转化生长因子-β对肌腱愈合和粘连影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肌腱愈合过程中转化生长因子-β1基因表达的变化
     目的了解兔屈趾肌腱Ⅱ区伤口愈合过程中转化生长因子-β1(transforminggrowth factorβ1,TGF-β1)基因表达的变化。
     方法60只成年新西兰大白兔左前中趾Ⅱ区屈趾深肌腱被完全切断并修复,分别于1、7、14、21、28、56天获取肌腱,用原位杂交和免疫组化技术分析TGF-β1的表达情况。
     结果在无损伤对照组,仅有少量肌腱细胞表达TGF-β1mRNA,其周围的腱鞘成纤维细胞也有低水平的TGF-β1mRNA表达;相比较,损伤修复后的肌腱细胞和腱鞘成纤维细胞的TGF-β1mRNA表达量明显增加。
     结论正常无损伤的肌腱和腱鞘细胞能产生TGF-β1,当肌腱损伤后,细胞因子被激活,增加的细胞因子主要由肌腱细胞与腱鞘细胞产生,此结果与肌腱的内、外源性愈合机制是一致的。
     第二部分肌腱愈合过程中转化生长因子-β1受体表达的变化
     目的了解兔屈趾肌腱Ⅱ区伤口愈合过程中转化生长因子-β1(transforminggrowth factorβ1 Receptors,TGF-βR1)在不同时间和部位的表达情况。
     方法42只成年新西兰大白兔左前中趾Ⅱ区屈趾深肌腱被完全切断并修复,分别于1、7、14、21、28、56天获取肌腱(每个时间点6只),对照组取没有损伤和修复的屈趾肌腱(6只),用Western blot和免疫组化技术分析TGF-βR1的表达情况。
     结果切断修复后的肌腱Western blot和免疫组化染色均发现TGF-βR1蛋白的上调,在实验组,TGF-βR1主要集中在腱鞘、腱外膜和沿肌腱切口处,TGF-βR1的表达水平在14天达到高峰,直到56天才明显降低。对照组,只见极少的受体表达。
     结论肌腱损伤修复后,肌腱和腱鞘TGF-βR1的表达明显增加,在术后14天达到高峰,56天开始降低,这种受体上调可能为屈指肌腱术后疤痕形成的生物学调节提供新的途径。
     第三部分转化生长因子-β1对肌腱腱鞘、腱外膜和腱内膜细胞增殖和胶原产生的影响
     目的探讨兔屈趾肌腱腱鞘、腱外膜和腱内膜细胞增殖、胶原产生和TGF-β_1对细胞的增殖和胶原产生的影响。
     方法从兔屈趾肌腱分离腱鞘、腱外膜和腱内膜细胞并培养,测量使用TGF-β_1培养后,细胞的数量和胶原产生量,并与不使用TGF-β_1培养的对照组比较。另外,通过RT-PCR反应测定使用TGF-β_1前后各种细胞Ⅰ型胶原基因的表达。
     结果所有三种细胞均可以产生Ⅰ、Ⅱ、Ⅲ型胶原,TGF-β_1使培养的细胞数量降低,但能显著性地增加Ⅰ、Ⅱ、Ⅲ型胶原产生和Ⅰ型胶原基因的表达。
     结论调节TGF-β_1的水平能调节胶原的产生,可能为临床上防止肌腱粘连提供新的途径。
     第四部分乳酸对肌腱细胞转化生长因子-β表达的调节作用
     目的探讨乳酸对兔屈趾肌腱腱鞘、腱外膜和腱内膜细胞TGF-β及其受体产生的影响。
     方法从兔屈趾肌腱分离腱鞘、腱外膜和腱内膜细胞并分别进行培养,在使用25mmol/L的乳酸培养后,酶联免疫吸附试验定量检测TGF-β及其受体的表达,同时应用原位杂交技术测量TGF-β1 mRNA的表达。
     结果乳酸能显著增加三种细胞所有TGF-β及其受体的表达(P<0.05),其中腱鞘细胞的TGF-β1和TGF-β2增加值最大,腱外膜细胞的TGF-β1和TGF-β2的受体增加值最大,腱内膜细胞则为TGF-β3增加值最大;乳酸还显著增加三种细胞的TGF-β1 mRNA表达。
     结论乳酸能显著增加肌腱细胞的TGF-β、TGF-β受体和TGF-β1mRNA的表达,因此为肌腱愈合过程中调节TGF-β水平提供新的途径。
     第五部分乳酸对肌腱腱鞘、腱外膜和腱内膜细胞增殖和生物学活性的影响
     目的探讨兔屈趾肌腱腱鞘、腱外膜和腱内膜细胞增殖、胶原产生和乳酸对细胞的增殖、胶原产生和对TGF-β_1、b-FGF、IL-8分泌的影响。
     方法从兔屈趾肌腱分离腱鞘、腱外膜和腱内膜细胞并培养,测量使用乳酸培养后,细胞的数量,胶原产生量和TGF-β_1、b-FGF、IL-8分泌量,并与不使用乳酸培养的对照组比较。
     结果所有三种细胞均可以产生Ⅰ、Ⅱ、Ⅲ型胶原,乳酸使培养的细胞数量降低,但能显著性地增加Ⅰ、Ⅱ、Ⅲ型胶原组织产生,TGF-β_1、b-FGF的分泌和减少IL-8的分泌。
     结论乳酸能增加腱鞘成纤维细胞、腱外膜细胞和腱内膜细胞的胶原产生量,而这种刺激作用可能与增加TGF-β_1、b-FGF和减少IL-8的分泌量有关,通过对乳酸的调节可能为预防肌腱损伤修复后的粘连提供新的途径。
Part one
    Gene Expression of Transforming Growth Factor beta-1 in a Rabbit Zone II Flexor Tendon Wound Healing
    Objectives To examine the expression of transforming growth factor beta-1 mRNA in a rabbit zone II flexor tendon wound-healing model.
    Methods Forty-eight New Zealand White rabbit forepaws underwent complete transaction and repair of the middle digit flexor digitorum profundus tendon in zone II. Tendons were harvested at increasing time intervals (1, 7, 14, 21, 28, and 56day) and analyzed by in situ hybridization and immunohistochemistry to determine the expression patterns of transforming growth factor beta-1.
    Results A small number of tenocytes exhibited expression of transforming growth factor beta-1 mRNA in nonwounded control tendon specimens. The surrounding tendon sheath in these control specimens also revealed low numbers of fibroblasts expressing transforming growth factor beta-1 mRNA. In contrast, flexor tendons subjected to transaction and repair exhibited increased signal for transforming growth factor beta-1 mRNA in both resident tenocytes and fibroblasts from the tendon sheath.
    Conclusions The normal unwounded tenocytes and tendon sheath cells are capable of transforming growth factor beta-1 production. The cytokine is activated in the tendon wound environment. The upregulation of this cytokine in both tenocytes and tendon sheath fibroblasts are coincidence with both extrinsic and intrinsic mechanisms for tendon repair.
    
    Part two
    Expression of Transforming Growth Factor beta-1 Receptors in a Rabbit Zone II Flexor Tendon Wound Healing
    Objectives TO analyzed the temporal and spatial distribution of TGF-[beta] receptor RI in a rabbit zone II flexor tendon wound healing model.
    Methods Forty-two adult New Zealand White rabbit forepaws underwent isolation of the middle digit flexor digitorum profundus tendon in zone II. The tendons underwent transection in zone II and immediate repair. The tendons were harvested at increasing time points: 1, 7, 14, 21,28, and 56 days postoperatively (n = 6 at each time point). The control flexor tendons were harvested without transection and repair (n = 6). Western blot and Immunohistochemical analysis was used to detect the expression patterns for TGF-[beta] receptors RI.
    Results Western blot and Immunohistochemical staining of the transected and repaired tendons demonstrated up-regulation of TGF-beta RI protein levels. TGF-beta receptor production in the experimental group (transection and repair) was concentrated in the tendon sheath, the epitenon and along the repair site. Furthermore, the TGF-beta receptor expression levels peaked at day 14 and decreased by day 56 postoperatively. In contrast, minimal receptor expression was observed in the untransected and unrepaired control tendons.
    Conclusions The tendon sheath and epitenon have the highest TGF-beta receptor expression after injury and repair; The peak levels of TGF-[beta] receptor expression occurred at day 14 and decreased by day 56 after wounding and repair; Understanding the up-regulation of TGF-[beta] isoforms and the up-regulation of their corresponding receptors during flexor tendon wound healing provides new targets for biomolecular modulation of postoperative scar formation.
    
    
    
    
    Part three
    Effects of TGF-β1 on proliferation and collagen production of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes
    Objective To study proliferation and collagen production of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes; and effects of TGF-β_1 on cell proliferation and collagen production by each of these 3 cell types in rabbit flexor tendon.
    Methods Three cell lines: tendon sheath, epitenon, and endotenon were isolated from rabbit flexor tendon and cultured. Cell culture media was supplemented with 5ng/ml of TGF-β_1. Cell number and collagen I, II and III production were measured and compared with unsupplemented control culture. Expression of type I collagen was determined by quantitative analysis of products of reverse-transcription polymerase chain reaction.
    Results All 3 cell lines produced collagen I, II and III. The addition of TGF-β_1 to cell media resulted in a decrease in cell number in all 3 cell1 lines that did not reach statistical significance. There was a significant increase (p<0. 05) in collagen I, II and III production and expression levels of type I collagen with the addition of
    Conclusions Modulation of TGF-β_1 levels may provide a means to modulate collagen production in tendon and may provide a mechanism to modulate adhesion formation clinically.
    
    Part four
    Effects of lactate on TGF-β expression of flxor tendon cells
    Objective To study the effects of lactate on TGF-β peptide and receptor production by flexor tendon cells.
    Methods Tendon sheath fibroblasts, epitennon tenocytes, and endotendonon tenocytes were isolated from rabbit flexor tendon and cultured separately. Cell cultures were supplemented with lactate and the expression of three TGF-β peptide isoforms(β1, β2, and β3) and three receptor isoforms(R1, R2, andR3) was quantified with enzyme-linked immunosorbent assay. The expression of TGF-β1 mRNA was also assessed with in situ hybridization and image analysis.
    Results Supplementation of the cell culture medium with lactate significantly (P<0.05) increased the expression of all TGF-β peptide and receptor isoforms in all three cell lines. Tendon sheath fibroblasts exhibited the greatest increases in β1 and β2 peptide isoform expression, Whereas epitenon tenocytes exhibited the greatest increases in receptor isoform R1 and R2 expression, endotenon tenocytes demionstrated the greatest increase in β3 peptide expression. All three tendon cell types demonstrated significant (P<0.05) increases in TGF-β1 mRNA expression when exposed to lactate.
    Conclusion Lactate significantly increased the expression of TGF-β peptide、TGF-β receptor and TGF-β1 mRNA. Modulation of lactate levels may provide a means of modulating the effecs of TGF-β on adhesion formation in flexor tendon wound healing.
    
    
    
    Part five
    Effects of lactate on proliferation and biological activities of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes
    Objective To study proliferation and collagen production of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes; and effects of lactate on cell proliferation, collagen production and secretion of TGF-β_1, b-FGF, and IL-8 by each of these 3 cell types in rabbit flexor tendon.
    Methods Three cell lines: tendon sheath, epitenon, and endotenon were isolated from rabbit flexor tendon and cultured. Cell culture media was supplemented with 25mml/L of lactate. Cell number, collagen I , II and III production, and secretion of TGF-β_1, b-FGF, and IL-8 were measured and compared with unsupplemented control culture.
    Results All 3 cell lines produced collagen I, II and III. The addition of lactate to cell media resulted in a decrease in cell number in all 3 cell lines that did not reach statistical significance. There was a significant increase (p<0.05) in collagen I, II and III production and secretion of TGF- β_1, b-FGF,and IL-8.
    Conclusions Modulation of lactate levels may provide a means to modulate collagen production in tendon and may provide a mechanism to modulate adhesion formation clinically.
引文
1. Linares HA, Larson DH. Early differential diagnosis between hypertrophic and nonhypertrophic healing. J Invest Dermatol, 1974,62:514-516.
    2. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type β:rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA, 1986, 83:4167-4171.
    
    3. Bennett NT,Schultz GS. Growth factor and wound healing: Biochical properties of growth factors and their receptors. Am J Surg. 1993, 165:728-732.
    4. McGrath, MH. Peptide growth factors and wound healing. Clin Plast Surg, 1990, 17: 421-425.
    5. Thomas SC, Jones LC, Hungerford DC. Hyaluronic acid and its effect on postoperative adhesions in the rabbit flexor tendon: A prelimilary look. Clin Orthop, 1986,206:281-287.
    6. Amiel D, Ishizue K, Billings EJ, et al. Hyaluronan in flexor tendon repair. J Hand Surg(Am), 1989, 14:837-842.
    7. Salti NT, Tuel RJ, Mass DP. Effects of hyaluronic acid on rabbit profundus flexor tendon healing in vitro. J Surg Res, 1993, 55:411-419.
    8. Kulick MI, Brazlow R, Smith S, Injectable ibuprofen: prelimilary evaluation of its ability to decrease peritendinous adhesions. Ann Plast Surg, 1984,13:459-467.
    9. Peacock EE. Biological principles in the healing of long tendon. Surg Clin North Am, 1965,45:461-468.
    10. Potenza AD. Tendon healing within the flexor digital sheath in the dog. J Bone Joint Surg, 1962, 44A:49-67.
    11. Lundbordg G, Rank F. Experimental intrinsic healing of flexor tendons based synovial fluid nutrition. J Hand Surg, 1978, 3:21-26.
    12. Furlow LT. The role of tendon tissue in tendon healing. Plast Reconstr Surg, 1976, 57:39-41.
    13. Manske PR, Lesker PA. Biochemical evidence of flexor tendon participation in the repair process: An in vitro study. J Hand Surg, 1984, 9B:117-123.
    14. Gelberman RH, Manske PR, Vandeberg JS, et al. Flexor tendon healing in vitro: Comparative histologic study of rabbit, chicken, dog, and monkey. J Orthop Res, 1984, 2:39-45.
    
    15. Folkman J, Klagsbrun M. Angiogenic factors. Science, 1987442-449.
    
    16. Border WA, Ruoslahti E. Transforming growth factor-β in disease: the dark side of tissue repair. J Clin Invest, 1992,90:1-7.
    17. Assoian PK, Sporn MB. Type β transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol, 1980, 102:1217-1223.
    18.Ignotz RA, Massague J. Cell adhesion protein receptors as targets for transforming growth factor-β action. Cell,2003,51:189-197.
    19. Blobe GC, Schiemann WP, LodishHF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350-1358.
    20. Longaker MT, Whitby DJ, Ferguson MWJ, et al. Adult skin wounds in the fetal environment with scar formation. Ann Surg, 2004, 219:65-72.
    21. Sulivan KM, Lorenz HP, Adzick NS. The role of transforming growth factor beta in human fetal wound healing. Surg Forum, 2002, 44:625-627.
    22. Lanning DA, Nwomeh BC, Montante SJ, et al. TGF-beta 1 alters the healing of cutaneous fetal excisional wounds. J Pediatr Surg,1999,34:695-700.
    23. Callivan K, Alman BA, Mority KP, et al. Differential collagen I gene expression in fetal fibroblasts. J Pediatr Surg,1997, 32:1033-1036.
    24. Whitby DJ, Ferguson MWJ. Immunohistochemical localization of growth factor in fetal wound healing. Dev Biol, 2001, 147:207-215.
    25. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001,2:3005-3009.
    26. Nugent MA, Iozzo RV. Fibroblast growth factor-2. Int J Biochem Cell Biol 2000:32:115-120.
    27. Kibe Y, Takenaka H, Kishimoto S. Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol, 2000;143:720-727.
    28. Ronnstrand L, Heldin CH. Mechanisms of platelet-derived growth factor-induced chemotaxis. Int J Cancer, 2001,91:757-762.
    29. Bennett SP, Griffiths GD, SchorAM, Leese GP, Schor SL. Growth factors in the treatment of diabetic foot ulcers. Br J Surg, 2003,90:133-146.
    30. Dvorak HF. VPF/VEGF and the angiogenic response. Semin Perinatol, 2000,24:75-78.
    31. Tsuzaki M, Brigman BE, Yamamoto J, et al. Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res 2000;18:546-556.
    32.王尉,何恢绪,彭心昭,等.转化生长因子-β 1对肌腱细胞DNA及胶原合成的影响.中华创伤杂志 2001,17:618-619.
    33. Levine JH, Moses HL, Gold LI, et al. Spatial and temporal patterns of immunoreactive transforming growth factorβ1, β2, and β3 during excisional wound repair. Am J Pathol, 2003,143:368-372.
    34. Roberts AB, Sporn MB. The transforming growth factor-βs. Berlin: Springer-Verlag, 1990, Pp:419-472.
    35. Shan M, Foreman DY, Ferguson MWJ. Control of scarring in adult wounds by neutralizing antibody to transforming growth factor-β. Lancet, 2002,339:213-219.
    1. Chang J, Thunder R, Most D, et al. Studies in flexor tendon wound healing: neutralizing antibody to TGF-betal increases postoperative range of motion. Plast Reconstr Surg. 2000;105:148-155.
    2. Duffy FJ Jr, Seiler JG, Gelberman RH, et al. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg [Am]. 1995;20:645-649.
    3. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg. 2000;45:83-92.
    4. Abrahamsson SO, Lohmander LS. Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons. J Orthop Res 1996;14:370-6.
    5. Boyer MI, Watson JT, Lou J, et al. Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: an investigation in a canine model. J Orthop Res. 2001:19:869-872.
    6. Yoshikawa Y, Abrahamsson SO. Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthop Scand. 2001; 72:287 - 292.
    7. Marui T, Niyibizi C, Georgescu HI, et al. Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 1997;15:18-23.
    8. Bennett, N. T., and Schultz, G. S. Growth factors and wound healing: Biochemical properties of growth factors and their receptors. Am. J. Surg. 165: 728, 1993.
    9. Chang, J., Siebert, J. W., Schendel, S. A., Press, B. H. J., and Longaker, M. T. Scarless wound healing: Implications for the aesthetic surgeon. Aesthetic Plast. Surg. 19: 237, 1995.
    10. Kolodziejczyk, S. M., and Hall, B. K. Signal transduction and TGF-[beta] superfamily receptors. Biochem. Cell. Biol. 74: 299, 1996.
    11. Lopez-Casillas F, Payne HM, Andres JL, et al. Betalycan can act as a dual modulator of TGF-β access to signaling receptors: mapping of ligand binding and GAG attachment site. J Cell Biol, 1994, 124:557-568.
    12. Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Gramates, P., and Deuel, T. F. Transforming growth factor [beta] reverses the glucocorticoid-induced wound-healing deficit in rats: Possible regulation in macrophages by platelet-derived growth factor. Proc. Natl. Acad. Sci. U.S.A. 1989, 86: 2229,-2234.
    13. Kingbeil, C. K., Cesar, L. B., and Fiddes, J. C. Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds. New York: Alan R. Liss, 1991. Pp. 443-458.
    14. Beck, L. S., Deguzman, L., Lee, W. P., Xu, Y., McFatridge, L. A., and Amento, E. P. TGF-beta 1 accelerates wound healing: Reversal of steroid-impaired healing in rats and rabbits. Growth Factors, 1991, 5: 295-230.
    15. Beck, L. S., DeGuzraan, L., Lee, W. P., Xu, Y., Siegel, M. W., and Amento, E. P. One systemic administration of transforming growth factor-beta 1 reverses age or glucocorticoid-impaired wound healing. J Clin Invest, 1993, 92: 2841-2847.
    16. Border, W. A., and Ruoslahti, E. Transforming growth factor-[beta] in disease: The dark side of tissue repair. J Clin Invest, 1992, 90: 1-10.
    17. Frank, S., Madlener, M., and Werner, S. Transforming growth factors, [beta]1, [beta]2, and [beta]3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem, 1996, 271: 10188-10195.
    18. Gold, L. I., Sung, J. J., Siebert, J. W., and Longaker, M. T. Type I (RI) and type II (RII) receptors for transforming growth factor-[beta] isoforms are expressed subsequent to transforming growth factor-[beta] ligands during excisional wound repair. Am J Pathol, 1997, 150: 209-215.
    1. Chang J, Most D, Stelnicki E, et al. Gene expression of transforming growth factor beta-1 in rabbit zone Ⅱ flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg, 1997,100:937-944.
    2. Chang J, Thunder R, Most D, et al. Studies in flexor tendon wound healing: neutralizing antibody to TGF-β_1 increases postoperative range of motion. Plast Reconstr Surg, 2000,105:148-155.
    3. Ngo M, Pham H, Longaker MT, et al. Differential expression of transforming growth factor-β receptors in a rabbit zone Ⅱ flexor tendon wound healing model. Plast Reconstr Surg, 2001,108:1260-1267.
    4.徐燕,汤锦波.碱性成纤维细胞生长因子对肌腱细胞基质合成及NF-_kB基因表达的作用.中华手外科杂志,2003,19:43-45.
    5. Andrew Y. Zhang, BS, Hung Pham, et al. Inhibition of TGF-β induced collagen production in rabbit flexor tendons. Journal of Hand Surgery, 2004.29:230-235.
    6. Jaibaji M. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg, 2000,45:83-92.
    7. Thomas SC, Jones LC, Hungerford DS. Hyaluronic acid and its effect on postoperative adhesions in the rabbit flexor tendon. A preliminary look. Clin Orthop 1986;206:281-289.
    8. Salti NI, Tuel RJ, Mass DP. Effect of hyaluronic acid on rabbit profundus flexor tendon healing in vitro. J Surg Res 1993;55:441-445.
    9. Szabo RM, Younger E. Effects of indomethacin on adhesion formation after repair of zone Ⅱ tendon lacerations in the rabbit. J Hand Surg 1990;15A:480-483.
    10. Duffy FJ Jr, Seiler JG, Gelberman RH, et al. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg, 1995,20:645-649.
    11.吕远东,罗少军.TGF-α与病理性疤痕.中华整形外科杂志,2001,17:117-119.
    12. Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, et al. Gene expression of transforming growth factor beta-1 in rabbit zone Ⅱ flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg 1997;100:937-944.
    14. Dully FJ Jr, Seller JG, Gelberman RH, Hergrueter CA. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg 1995;20A:645-649.
    15. Jaibaji M. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg 2000:45:83-92.
    16. Shah M, Foreman DM, Ferguson WJ. Neutralizing antibody to TGF-1,2 reduces cutaneous scarring in adult rodents. J Cell Sci, 1994,107:1137-1157.
    1.夏长所,洪光祥,罗元章,等.乳酸对肌腱腱鞘、腱外膜和腱内膜细胞增殖和生物学活性的影响.中华手外科杂志,2005,21:56-59
    2. Klein MB, Yalamanchi N, Pham H, et al. Flexor tendon woound healing in vitro:The effects of TGF- β on tendon cell proliferation and collagen production. J Hand Surg(Am), 2002,27:615-621.
    3. Kulick ML, Brazlow R, Smith S, et al. Injectable ibuprofen:Preliminary evaluation of its ability to decrease peritendinous adhesion. Ann Plast Surg, 1984,13:459-465
    4. Manske PR, Lesker PA. Biochemical evidence of flexor tendon participation in the repair process—an in vitro study. J Hand Surg 1984;9B:117-120.
    5. Abrahmsson SO, Gelberman RH, Lohmander SL. Variations in cellular proliferation and matrix synthesis in intrasynovial and extrasynovial tendons: an in vitro study in dogs. J Hand Surg 1994;19A:259-265.
    6. Khan U, Occleston NL, Khaw PT, McGrouther DA. Differences in proliferative rate and collagen lattice contraction between endotenon and synovial fibroblasts. J Hand Surg 1998;23A:266-273.
    7. Gelberman RH, Vandeberg JS, Manske PR, Akeson WH. The early stages of flexor tendon wound healing: a morphologic study of the first fourteen days. J Hand Surg 1985;10A:776-784.
    8. Manske PR, Gelberman RH, Lesker PA. Flexor tendon healing. Hand Clin 1985;1:25-34.
    9. Jaibaji M. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg 2000;45:83-92.
    10. Naveen Y, Matthew BK, Hung MP, et al. Flexor tendon wound healing in vitro:Lactate up-regulation of TGF- β expression and functional activity. Plast Reconstr Surg, 2004,113:625-632
    11. Hunt TK, Conolly WB, Aronson SB, Goldberg P. Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 1978;135:328-332.
    12. Bennett NT, Schultz GS. Growth factor and wound healing:Biochemical properties of growth factors and their receptors. Am J Surg, 1993,165:728-733
    13. Hunt TK, Knighton DR, Thakral KK, Goodson WH, Andrews WS. Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 1984;96:48-54.
    14. Jensen JA, Hunt TK, Scheuenstuhl H, Banda MJ. Effect of lactate, pyruvate, and pH on secretion of angiogenesis and mitogenesis factors by macrophages. Lab Invest 1986;54:574-578.
    15. Duffy FJ Jr, Seiler JG, Gelberman RH, Hergrueter CA. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg 1995;20A:645-649
    16. Border WA, Ruoslahti E. Transforming groeth factor-B in disease: The dark side of tisssue repair. J Clin Invest, 1992,90:1-7
    17. Klein MB, Pham H,Yalamanchi N, et al. Flexor tendon woound healing in vitro:The effect of lactate on tendon cell proliferation and collagen production. J Hand Surg(Am), 2001,26:847-854.
    1. Jensen JA, Hunt TK, Scheuenstuhl H, et al. Effect of lactate, pyruvate, and pH on secretion of angiogenesis and mitogenesis factors by macrophages. Lab Invest,1986,54:574-578.
    2. Dully FJ Jr, Seiler JG, Gelberman RH, Hergrueter CA. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg, 1995,20:645-649.
    3. Jaibaji M. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg, 2000,45:83-92.
    4. Klein MB, Pham H, Yalamanchi N, et al. Flexor tendon wound healing in vitro: the effects of lactate on tendon cell proliferation and collagen production. J Hand Surg, 2001,26:847-854.
    5. Hunt TK, Conolly WB, Aronson SB, et al. Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg, 1978,135:328-332.
    6.王尉,朴英杰,何恢绪.转化生长因子-β_1对肌腱细胞增殖的调空作用.中华手外科杂志,2001,17:163-165.
    7. Mytin Ngo BS, Hung Pham BS, Michael T, et al. Differential expression of transforming growth factor- β receptors in a rabbit zone Ⅱ flexor tendon wound healing model. Plast Reconstr Surg, 2001, 108:1260-1267.
    8.徐燕,汤锦波.碱性成纤维细胞生长因子对肌腱细胞基质合成及NF-KB基因表达的作用.中华手外科杂志,2003,19:43-45.
    9. Liu W, Cai Z,Wang D, et al. Blocking transforming growth factor-bate receptors signaling down-regulates transforming growth factor-bate autoproduction in keloid fibroblasts. Chin J Traumatol, 2002,5:77-81.
    1. Albright JA. The scientific basis of orthopaedics. 2nd ed. Norwalk (CT): Appleton & Lange, 1987.
    2. Mast BA. Healing in other tissues. Surg Clin North Am, 1997, 77(3): 529-47.
    3. Hyman J, Rodeo SA. Injury and repair of tendons and ligaments. Phys Med Rehabil Clin N Am, 2000, 11 (2): 267-88.
    4. Jaibaji M. Advances in the biology of zone Ⅱ flexor tendon healing and adhesion formation. Ann Plast Surg, 2000,45:83-92.
    5. Khan U, Edwards JC, McGrouther DA. Patterns of cellular activation after tendon injury. J Hand Surg, 1996,21B:813-820.
    6. Khan U, Occleston NL, Khaw PT, McGrouther DA. Differences in proliferative rate and collagen lattice contraction between endotenon and synovial fibroblasts. J Hand Surg, 1998,23A:266-273.
    7. SiddiqiNA, Hamada Y, Ide T, Akamatsu N. Effects of hydroxyapatite and alumina sheaths on postoperative peritendinous adhesions in chickens. J Appl Biomater, 1995,6:43-53.
    8. Austin RT, Walker F. Flexor tendon healing and adhesion formation after Sterispon wrapping: a study in the rabbit. Injury, 1979,10:211-216.
    9. Eskeland G, Eskeland T, Hovig T, et al. The ultrastructure of normal digital flexor tendon sheath and of the tissue formed around silicone and polyethylene implants in man. J Bone Joint Surg, 1977,59B:206-212.
    10. Kulick MI, Brazlow R, Smith S, et al. Injectable ibuprofen: preliminary evaluation of its ability to decrease peritendinous adhesions. Ann Plast Surg, 1984,13:459-467.
    11. Kulick MI, Smith S, Hadler K. Oral ibuprofen: evaluation of its effect on peritendinous adhesions and the breaking strength of a tenorrhaphy. J Hand Surg, 1986,11A:110-120.
    12. Szabo RM, Younger E. Effects of indomethacin on adhesion formation after repair of zone Ⅱ tendon lacerations in the rabbit. J Hand Surg, 1990,15A:480-483.
    13. Khan U, Occleston NL, Khaw PT, McGrouther DA. Single exposures to 5-fluorouraci1: a possible mode of targeted therapy to reduce contractile scarring in the injured tendon. Plast Reconstr Surg, 1997,99:465-471.
    14. Wiig M, Abrahamsson SO. Hyaluronic acid modulates cell proliferation unequally in intrasynovial and extrasynovial rabbit tendons in vitro. J Hand Surg, 2000,25B:183-187.
    15. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983,219:983-985.
    16. Korpelainen EI, Alitalo K. Signaling angiogenesis and lymphangiogenesis. Curr Opin Cell Biol, 1998,10:159-164.
    17. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989,246:1306-1309.
    18. Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol, 1991,5:1806-1814.
    19. Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem, 1997,272:7151-7158.
    20. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell, 1993,4:1317-1326.
    21. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun, 1992,187:1579-1586.
    22. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene, 1990,5:519-524.
    23. Unemori EN, Ferrara N, Bauer EA, et al. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol, 1992,153:557-562.
    24. Lamoreaux WJ, Fitzgerald ME, Reiner A, et al. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res, 1998,55:29-42.
    25. Friedlander M, Brooks PC, Shaffer RW, et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science, 1995,270:1500-1502.
    26. Dvorak HF. VPF/VEGF and the angiogenic response. Semin Perinatol, 2000,24:75-78
    27. McCourt M, Wang JH, Sookhai S, Redmond HP. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg, 1999,134:1325-1332.
    28. McCourt M, Wang JH, Sookhai S, et al. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg, 1999,134:1325-1332.
    29. Weltermann A, Wolzt M, Petersmann K, et al. Large amounts of vascular endothelial growth factor at the site of hemostatic plug formation in vivo. Arterioscler Thromb Vasc Biol, 1999,19:1757-1760.
    30. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992,359:843-845.
    31. Pepper MS, Ferrara N, Orci L, et al. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun, 1992,189:824-831.
    32. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996,380:435-439.
    33. Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A, 1995,92:905-909.
    34. Millauer B, Shawver LK, Plate KH, et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 1994,367:576-579.
    35. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation, 1998,97:1114-1123.
    36. Petersen W, Pule T, Kurz B, et al. Angiogenesis in fetal tendon development: spatial and temporal expression of the angiogenic peptide vascular endothelial cell growth factor. Anat Embryol (Berl), 2002,205:263-270.
    37. Boyer MI, Watson J, Lou J, et al. Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: an investigation in a canine model. J Orthop Res, 2001, 19 (5): 869-872.
    38. Gelberman RH, Khabie V, Cahill CJ. The revascularization of healing flexor tendons in the digital sheath: a vascular injection study in dogs. J Bone Joint Surg Am, 1991, 73 (6): 868-881.
    39. Bidder M, Towler DA, Gelberman RH, et al. Expression of mRNA for vascular endothelial growth factor at the repair site of healing canine flexor tendon. J Orthop Res, 2000,18:247-252
    40. Zhang F, Liu H, Stile F, et al. Effect of vascular endothelial growth factor on rat Achilles tendon healing. Plast Reconstr Surg, 2003,112:1613-1619.
    41. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev, 1995,16:3-34.
    42. Murphy LJ, Murphy LC, Friesen HG. Estrogen induces insulin-like growth factor-I expression in the rat uterus. Mol Endocrinol, 1987, 1:445-450.
    43. Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med, 1997,336:633-640.
    44. Baker J, Liu JP, Robertson EJ, et al. Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 1993,75:73-82.
    45. Mueller RV, Hunt TK, Tokunaga A, et al. The effect of insulinlike growth factor I on wound healing variables and macrophages in rats. Arch Surg, 1994,129:262-265.
    46. Tsuzaki M, Brigman BE, Yamamoto J, et al. Insulin-like growth factor-Ⅰ is expressed by avian flexor tendon cells. J Orthop Res, 2000,18:546-556.
    47. Abrahamsson SO. Similar effects of recombinant human insulin--like growth factor-Ⅰ and Ⅱ on cellular activities in flexor tendons of young rabbits: experimental studies in vitro. J Orthop Res, 1997,15:256-262.
    48. Abrahamsson SO, Lundborg G, Lohmander LS. Recombinant human insulin-like growth factor-Ⅰ stimulates in vitro matrix synthesis and cell proliferation in rabbit flexor tendon. J Orthop Res, 1991,9:495-502.
    49. Dahlgren LA, van der Meulen MC, Bertram JE, et al. Insulin-like growth factor-Ⅰ improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res, 2002,20:910-919.
    50. Kurtz CA, Loebig T, Anderson DD, et al. Insulin-like growth factor 1 accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med, 1999, 27 (3): 363-369
    51. Reed JA, Albino AP, McNutt NS. Human cutaneous mast cells express basic fibroblast growth factor. Lab Invest, 1995,72:215-222.
    52. Kibe Y, Takenaka H, Kishimoto S. Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol, 2000,143:720-727.
    53. Hughes GC, Biswas SS, Yin B, et al. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg, 2004,77:812-818.
    54. Chang J, Most D, Thunder R, et al. Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg [Am], 1998, 23A (6): 1052-1059.
    55. Chan BP, Fu S, Qin L, et al. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand, 2000, 71 (5): 513-518.
    56. Fukui N, Katsuragawa Y, Sakai H, et al. Effect of local application of basic fibroblast growth factor on ligament healing in rabbits. Rev Rhum Engl Ed, 1998, 65 (6): 406-414.
    57. Ronnstrand L, Heldin CH. Mechanisms of platelet-derived growth factor-induced chemotaxis. Int J Cancer, 2001,91:757-762.
    58. Ansel JC, Tiesman JP, Olerud JE, et al. Human keratinocytes are a major source of cutaneous platelet-derived growth factor. J Clin Invest, 1993,92:671-678.
    59. Wu L, Brucker M, Gruskin E, et al. Differential effects of platelet-derived growth factor BB in accelerating wound healing in aged versus young animals: the impact of tissue hypoxia. Plast Reconstr Surg, 1997,99:815-824.
    60. Lynch SE, Colvin RB, Antoniades HN. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Clin Invest, 1989,84:640-646.
    61. Duffy FJ Jr, Seiler JG, Gelberman RH, et al. Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Hand Surg, 1995,20A:645-649.
    62. Yoshikawa Y, Abrahamsson SO. Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthop Scand, 2001,72:287-292.
    63. Chang J, Thunder R, Most D, et al. Studies in flexor tendon wound healing: neutralizing antibody to TGF-Bl increases postoperative range of motion. Plast Reconstr Surg, 2000, 105 (1): 148-155.
    64. Lopez-Casillas F, Payne HM,Andres JL, et al. Betalycan can act as a dual modulator of TGF-;βaccess to signaling receptors: mapping of ligand binding and GAG attachment site. J Cell Biol,1994,124:557-568.
    65. Sciore P, Boykiw R, Hart DA. Semi-quantitive reverse transcriptase polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res, 1998, 16: 429-437.
    66. Natsu-ume T, Nakamura N, Shino K, et al. Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. J Orthop Res, 1997, 15 (6): 837-843.
    67. Ngo M, Pham H, Longaker MT, et al. Differential expression of transforming growth factor-beta receptors in a rabbit zone Ⅱ flexor tendon wound healing model. Plast Reconstr Surg, 2001, 108: 1260-1267.
    68. Chan BP, Chan K, Maffulli N, et al. Effect of basic fibroblast growth factor: an in vitro study of tendon healing. Clin Orthop, 1997, 342: 239-247.
    69. Chang J, Thunder R, Most D, et al. Studies in flexor tendon wound healing: neutralizing antibody to TGF-B1 increases postoperative range of motion. Plast Reconstr Surg, 2000, 105 (1): 148-155.
    70. Tischler M. Platelet rich plasma: the use of autologous growth factors to enhance bone and soft tissue grafts. N Y State Dent J, 2002 Mar, 68 (3): 22-24.
    71. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg, 2002 Jun, 109 (7): 2384-2397.
    72. Yeung HY, LeeKM, Fung KP, et al. Sustained expression of transforming growth factor-betal by distraction during distraction osteogenesis. Life Sci, 2002 May 24, 71 (1): 67-79.
    73. Lou J, Manske PR, Aoki M, et al. Adenovirus-mediated gene transfer into tendon and tendon sheath. J Orthop Res, 1996,14:513-517.
    74. Lou J, Kubota H, Hotokezaka S, et al. In vivo gene transfer and overexpression of focal adhesion kinase (pp125 FAK) mediated by recombinant adenovirus-induced tendon adhesion formation and epitenon cell change. J Orthop Res, 1997,15:911-918.
    75. Goomer RS, Maris TM, Gelberman R, et al. Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop, 2000, S189-S200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700