高温噬菌体分子特征及热稳定麦芽糖基淀粉酶的性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是人类最大也是最后一块尚未充分开发利用的生物资源宝库,在陆地资源开发已日趋饱和的今天,世界各国普遍意识和注意到海洋生物资源研究的重要性,纷纷将研究注意力转向海洋生物。海洋微生物,尤其是嗜热微生物已成为国际上的研究热点。现代理论和环境证据表明嗜热菌是地球上形成的第一类生命形式,研究它对探索生命起源具有重要意义,同时嗜热微生物及其嗜热酶在工业和分子生物学等方面有重要的用途。
     近年来,感染嗜热微生物的高温病毒(高温嗜菌体)引起越来越多的科研工作者的关注。因为,高温嗜菌体可以作为一种模式系统来研究海洋微生物的生物化学及分子生物学特性,而且它们还影响生物地球化学和生态系统进化过程,包括营养循环、生物分类、微生物多样性和种群分布、遗传转换、生物进化等。高温嗜菌体的研究不仅可以丰富和发展对生命形式的认识,而且在构建嗜热菌表达系统的人工载体和开发热稳定的工业用酶以及分子生物学工具酶等方面,都有着广泛的应用前景。
     本研究从太平洋深海热液区和厦门近海温泉分离到170株嗜热菌。为了使这些嗜热菌的鉴定工作更加简便,我们首先通过全菌体蛋白凝胶电泳(SDS-PAGE)对170株嗜热菌进行分析,结果显示存在四种不同的带型,说明170株嗜热菌可能属于四个种或属。9株代表菌DNA指纹多态性(RAPD)分析结果与SDS-PAGE结果完全一致。为了进一步鉴定9株代表菌,进行了16S rDNA序列分析,结果表明这9株代表菌属于三个属中的四个种,这与SDS-PAGE分析结果也一致。因此,我们认为全菌体蛋白SDS-PAGE凝胶电泳分析是一种简便、快速的菌株筛选方法,可以作为嗜热菌鉴定的第一个步骤。
     在嗜热菌的分离过程中,我们从西太平洋深海热液区样品中分离到一株产淀粉酶的嗜热菌WPD616,根据16S rDNA序列,该嗜热菌属于Bacillus sp.WPD616。接着,从Bacillus sp.WPD616中克隆了一个编码588个氨基酸的麦芽糖基淀粉酶基因,并在Escherichia coli中进行表达。酶活性分析结果表明,在50℃,pH6.0条件下,重组麦芽糖基淀粉酶的酶活性最高。在pH6.0条件下,反应温度达到70℃时,该重组酶还有酶活。在50℃条件下,pH值在6.0-8.0之间时,重组酶保持稳定状态。进一步实验表明1mM或10mM的DTT,0.1%或1%Tween 20、Chaps和0.1%的Triton X-100对该重组酶的酶活性几乎没什么影响,但EDTA(1mM或10mM)、2-ME(1mM或10mM)、SDS(1mM)、PMSF(1mM)可以抑制大约18-55%的重组麦芽糖基淀粉酶活性,而10mM的PMSF或SDS可以完全抑制重组麦芽糖基淀粉酶活性。1mM或10mM的K~+和Li~+对酶活性无明显影响,1mM或10mM的Ba~(2+),Mg~(2+),Mn~(2+),10mM的Ca~(2+)或1mM的Fe~(2+)可以抑制大约13-56.7%的重组麦芽糖基淀粉酶活性,1mM或10mM的Zn~(2+),Fe~(3+),Cu~(2+)和10mM的Fe~(2+)则可以完全抑制重组麦芽糖基淀粉酶活性。
     在嗜热菌的培养过程中,我们从厦门近海温泉中分离到一株高温噬菌体Geobacillus sp.Virus 1 (GBSV1),从太平洋深海热液区获得三株高温噬菌体Bacillus Virus W13(BVW13)、Geobacillus Vires E26323(GVE26323)和Geobacillus sp.Vires E1(GSVE1)。我们对GBSV1和GSVE1进行了深入研究。GBSV1分离自温泉嗜热菌6eobacillus sp.6K51。GBSV1是一个典型的Myoviridae噬菌体,包括一个直径为60nm的六角型的头,一条长为120-135nm的尾巴。根据PCR检测结果,说明噬菌体GBSV1可以感染Bacillus和Geobacillus属的5种嗜热菌。GBSV1的基因组是一个双链线型DNA,大小为34579bp,预测编码了55个阅读框(ORF)。其中有8个阅读框与人疾病有关的细菌的基因存在较高的同源性。这是高温噬菌体中首次发现的与人疾病相关的病源菌基因。根据GBSV1的形态及基因组特征,认为6BSV1是一株新的高温噬菌体。通过蛋白质组分析,GBSV1的5个主要蛋白被鉴定,其中VP425得到了进一步的分析。对噬菌体GBSV1功能基因组的研究,有利于更好的理解噬菌体与嗜热菌的互作机制。
     在研究过程中,我们从东太平洋深海热液区嗜热菌Geobacillus sp.E263中纯化获得高温噬菌体GSVE1。GSVE1是个典型的Siphoviridae噬菌体,包含一个大小为40863bp的双链线型DNA,编码了62个阅读框(ORF)。其中也有6个阅读框序列与人类致病菌的噬菌体基因存在较高的同源性,2个阅读框与人类致病菌的蛋白同源性较高。芯片分析表明,74.2%的预测阅读框在GSVE1感染嗜热菌Geobacillus sp.E263后4小时得到了表达。通过质谱分析,GSVE1有6个主要蛋白带得到了鉴定,其中第四条蛋白带的VP371蛋白得到了进一步的分析。Western blot印迹杂交分析结果显示,GST-VP371的抗体与第四条蛋白带强烈反应。免疫电镜结果说明VP371蛋白是噬菌体GSVE1的一个主要的衣壳蛋白。这是第一次对深海热液区的高温噬菌体进行功能基因组学分析。GSVE1的分子生物学研究对阐明深海热液区的高温噬菌体的角色有很大的帮助。
The ocean is the most abundant and the last underutilized biology resources on earth. When the terrestrial resources have been developed fully, halobios have become new focuses for their importance. Marine microbes, especially the thermophiles have become a study hotspot. Current theory and circumstancial evidence suggest that the thermophiles are the first lifes on earth, which will be helpful for understanding the origin of life. Thermophiles and their enzymes are also the important resources in industry and biotechnology.
     Recently years, viruses from thermophiles have attracted intensive investigation because they can serve as model systems to study the biochemistry and molecular biology of marine microbes, and they could influence many biogeochemical and ecological processes, including nutrient cycling, taxon of biology, bacterial biodiversity and species distribution, genetic transfer and evolution of biology. Therefore, thermophilic viruses are not only helpful for understanding the life, but also have great potential usese in industry and biotechnology.
     In total, 170 strains of thermophilic bacteria were isolated from deep-sea hydrothermal fields in Pacific and a hot spring in Xiamen of China. To facilitate the identification of thermophilic strains, SDS-PAGE of whole-cell proteins of these strains was firstly performed. The results showed that there existed four different protein patterns, indicating that the 170 strains might belong to four species or genera. The RAPD (Random Amplified Polymorphic DNA) profiles of nine representative strains were consistent with those of SDS-PAGE. To further identify the species of the nine strains, their 16S rDNA sequences were analyzed. The results showed that the nine strains fell into four species of three genera, which was the same as revealed by SDS-PAGE. Therefore, SDS-PAGE of whole-cell proteins could be used as a rapid and simple method for the discrimination of thermophilic bacteria as the first step of species identification.
     During the isolation of thermophiles, a maltogenic amylase-producing thermophilic strain WPD616, assigned to Bacillus sp. WPD616 based on 16S rRNA sequence, was isolated from a deep-sea hydrothermal field in west Pacific. Subsequently a maltogenic amylase gene encoding 588 amino acids from this isolate was cloned and expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The results showed that the recombinant maltogenic amylase had an activity optimum at 50℃and pH at 6.0.It was active up to 70℃at pH 6.0 and stable at pH ranging from 6.0 to 8.0.The recombinant enzyme was active when Chaps, DTT and Tween 20 (0.1% or 1%) were used. However, it can be partially inhibited by 1 mM of EDTA, PMSF or SDS, as well as 0.1% of Triton X-100 or 2-ME, and completely inhibited by 10 mM of PMSF and SDS (10mM). Its catalytic function was stable in the presence of Li~+ and K~+ (1mM or 10mM), but its activity decreased when Ba~(2+), Ca~(2+), Mg~(2+), Mn~(2+) (1mM or 10mM) and Fe~(2+) (1mM) were used. In the presence of Zn~(2+), Cu~2, Fe~(3+)(1mM and 10mM) and Fe~(2+) (10mM), no activity was detected.
     During the cultures of thermophiles, a thermophilic bacteriophage Geobacillus sp.Virus 1 (GBSV1) was obtained from an offshore hot spring in Xiamen of China, and three thermophilic bacteriophages Bacillus Virus W13 (BVW13)、Geobacillus Virus E26323 (GVE26323)和Geobacillus sp. Virus E1 (GSVE1) were isolated from a deep-sea hydrothermal field. The GBSV1 and GSVE1were further characterized. GBSV1 was isolated from a thermophilic bacterium Geobacillus sp. 6k51.GBSV1 was a typical Myoviridae phage with a hexagonal head (60 in diameter) and a tail (120-135 nm in length). As revealed by PCR detection, the GBSV1 could infect 5 species of Geobacillus or Bacillus thermophiles. The GBSV1 contained a double-stranded circular DNA of 34579 bp, which had the capacity encoding 55 open reading frames (ORFs). Surprisingly, eight of the 55 GBSV1 ORFs shared sequence similarities to genes from human disease-relevant bacteria. This was the first report that human disease-relevant bacterial genes were found in thermophilic phage. The different morphology and genome size from reported thermophilic viruses suggested that the GBSV1 was a novel thermophilic bacteriophage. Five proteins of the purified GBSV1 virions were identified by proteomic analysis. Among them, the vp425 gene was characterized to be a viral late gene. Determination of GBSV1 functional genomics would facilitate the better understanding of the mechanism for virus-thermophile interaction.
     Bacteriophage GSVE1 infecting thermophilic Geobacillus sp. E263 was purified in this study. The results revealed that GSVE1 was a typical Siphoviridae phage containing a 40863-bp linear double-stranded genomic DNA with 62 presumptive open reading frames (ORFs). Surprisingly, 8 ORFs shared sequence similarities to genes from human disease-relevant bacteria and their bacteriophages. Microarray analysis indicated that 74.2% of the presumptive ORFs were expressed. The purified virions contained six protein bands, which were identified by mass spectrometric analysis. Of the newly retrieved proteins, VP371 (derived from band 4) was further characterized. Western blot analysis showed that the anti-GST-VP371 antibody reacted strongly with band 4.The immuno-electron microscopy indicated that VP371 protein was a component of the viral capsid. As the first characterized thermophlic bacteriophage from deep-sea hydrothermal field with functional genomics, the molecular characterizations of GSVE1 will be very helpful to elucidate the role of thermophilic virus in deep-sea hydrothermal vents.
引文
崔宗均,路鹏,于会泳,张晋丰.高温菌特性的应用[J].微生物学杂志,2003,23(4):28-31.
    大岛泰郎.好热性细菌[M].北京:科学出版社,1983.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    郭春雷,彭谦.高温菌研究进展[J].生物学杂志,2003,20(4):1-3.
    和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2001.
    郦惠燕,邵靖宇.嗜热菌的耐热分子机制[J].生命科学,2000,12(1):30-33.
    卢柏松,王国力,黄培堂.嗜热与嗜常温微生物的蛋白质氨基酸组成比较[J].微生物学报,1998,38(1):20-25.
    罗治文.质谱技术研究进展.国外医学生物医学分册.2005,28(3):134-137.
    马立人,蒋中华.生物芯片.北京:化学工业出版社,2002,1-43.
    齐春梅,张小平,姚 昕.嗜热微生物酶的嗜热机制及应用研究进展[J].微生物学杂志,2004 24(4):39-41.
    沈萍.微生物学.北京:高等教育出版社,2000.
    王顺民.嗜热酶的研究及其在食品等相关工业的应用[J].山西食品工业,2004(3):2-4.
    徐洵.海洋生物基因工程实验指南[M].北京:海洋出版社,2004.
    尹亮,赵树进.聚乙二醇修饰超氧化物歧化酶稳定性变化的研究[J].生物技术,2003,13(4):29-30.
    岳振峰,彭志英,徐建祥.壳聚糖固定化α-葡聚糖苷酶的性质研究[J].食品与发酵工业,2001,27(4):20-24.
    奥斯伯F.,金斯顿R.E.,布伦特R.,塞德曼J.G.,穆尔D.D.,斯特拉尔K.,史密斯J.A..精编分子生物学实验指南[M].北京:科学出版社,1998.
    Actor J K. A flexible bioluminescent-quantitive polymerase reaction assay for analysis of competitive PCR amplicons. J. Clin Lab Anal., 1999(13): 40-47.
    Argos P, Rossmann MG, Grau UM, Zuber H, Frank G & Tratschin JD. Thermal stability and protein structure. Biochemistry, 1979, 18 (25): 5698-5703.
    Arnold HP, Ziese U & Zillig W. SNDV, a Novel Virus of the Extremely Thermophilic and Acidophilic Archaeon Sulfolobus. Virology, 2000(272):409-416.
    Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson J K, Klenk HP, Nelson KE & Fraser CM. A Novel Lipothrixvirus, SIFV, of the Extremely Thermophilic Crenarchaeon Sulfolobus. Virology, 2002(267):252-266.
    Baisong L, Guoli W & Peitang H. A comparison of amino acid composition of Protein from thermophiles and mesophiles. Acta Microbiologic Sinica, 1998, 38 (1): 20-25.
    Becker K, Pan D & Whitely C B. Real-time quantitative polymerase chain reaction to assess gene transfer. Hum. Gene Then, 1999(10): 2559-2566.
    Bertoldo, C. & Antranikian, G.. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria, Current Opinion in Chemical Biology, 2002(6): 151-160.
    Bettstetter, M., Peng, X., Garrett, R. A. & Prangishvili, D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology, 2003(315): 68-79.
    Bieche I, P Onody, I Laurendeau, M Olivi, D Vidaud, R Lidereau & M Vidaud. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin. Chem., 1999(45): 1148-1156.
    Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W. & Stetter, K. O Pyrolobus fumarii, gen. and sp.nov. represents a novel group of Archaea, extending the upper temperature for life to 113℃ . Extemophiles, 1997(1):14-21.
    Blondal, T., S. H. Hjorleifsdottir, O. F. Fridjonsson, A. Aevarsson, S. Skirnisdottir, A. G. Hermannsdottir, G. O. Hreggvidsson, A. V. Smith & J. K. Kristjansson. Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1. Nucleic Acids Res., 2003(31): 7247-7254.
    Borodovsky, M., & J. McIninch. GeneMark: parallel gene recognition for both DNA strands. Comput. Chem., 1993(17):123-133.
    Bowtell, D., & J. Sambrook (ed.) DNA microarrays: a molecular cloning manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2002.
    Bradford, M. M. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976(72): 248-254.
    Breitung J, Borner G, Scholz S, Linder D, Stetter KO & Thauer RK. Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri. Eur. J. Biochem., 1992,210 (3): 971-981.
    Bronnenmeier K, Kern A, Liebl W & Staudenbauer WL. Purification of Thermotoga maritima enzymes for the degradation of cellulose materials. Appl Environ Microbiol, 1995(61):1399-1407.
    Brown J W, Haas E S & Pace N R. Characterization of ribonuclease P RNAs from thermophilic bacteria. Nucleic Acids Research, 1993,21(3):671-679.
    Brock, T.D. & Freeze, H. Thermus aquaticus gen. n., and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969(98):289-297.
    Brock, T. D., Brock, K. M, Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizingbacteria living at low pH and high temperature. Arch Mikrobiol, 1972(84):54-68.
    Bruggemann H, Sebastian B, Wolfgang F F, Arnim W, Heiko L, Iwona D, Christina H, Rosa M-A, Rainer M, Anke H, & Gerhard Gk. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sic, 2003(100):1316-1321.
    Cambon-Bonavita, M.A., F. Lesongeur, P. Pignet, N. Wery, A. Godfroy, J. Querellou & G Barbier. Extremophiles, Thermophily section, species description Thermococcus atlanticus sp. Nov., a hyperthermophilic Archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge. Extremophiles, 2003(7): 101-109.
    
    Campbell A. The future of bacteriophage biology. Nature, 2003(4): 471-477.
    Cha, H. J., H. G. Yoon, Y. W. Kim, H. S. Lee, J. W. Kim, K. S. Kweon, B. H. Oh, & K. H. Park.. Molecular and enzymatic characterization of novel maltogenic amylase that hydroly zes and transglycosylates acarbose. Eur. J. Biochem, 1998 (253):251-262.
    Cho, H.Y., Y.W. Kim, T.J. Kim, J.W. Kim & K.H. Park.. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta, 1999(1478):333-340.
    Coughlan, M. P. Cellulose degradation by fungi, p. 1-36. In W. M. Fogarty and C. T. Kelly (ed.), Microbial enzymes and biotechnology, 2~(nd) ed. Elsevier Applied Science, London, United Kingdom, 1990.
    Crueger, A., & W. Crueger. Glucose transforming enzymes, p. 177-226. In W. M. Fogarty and C. T. Kelly (ed.), Microbial enzymes and biotechnology, 2nd ed. Elsevier Science, London, United Kingdom, 1990.
    Dang T.L., Motoshige Y, Ikuo H. & Takashi A. Transcription Program of Red Sea Bream Iridovirus as Revealed by DNA Microarrays. J. Virol., 2005(79): 15151-15164.
    Dennis P, Edwards EA, Liss SN & Fulthorpe R . Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol, 2003, 69 (2): 769 - 778.
    Devereux R, He S H, Doyle C L, Orkland S, Stahl D A, LeGall J & Whitman W B. Diversity and origin of Desulfovibrio species:phylogenetic definition of a famil. J Bacteriol., 1990(172):3609-3619.
    
    Dill KA. Dominant forces in protein folding. Biochemistry, 1990, 29 (31): 7133-7155.
    Dong, G., C. Vieille, A. Savchenko, & J. G. Zeikus. Cloning, sequencing, and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 1997(63):3569-3576.
    Dong, G., C. Vieille, & J. G. Zeikus. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 1997(63):3577-3584.
    Epstein I. & L.L. Campbell Production and purification of the thermophilic bacteriophage TP-84. Applo. Microbiol., 1974(29): 219-223.
    Everly C & Alberto J. Stressors, stress and survival: overview. Front Bioscien., 2000(5): 780-786.
    Facchiano AM, Colonna G & Ragone R. Helix stabilizing factors and stabilization of thermophilic proteins: an X-ray based study. Protein Eng., 1998, 11(9): 753-760.
    Fred A, Rainey, Dagmar Fritze & Erko Stackebrandt.The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters, 1994(115):205-212.
    Frederick M. Ausubel, Roger Brent, Robert E. Kingston and 4 other authors, Short protocols in molecular biology. Library of Congress Cataloging in Publication Data, USA., 1992.
    Frette Lone, Niels O. G Jorgensen, Heidi Irming & Niels Kroer. Tenacibaculurn skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int J Syst Evol Microbiol, 2004(54): 519-524.
    Fry N K, Warwick S, Saunders N A & Embley T M.The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae[J].J Gen Microbiol., 1991(137):1215-1222.
    Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature, 1999(399): 541-548.
    
    
    George Garrity. Bergey's Manual of Systematic Bacteriology Volume 1 :The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer-verlag, 2001.
    Geslin C, M.L. Romancer, G Erauso, M. Gaillard, G. Perrot & D. Prieur. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, "Pyrococcus abyssi". J. Bacteriol., 2003(185): 3888-3894.
    Giver L, Gershenson A, Freskgard PO & Arnold FH. Directed evolution of athermostable esterase. Proc. Natl. Acad. Sci. USA, 1998, 95 (22): 12809-12813.
    
    Gordon, D., C. Abajian & P. Green.. Consed: a graphical tool for sequence finishing. Genome Res., 1998(8): 195-202.
    Grimont P. Use of DNA reassociation in bacterial classification. Can J Microbiol, 1998(34): 541-546.
    Grogan, D., Palm, P & Zillig, W. Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol, 1990(154):594-599.
    Ha¨ring M, Peng X, Bru¨gger K, Rachel R, KO Stetter, Garrett RA & Prangishvilia D. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology, 2004(323):233-242.
    H a¨ring M., R. Rachel, X. peng, R.A. Garrett & D. Prangishvili. Viral diversity in hot springs of Pozzuli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J. Virol. 2005(79): 9904-9911.
    Harlow, E. & Lane, D. Antibodies-a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbo, N.Y., 1988.
    Henne A., H. Bruggemann, C. Raasch, A. Wiezer, T. Hartsch. H. Liesegang, A. Johann, T. Lienard, O. Gohll, R. Martinez-Arias, C. Jacobi,V. Starkuviene. S. Schlenczeck, S. Dencker. R. Huber, H.P. Klenk,W. Kramer. R. Merkl, G.Gottschalk & H.J. Fritz. The genome sequence of the extreme thermophile Thermus thermophilus . Nature Biotechnology, 2004, 22(5):547-553.
    Herrington, C. S., & J. J. O'Leary (ed.). PCR in situ hybridization. IRL Press, Oxford, United Kingdom, 1997.
    Higgins J A, Ezzell J, Hinnebusch B J, Shipley M, Henchal EA & Ibrahim MS. 5' nuclease PCR assay to detect Yersinia pestis. J. Clin. Microbil., 1998(36): 2284-2288.
    Higuchi R, Fockler C, Dollinger G. & Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 1993(11): 1026-1030.
    
    Huber, R., Stoffers P., Cheminee J.L., Richnow H.H., Stetter K.O. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 1990(345): 179-182.
    
    Huber, R., Wilharm, T., Huber, D. and 7 other authors. Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol, 1992(15): 340-351.
    
    Ichikawa JK & Clarke S. A highly active protein repair enzyme from an extreme thermophile: the L-isoaspartyl methyltransferase from Thermotoga maritima. Arch. Biochem. Biophys., 1998, 358 (2): 222-231.
    Igarashi, K., K. Ara, K. Saeki, K. Ozaki, S. Ozaki & S. Ito.. Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic Bacillus. Biosci. Biotechnol. Biochem, 1992(56):514-516.
    Jaenicki R. Stability of proteins in extreme environments: crystallins and enzymes . FASEB,1996(10):84-92.
    Jorgensent, S., C. E. Vorgias & G. Antranikian. Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem, 1997(272): 16335-16342.
    Kashefi K. & D. R. Lovley.. Extending the upper temperature limit for life. Science, 2003(301): 934
    Klose J. & Kobalz U. Two dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis, 1995(16): 1034-1059.
    Kim, I. C, J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, D. S. Lee, Y. D. Choi, & K. H. Park.. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem, 1992(267):22108-22114.
    Kim, T.J., J.H. Shin, J.H. Oh, MJ. Kim, S.B. Lee, S. Ryu, K. Kwon, J.W. Kim, E.H. Choi, J.F. Robyt & K.H. Park.. Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. 1-5 and characterization of enzymatic properties. Arch. Biochem. Biophys, 1998(535):221-227.
    Kim, J. S., S. S. Cha, H. J. Kim, T. J. Kim, N. C. Ha, S. T. Oh, H. S. Cho, M. J. Cho, M. J. Kim, H. S. Lee, J. W. Kim, K. Y. Choi, K. H. Park & B. H. Oh.. Crystal structure of a maltogenic amylase provides insight into a catalytic versatility. J. Biol. Chem, 1999(274):26279-26286.
    Kim J, Nanmori T & Shinke R. Thermostable raw starch digesting amylase from Bacillus stearothermophilus. Appl Environ Microbiol., 1989(55): 1638 -9.
    Kim, T. J., M. J. Kim, B. C. Kim, J. C. Kim, T. K. Cheong, J. W. Kim & K. H. Park.. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol, 1999(65): 1644-1651.
    Kim, Y. K., M. J. Kim, C. S. Park & K. H. Park.. Modification of sorbitol by transglycosylation using Bacillus stearothermophilus maltogenic amylase. Food Sci. Biotechnol, 2002(11):401-406.
    Kim,Y. W., J. H. Choi, J. W. Kim, C. Park, J. W. Kim, H. Cha, S. B. Lee, B. H. Oh, T. W. Moom & K. H. Park. Directed evolution of Thermus maltogenic amylase toward enhanced thermel resistance. Appl. Environ. Microbiol, 2003(69): 4866-4874.
    
    Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T & Oshima T. Hydrophobic interaction at the subunitinterface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile Thermus thermophilus. Eur. J. Biochem., 1994, 220 (1): 275-281.
    
    Kreil, D. P. and Ouzounis, C. A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 2001(29): 1608-1615.
    
    Kurian K M, Watson C J & Wyllie A H. DNA chip technology. J Pathol, 1999, 187(3):267-271.
    
    Lamosa P, A Burke, R Peist, R Huber, MY. Liu, G Silva, C Rodrigues-Pousada, J LeGall, C Maycock, & H Santos. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Applied and environmental microbiology, 2000, 66(5): 1974-1979.
    
    Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim & K. H. Park.. Cooperative action of α-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agric. Food Chem, 2002(50): 2812-2817.
    
    Lee, H. S., M. S. Kim, H. S. Cho, J. I. Kim, T. J. Kim, J. H. Choi, C. Park, H. S. Lee, B. H. Oh & K. H. Park.. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem, 2002(277):21891-21897.
    
    Liu B., S.J. Wu, Q. Song & X.B. Zhang, Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr. Microbiol., 2006,53(2): 163-166.
    
    Long, A. D., H. J. Mangalam, B. Y. Chan, L. Tolleri, G. W. Hatfield & P. Baldi, Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J. Biol. Chem., 2001(276): 19937-19944.
    
    McAfee JG, Edmondson SP, Datta PK, Shriver JW & Gupta R. Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry, 1995, 34 (31): 10063- 10077.
    
    Melchior D L. Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membranes Transp,1982(17):263-316.
    
    Michael T M. Biology of Microorganisms. 8th edition. Printed in the United States of America. Prentice-hall, Inc. Simon & Schuster/A Viacom Company,1997.
    
    Michels PC & Clark DS. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen. Appl Environ Microbiol, 1997, 63 (10): 3985-3991.
    
    Moore L V H, Bourne D M & Moore W E C. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram negative bacillic. Int J Sys Bacteriol,1994,44(2):338-347.
    
    Mrabet NT, A. Van den Broeck, I Van den brande, P Stanssens, Y Laroche, A M Lambeir, G Matthijssens, J Jenkins, M Chiadmi, H van Tilbeurgh, F Rey, J Janin, W J Quax, I Lasters, MD Maeyer & SJ Wodak. Arginine residues as stabilizing elements in proteins. Biochemistry, 1992(31): 2239-2253.
    
    Nelson K.E., D.E. Fouts, E.F. Mongodin, J. Ravel, R.T. DeBoy, J.F. Kolonay, D.A. Rasko, S.V. Angiuoli, S.R. Gill, LT. Paulsen, J. Peterson, O. White, W.C. Nelson, W. Nierman, MJ. Beanan, L.M. Brinkac, S.C. Daugherty, R.J. Dodson, A. Scott Durkin, R. Madupu, D.H. Haft, J. Selengut, S.V. Aken, H. Khouri, N. Fedorova, H. Forberger, B. Tran, S. Kathariou, L.D. Wonderling, GA. Uhlich, D. O. Bayles, J.B. Luchansky & CM. Fraser. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res., 2004(32): 2386-2395.
    Niehaus, F., C. Bertoldo, M. Kahler & G. Antranikian. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol., 1999(51):711-729.
    
    Nolling J, G Breton, MV Omelchenko, KS. Makarova, Qg Zeng, Re Gibson, HM Lee, J Dubois, D Qiu, J Hitti, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, YI Wolf, RL Tatusov, F Sabathe, L Doucette-Stamm, P Soucaille, MJ Daly, GN Bennett, EV Koonin, & DR Smith. Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum. J. Bacteriol., 2001 (183): 4823-4838 .
    
    Nunes O C, Donato M M & Manaia C M. The polar lipid and fatty acid composition of rhodothermus strauns. Sys Appl Microbiol,1992(15):59-62.
    
    Oguma, T., A. Matsuyama, M. Kikuchi & E. Nakano.. Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells. Appl. Microbiol. Biotechnol, 1993 (39): 197-203.
    
    Olsen O & Thomsen KK. Improvement of bacterial P-glucanase thermostability by glycosylation. J. Gen. Microbiol, 1991,137(3): 579-585.
    
    Park, K. H., T. J. Kim, T. K. Cheong, J. W. Kim, B. H. Oh & B. Svensson.. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta, 2000(1478): 165-185.
    
    Park, K. H., M. J. Kim, H. S. Lee, N. S. Han, D. M. Kim & J. F. Robyt. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res, 1998(313):235-246.
    
    Pollack JR, Perou CM & Alizadeh AA. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet, 1999; 23(1):41-46.
    
    Prangishvili, D., Stedman, K.M. & Zillig, W. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol., 2001(9): 39-42.
    
    Prangishvili, D. & Zillig, W. Viruses of the Archaea, in: Brenner, S., Miller, J.H. (eds.), Encyclopedia of Genetics, vol. 4, Academic Press, San Diego, pp. 2002:2114-2116.
    
    Prangishvili D., K.M. Stedman & W. Zillig. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol., 2001(9) 39-42.
    Rahman RNZA, Fujiwara S, Nakamura H, Takagi M, & Imanaka T. Ion pairs involved in maintaining a thermostable structure of glutamate dehydrogenase from a hyperthermophilic archaeon. Biochem. Biophys. Res. Commun., 1998, 248 (3): 920-926.
    Reysenbach, A.L., Liu, Y.T., Bantal,A. B., Beveridge, T. J., Kirshtein, J. D., Schouten S., Tivey, M. K., Von Damm, K. L. & Voytek, M. A. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature, 2006 (42) : 444-447.
    Rice G, Kenneth Stedman, Jamie Snyder, Blake Wiedenheft, Debbie Willits, Susan Brumield, Timothy Mcdermott & Mark J. Young. Viruses from extreme thermal environments. Proc. Natl. Acad. Sci. USA, 2001(98):13341-13345.
    Rice G, T. Liang, S. Kenneth, R. Francisco, S. Josh, G Eric, E.J. John, D. Trevor & Y. Mark. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sic, 2004(101): 7716-7720.
    Robb F. T. & Place A.R. Arhaea: a laboratory manual. Thermophiles. Cold Spring Harbor Laboratory, USA., 1995.
    Rothschild L J & Mancinelli R L. Life in extreme environments. Nature, 2001 (409): 1092-1101.
    Sakaki Y. & T. Oshima. Isolation and characterization of a bacteriophage infectious to an extreme thermophile, thermus thermophilus HB8. J. Virol., 1974 (15)1449-1453.
    Sako, Y, Nomura, N., Uchida, A., Ishida, Y, Morii, H., Koga, Y, Hoaki, T. & Maruyama, T. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaea growing at temperatures up to 100℃. Int J Syst Bacteriol, 1996a(46): 1070-1077.
    Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacterial, 1996b(46): 1099-1104.
    Sako, Y, Nomura, T., Nunoura, T. & Uchida, A. Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97℃. Int J Syst Evol Microbiol, 2001(51): 303-309.
    Sako, Y, Nakagawa, S., Takai, K. & Horikoshi, K. Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol, 2003(53): 59-65.
    Sambrook J & Russell D.W. Molecular Clong: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, NY, USA., 2001.
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning-A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 1989.
    Sandman K & Reeve J N. Structure and functional relationships of archaeal and eukaryal histones and nucleosomes. Arch Microbiol,2000(173):165-169.
    Shirley BA, Stanssens P, Hahn U & Pace CN. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry, 1992, 31 (3): 725-732.
    Shoemaker DD, Schadt EE & Amour CD. Experimental annotation of the human genome using microarray technology. Nature, 2001,409 (6822):9222-9227.
    Siebert, P. (ed.). The PCR technique: RT-PCR. Eaton Publishing, Natick Mass, 1998.
    Sriprapundh D, Vieille C & Zeikus JG. Molecular determinants of xylose isomerase thermal stability and activity: analysis by site-directed mutagenesis. Protein Eng., 2000, 13 (4): 259-265.
    Stackebrandt E & Goebel B.M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species defenition in bacteriology. Int J Syst Bacteriol, 1994(44):846-849.
    Stanley B A, Neverova I, Brown H A & Van Eyk JE. Optimizing protein solubility for two-dimensional gel electrophoresis analysis of human myocardium. Proteomics,2003,3(6):815-820.
    Stuart P. Donachie, Shaobin Hou, Todd S, Gregory, Alexander Malahoff & Maqsudul Alam.Idiomarina Ioihiensis sp.nov.,a halophilic γ-Proteobacterium from the Loihi submarine volcano,Hawai. International Journal of Systematic and Evolutionary Microbiology, 2003(53):1873-1879.
    Suttle, C. A. Viruses in the sea. Nature, 2005(437): 356-361.
    Tamaoka J. Determination of DNA base composition. In: Chemical Methods in Prokaryotic Systematics (Goodfellow M and O'Donnell A G, Eds). Chichester:John Wiley and Sons, 1994.
    Takai, K. & Horikoshi, K. Genetic diversity of archeal diversity in deep-sea hydrothermal vent environments. Genetics, 1999(152): 1285-1297.
    
    Tolan, J. S. Pulp and paper, p. 327-338. In T. Godfrey and S. West (ed.), Industrial enzymology, 2nd ed. Stockton Press, New York, N.Y., 1996.
    Trevor Douglas & Mark Young. Viruses: Making Friends with Old Foes. Science, 2006(312):873-875.
    Tsuboi M., Benevides J.M., Bondre P. & Thomas GJ Jr. Structural details of the thermophilic filamentous bacteriophage PH75 determined by polarized Raman microspectroscopy. Biochemistry , 2005(44):4861-4869.
    Walch M., E. Eppler, C. Dumrese, H. Barman, P. Groscurth & U. Ziegler. Uptake of Granulysin via Lipid Rafts Leads to Lysis of Intracellular Listeria innocua. J . Immunol., 2005(174): 4220-4227.
    Vandamme P, Pot B, Gillis M, De Vos P & Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Micribiol Rev,1996(60): 407-438.
    Vandamme P, Dewettinck D & Kersters K. Application of numerical analysis of electrophoretic Protein profiles for the identification of thermophilic campylobacvters. Syst Appl Microbiol, 1992,44(2):338-347.
    Van Dover, C. L, German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R. C, Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 2002(295): 1253-1257.
    
    Venter J. C, Adams M. D., Myers E.W. and other 272 authors. The Sequence of the Human Genome. Science, 2001(291):1304-1351.
    
    Wang X, Li X, Currie R W, Willette R N, Barone F C & Feuerstein GZ. Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1beta mRNA in ischemic brain tolerance. J. Neurosci Res., 2000(59): 238-246.
    Wichman R. L. & Hopkins D. L. Differentiation of pathogenic groups of xylella fastidiosa strains with whole-cell protein profiles. Plant Dis., 2002(86):875-879.
    Willians JG, Kubelik AR, Livak KJ, Rafalski JA & Tingey SV. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990(18): 6531-65
    Wilquet V, Gaspar JA, van de Lande M, Van de Casteele ., Legrain C, Meiering EM & Glansdorff N. Purification and characterization of recombinant Thermotoga maritima dihydrofolate reductase. Eur. J. Biochem., 1998, 255 (3): 628-637.
    Wittwer CT, Fillmore GC & Garling DJ. Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Anal. Biochem., 1990 (186): 328-331.
    Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA & Balis UJ. The LightCycler~(TM): a microvalume multisample fluorimeter with rapid temperature control. Biotechniques., 1997(22): 176-181.
    Woese C R & Fox G E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci,1977(74):5088-5090.
    Woese C R, Kandler O & Wheelis A L. Toward a natural system of organisms: proposal for the domains archaea, bacteria and eucarya. Proc Natl Acad Sci, 1990(81):4576-4579. Woese C R. Bacterial evolution. Microbiol Rev, 1987(51):217-221.
    
    Xiang X.Y., L.M. Chen, X.X. Huang, Y.M. Luo, Q.X. She & L. Huang. Sulfobus tendchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J. Virol., 2005(79): 8677-8686.
    Zhao H & Arnold FH. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng., 1999, 12 (1): 47-53.
    Zhang X.B., CH. Huang, X.H. Tang, Y. Zhuang & C.L. Hew. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins, 2004(55): 229-235.
    Zillig W., A. Kletzin, C. Schleper, I. Holz, D. Janekovic, H. Hain, M. Lanzendo¨rfer & J.K. Kristjanson. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst. Appl. Microbiol., 1994(16): 609-628.
    Zillig, W, Arnold, H.P., Holz, I. and Prangishvili, D., Schweier, A., Stedman, K.M., She, Q., Phan, H., Garrett, R.A. & Kristjansson, J.K. Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles, 1998(2): 131-140.
    Zillig W., Prangishvili, D., Schleper, C, Elferink, M., Holz, I., Albers, S., Janekovic, D. & Go¨tz, D. Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol. Rev., 1996(18): 225-236.
    Zimmer, M., Sattelberger, E., Inman, R.B., Calendar, R. & Loessner, MJ. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol., 2003(50): 303-317.
    Zimmer, M., Scherer, S. & Loessner, M. J. Genomic Analysis of Clostridium perfringens Bacteriophage Φ3626, Which Integrates into guaA and Possibly Affects Sporulation. J. Bacteriol., 2002(184): 4359-4368 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700