao Y D, Wang L D, et al. High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells. Appl. Phys. Lett. 2002, 81(19): 3540~3542
    165.Qiu Y, Gao YD, Wei P, et al. Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells. Appl. Phys. Lett. 2002, 80(15): 2628~2630
    166.Lei G T, Wang L D, Qiu Y. Blue phosphorescent dye as sensitizer and emitter for white organic light-emitting diodes. Appl. Phys. Lett. 2004, 85 (22): 5403~5405
    167.Jacobson S C, Hergenr?der R, Koutny L B, et al. effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 1994, 66(7): 1107~1113
    168.Namasivayam V, Lin R S, Johnson B, et al. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. J. Micromech. Microeng. 2004, 14 (1): 81~90
    169.Uchiyama K, Nakajima H, Hobo T. Detection method for microchip separations. Anal. Bioanal. Chem. 2004, 379 (3): 375~382
    170.Mogensen K B, Klank H, Kutter J P. Recent developments in detection for microfluidic systems. Electrophoresis. 2004, 25 (21~22): 3498~3512
    171.Panchuk-Voloshina N, Haugland R P, Bishop-Stewart J, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 1999, 47(9): 1179~1188
    172.Cheng Y F, Dovichi N J. Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science, 1988, 242: 562-564
    173.Kang S H, Yeung E S. Dynamics of Single-Protein Molecules at a Liquid/Solid Interface: Implications in Capillary Electrophoresis and Chromatography. Anal. Chem. 2002, 74 (24): 6334-6339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700