吸附法浓缩煤层气甲烷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气是一种高品质的气体燃料,具有相当大的实用价值。开发利用煤层气对于充分利用能源,改善能源结构,减少煤矿瓦斯灾害,保护大气环境都有极为重要的意义。然而目前煤层气资源未得到充分利用,这主要是由于煤层气中含有高浓度的非可燃性气体。一般通过抽放气法开采得到的煤层气中甲烷浓度在20% ~ 45%,而管道输送一般要求甲烷浓度高于90%。抽放煤层气无法满足管道输送的最小热值要求。氮气作为煤层气中主要的非可燃性气体,与甲烷之间的分离是煤层气利用的关键技术之一。
     变压吸附技术由于能耗小、操作灵活,投资和运行费用低等优势在煤层气甲烷分离浓缩方面受到广泛的关注。本文采用计算机模拟方法结合实验对CH_4/N_2在活性炭上的吸附机理进行了深入研究,并在此基础上对传统变压吸附过程进行了改进,实现了低浓度煤层气的浓缩分离。
     (1)采用10-4-3的势能模型计算了不同孔宽下活性炭与甲烷、氮气之间的相互作用。同时,利用Material Studio 4.0软件中的Sorption模块,采用GCMC方法模拟计算了甲烷和氮气混合气在不同孔宽的活性炭孔内的吸附行为,考察了吸附剂孔宽、吸附压力对甲烷与氮气的分离效果的影响。由计算结果可以看出,甲烷与氮气分离因子受孔宽的影响较大,在孔宽为0.75 nm左右时,氮气和甲烷分离因子达到最大值;当孔宽大于1.3 nm时,分离因子基本不再发生变化。因此微孔(0.75~1.3 nm)含量高的活性炭有利于甲烷和氮气的吸附分离,该结论的得出对于变压吸附分离吸附剂的选择以及吸附剂的合成具有极大的指导意义。
     (2)采用水蒸气和CO2活化相结合的方法制备了八个具有不同孔宽分布的活性炭材料。通过动态法测定甲烷和氮气混合气在八个样品上的穿透曲线,并计算其分离因子。实验结果表明,低压有利于甲烷和氮气的吸附分离,随着压力的升高分离因子逐渐减小。根据GCMC模拟中计算得到的不同孔宽下甲烷和氮气吸附等温线,建立了基于吸附剂孔宽分布的甲烷/氮气在活性炭上的分离因子计算模型。通过对比实验结果和计算结果可以发现,采用该模型可以准确的计算CH_4/N_2在活性炭上的分离因子,该计算模型的建立可以很大程度上简化筛选吸附剂的实验过程,从分离效果的角度评价吸附剂优劣。
     (3)传统的变压吸附分离技术中,一般以混合气中的轻组份气体为产品气,相对于强吸附组份,轻组份可以作为塔顶产品具有浓度高,回收率高的优势。然而在CH_4/N_2混合气中,甲烷是强组份气体,同时又是产品气,因此变压吸附浓缩CH_4/N_2与典型变压分离过程意义完全不同,将传统的变压吸附分离过程应用于CH_4/N_2混合体系的分离具有较大的困难。本文在传统的变压吸附流程加入CO2置换步骤,成功地将甲烷由塔底产品转变为塔顶产品,在实现CH_4/N_2变压吸附分离的同时,得到了高浓度的甲烷产品气。本流程包括以下四个阶段:充压,高压吸附,CO2置换以及吸附剂再生。本实验采用了实验室自制的活性炭作为吸附剂,配制了一系列甲烷浓度(17.62%,22.30%,32.06%,40.28%和51.33%)的原料气用于置换分离实验。通过实验确定了不同浓度原料气的最佳吸附时间,产品气浓度与回收率的关系,摸索了吸附床再生条件以及置换压力对于产品气浓度回收率的影响。通过实验发现,采用置换方法分离低浓度CH_4/N_2混合气是可行的,可以将甲烷由塔底产品转换为塔顶产品。在维持90%以上回收率的条件下,产品气中甲烷平均浓度均达到88.5%以上。对于不同浓度的原料气来说,随着甲烷浓度增大,其产品气的浓度和回收率都有明显的提高。甲烷浓度为17.62%时,0.4MPa置换后,产品气浓度为84.4%,回收率为91.4%;常压置换后,产品气浓度为98%,回收率为90%;甲烷浓度为51.33%时,0.4MPa置换后,产品气浓度为91.8%,回收率可达96.5%;常压置换后,产品气浓度为98.5%,回收率为90%。
Coalbed methane (CBM) is a kind of natural gas buried in seams that have not been mined and it amounted up to 1x1014m3. The methane rich gases captured on methane drainage in operational mines contain different amounts of non-combustible gases, most of which is nitrogen. The concentration of methane varies for a wide range, but mostly in 20-45 %, which do not meet the specification on pipeline gas for the minimum heating value, for which the methane content is typically larger than 90 %. To utilize CBM and prevent from its emission into troposphere, the separation between CH4 and N2 has to be carried out. PSA is supossed to be a good choice for its low investment and energe cost. In this paper, we have focus on two respects of CH_4/N_2 separation. The frist part of the work is to study on the adsorption mechanism between on the CH4 and N2 on activated carbons; the second part of the work is to modify the conventional PSA cycle to achieve separation of CH_4/N_2.
     (1) The present work considered the separation on the basis of adsorption mechanism. The adsorption potential was calculated relying on the 10-4-3 potential model and the slit pore model of activated carbons. At the same time, the adsorption isotherms of CH_4/N_2 at 298 K are obtained for different pore widths by using a Grand Canonical Monte Carlo simulation (GCMC). The results of the calculation and simulations showed that the largest selectivity between CH4 and N2 occurred in pore size of 0.75 nm, and there was no difference between them for pores larger than 1.3nm. It has been known that supercritical gases follow the adsorption mechanism of monolayer surface coverage; however, the surface of adsorbent has not been fully covered when the partial pressure of CH4 or N2 is low, and the adsorption potential dominates the separation.
     (2) To study the effect of adsorption mechanism on the separation, eight carbon samples corresponding to different extent of activation were prepared .The separation coefficient between CH4 and N2 on the eight carbons was evaluated based on breakthrough curves .It was experimentally shown that the separation coefficient between CH4 and N2 increases following the increase of micropore volume, and decreases following the increase of pressure. The corresponding selectivity of CH_4/N_2 on the real activated carbon is predicted with the PSD determined by the DFT method of the adsorbents and simulation results and the simulation results match the experiment perfectly.
     (3) For the mixture of CH_4/N_2, methane, which is the strongly adsorbed component and obtained as bottom product in the typical PSA or VSA process, is the targeted product. However, methane is expected to be upgraded and obtained as top product, which is totally opposite with the typical PSA process in the role of each step. A new step, CO2 replacement, was implemented into conventional PSA cycle. The new cycle of pressure swing operation composed of four steps: pressurization, adsorption at an elevated pressure, CO2 replacement, and bed regeneration. The pressure swing adsorption experiments were carried out using activated carbon made in our laboratory, as adsorbent. A series of CH_4/N_2 mixtures containing 17.62 %,22.30 %,32.06 %,48.28 % and 51.33 % methane was used to simulate the methane rich gases. Effect of operational variables on the concentration and recovery of methane in the product stream was experimentally studied. It was shown that methane content in the product stream is higher than 88.5 % with methane recovery higher than 90 % for all feeding gases tested. It was shown also that replacement at ambient pressure is more efficient than the replacement at adsorption pressure. Both methane concentration in product and its recovery remarkably increased following the increase of methane content in feeding streams. When the displacement pressure at 0.4MPa , the recovery and concentration of methane reached 96.5% and 91.8%, respectively, for the methane rich gas containing 51.33 % CH4 and when the displacement pressure at 0.1MPa, the recovery and concentration of methane reached 96.5% and 91.8%, respectively. When the displacement pressure at 0.4MPa , the recovery and concentration of methane reached 91.4% and 84.4%, respectively, for the methane rich gas containing 17.62 % CH4 and when the displacement pressure at 0.1MPa, the recovery and concentration of methane reached 90% and 98%, respectively.
引文
[1]鲜学福,我国煤层气开采利用现状及其产业化展望,重庆大学学报(自然科学版), 2000,23:S1-S5
    [2]R. M. Bustin and C. R. Clarkson, Geological controls on coalbed methane reservoir capacity and gas content, International Journal of Coal Geology, 1998, 38: 3-26
    [3]何鲁鄂,煤矿瓦斯爆炸概述,西部探矿工程,2010,4:123-124
    [4]李学诚,搞好煤矿瓦斯抽放和利用可一举三得,煤矿安全,,2003,34:7-8
    [5]辜敏,鲜学福,矿井抽放煤层气中甲烷的变压吸附提浓,重庆大学学报(自然科学版),2007, 30:30-33
    [6]孙茂远,黄胜初,煤层气开发利用手册,北京:煤炭工业出版社,1998
    [7]J. L.Clayton, Geochemistry of coalbed gas - A review, International Journal of Coal Geology, 1998, 35:159-173
    [8]宁惠丽,煤矿甲烷对气候的影响及防治措施,煤矿安全,1996,1:39-42
    [9]黄格省,于天学,李雪静,国内外煤层气利用现状及技术途径分析,石化技术与应用,2010,28:341-346
    [10]吴庆荣,煤层气的大规模开发解决优质能源的重要途径,西部资源,2006,4:2-4
    [11]郭东,低浓度煤层气资源利用现状及效益分析,中国煤层气,2008,5:41-46
    [12]景兴鹏,刘瑛良,郑登峰,煤层气利用技术研究现状,陕西煤炭,2007,6:9-12
    [13]井强山,方林霞,楼辉等,甲烷临氧催化转化制合成气研究进展,化工进展2008,27: 503-507
    [14]陶鹏万,古共伟,利用煤层气制氢,工厂动力,2006:29-33
    [15]陶鹏万,古共伟,石江,煤层气制氨探讨,中氮肥,2010:1-3
    [16]陶鹏万,煤矿去煤层气制氢技术的探讨,中国煤层气,2006,3:21-24
    [17]安学琴,毕家立,煤层气资源的开发利用现状,煤炭加工与综合利用,1998 3:5-7
    [18]王许涛,煤层气开发利用前景研究, 2006.
    [19]http://www.ocn.com.cn/reports/2006131meiceng.htm, 2010
    [20]姜晓华,柴立满,罗文静,国外煤层气开发现状及对中国煤层气产业发展的思考,内蒙古石油化工2008,8:46-50
    [21]罗乘先,世界煤层气开发蓬勃发展,中国石化,2010,3:53-56
    [22]司光耀,蔡武,张强,国内外煤层气利用现状及前景展望,中国煤层气,20096:44-46
    [23]刘贻军,中国与美国煤层气开发潜力比较研究,中国煤层气, 2004,1:20-25, 2004
    [24]宫诚,国外煤层气发展现状,中国煤炭, vol. 31, pp. 74-76, 2005.
    [25] www.bp.com/statisticalreview
    [26]李元建,中国煤层气产业开发利用现状与对策分析,中国矿业,2010,19: 8-10
    [27]车长波,杨虎林,李富兵,非常规油气资源勘探开发政策思考,天然气工业, 2008:4-6
    [28]http://nyj.ndrc.gov.cn/zywx/t20060626_74590.htm, 2010
    [29]柳正,加快煤层气开发,提高我国能源自供能力,西部资源,2006,10:13-16
    [30]黄盛初,刘文革,赵国泉,中国煤层号开发利用坝状及发展趋势,中国煤炭,2009,35:5-10
    [31]王长元,王正辉,陈孝通,低浓度煤层气变压吸附浓缩技术研究现状,矿业安全与环保,2008,35:70-72
    [32]聂李红,徐绍平,苏艳敏等,低浓度煤层气提纯的研究现状,化工进展,2008 27:1505-1511
    [33]陶鹏万,王晓东,黄建彬,低温法浓缩煤层气中的甲烷,天然气化工,2005 30:43-46
    [34]西南化工研究设计院,煤层气低温分离提浓甲烷工艺,CN,1718680A, 2006
    [35]杨克剑,含空气煤层气液化分离工艺及设备,CN,2007
    [36]杨克剑,含氧煤层气的分离与液化,中国煤层气,2007,4:20-22
    [37]范庆虎,李红艳,尹全森等,低浓度煤层气液化技术及其应用,天然气工业, 2008,28:117-120
    [38]陶鹏万,燥矿区煤层气低温分离液化工艺功耗分析,中国煤层气,2009, 6:37-41
    [39]S. Adhikari and S. Fernando, Hydrogen Membrane Separation Techniques, Ind. Eng. Chem. Res., 2006, 45:875-881
    [40]N. W. Ockwig and T. M. Nenoff, Membranes for Hydrogen Separation, Chem. Rev., vol. 107, pp. 4078-4110, 2007.
    [41]杨毅,李长俊,刘恩斌,膜技术在天然气分离中的应用研究,西南石油学院学报,2005,27:68-71
    [42]W. J. Schell and C. D. Houston, Process gas with selective membranes, Hydrocarbon Process, 1982, 61:249-252
    [43]S. A. Stern, Polymers for gas separations: The next decade, Journal of Membrane Science, 1994, 94:1-65
    [44]A. S. Damle and T. P. Dorchak, Recovery of carbon dioxide in advanced fossil energy conversion processes using a membrane reactor, Journal of Energy and Environment Research, 2001, 1: 77-89
    [45]C. E. Powell and G. G. Qiao, Polymeric CO2/N2 gas separation membranes forthe capture of carbon dioxide from power plant flue gases, Journal of Membrane Science, 2006, 279:1-49
    [46]郝继华,王志,王世昌,CO2/CH4醋酸纤维素分离膜的制备,高分子材料科学与工程,1997,13:64-68
    [47] C. E. Powell and G. G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, Journal of Membrane Science, 2006,279:1-49
    [48]F. G. Russell and A. B. Coady, Gas-permeation process economically recovers CO2 from heavily concentrated streams, Oil Gas J, 1982, 28: 128-134
    [49]S. Saimani, M. M. Dal-Cin, and A. Kumar, Separation performance of asymmetric membranes based on PEGDa/PEI semi-interpenetrating polymer network in pure and binary gas mixtures of CO2, N2 and CH4, Journal of Membrane Science, 2010,362:353-359
    [50]K. A. Lokhandwala, I. Pinnau, Z. He, K. D. Amo, A. R. DaCosta, J. G. Wijmans, and R. W. Baker, Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment, Journal of Membrane Science, 2010, 346: 270-279
    [51]M. Tagliabue, D. Farrusseng, S. Valencia, and S. Aguado, Natural gas treating by selective adsorption: Material science and chemical engineering interplay, Chemical Engineering Journal, 2009,155: 553-566
    [52]A. Makaruk, M. Miltner, and M. Harasek, Membrane biogas upgrading processes for the production of natural gas substitute, Separation and Purification Technology, 2010, 74: 83-92
    [53]R. W. Baker and K. Lokhandwala, Natural Gas Processing with Membranes: An Overview, Industrial & Engineering Chemistry Research, 2008, 47:2109-2121
    [54]P. Tremblay, M. M. Savard, and J. Vermette, Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus, Journal of Membrane Science,2006, 282:245-256
    [55]A. Elkamel and R. D. Noble, A statistical mechanics approach to the separation of methane and nitrogen using capillary condensation in a microporous membrane, Journal of Membrane Scrence, 1992, 65:163-172
    [56]Lokhandwala, Membrane-augmenteA cryogenic methane/nitrogen separation, US, 5647227, 1997
    [57]赵士华,一种煤层气浓缩方法,CN,1799679,2006
    [58]D. M. Ruthven, S. Farooq, and K. S. Knaebel, Pressure Swing Adsorption, New York: VCH Publishers, 1994
    [59]C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US, 2944627, 1960
    [60]Montgareuil and G. D. Pierre, Process for separating a binary gaseous mixture byadsorption, US, 3155468, 1964
    [61]郜豫川,陈健,变压吸附技术在我国的应用现状及发展,低温与特性,1993: 1-9
    [62]H. Arastoopour, University of Indonesia Gas Engineering Program, Chicago: Illinois 60616, 1982
    [63]W. Dolan and M. Mitariten, Nitrogen Removal from Natural Gas with Molecular Gate Technology, The Laurance Reid Gas Conditioning Conference, Norman, 2001.
    [64]徐龙君,鲜学福,杨明莉,煤矿区煤层气浓缩净化方面的基础研究,中国煤层气,2005,2:11-17
    [65]钟立梅,变压过程脱除气体中微量硫化氢的研究,博士学位论文,天津:天津大学,2006
    [66]D. M.Ruthven, S. Farooq, and K. S.Knaebel, Pressure Swing Adsorption, New York: VCH Publishers, 1994
    [67]G. E. Keller and C. Koo, Apparatus for colorimetrically measuring traces of gas, US, 1982
    [68]Hiscock and E. Willis, Pressure swing adsorption process, US, 4354854, 1986
    [69]S. Sircara, Production of Hydrogen and Ammonia Synthesis Gas by Pressure Swing Adsorption Separation Science and Technology, 1990, 25: 1087-1099
    [70]L. Zhou, J. Li, W. Su, and Y. Sun, Experimental Studies of a New Compact Design Four-Bed PSA Equipment for Producing Oxygen, AIChE Journal, 2005,51: 2695-2701
    [71]B.Pacalowska and M.Whysall, Improve hydrogen recovery from refinery offgases, Hydrocarbon Processing, 1996: 55-59
    [72]V. MERCEA P and S. T. H WANG, Oxygen separation from air by a combined pressure swing adsorption and continuous membrane column processs, Membrane Sci., 1994, 88:131-144
    [73]M. B. Rao and S. Sircar, Performance and Pore Size Characterization of Nanoporous Carbon Membranes for Gas Separation, J. Membr. Sci., 1996, 110:109-118
    [74]A. A. Gelacio, P. I. María, and L. R. Roberto, Adsorption Kinetic Behaviour of Pure CO2, N2 and CH4 in Natural Clinoptilolite at Different Temperatures, Adsorption Science & Technology, 2003, 21: 81-91
    [75]唐晓东,孟英峰,变压吸附技术在煤层气开发中的应用,中国煤层气,1996 :13-16
    [76]R. T. Yang, ADSORBENTS: FUNDAMENTALS AND APPLICATIONS. New Jersey: John Wiley & Sons, 2003.
    [77]X. Hu, S. Qiao, and D. D.Do, Multicomponent Adsorption Kinetics of Gases in Activated Carbon: Effect of Pore Size Distribution, Langmuir, 1999, 15: 6428-6437
    [78]辜敏,提高抽放煤层气中甲烷浓度的变压吸附基础研究,博士学位论文,重庆:重庆大学,2000
    [79]辜敏,陈昌国,鲜学福,混合气的吸附特征研究,天然气工业,2001,21:92-94
    [80]辜敏,鲜学福,模拟的煤层气在活性炭上穿透曲线的研究,天然气化工,2003,28:23-25
    [81]辜敏,鲜学福,张代钧,变压吸附分离CH4/N2混合气体,煤炭学报,2002, 27:197-200
    [82]辜敏,陈昌国,鲜学福,抽放煤层气的变压吸附过程的数学模拟,煤炭学报,2001,26:323—326
    [83]杨明莉,煤层甲烷变压吸附浓缩的研究,博士学位论文,重庆:重庆大学,2004
    [84]辜敏,鲜学福,变压吸附技术分离CH4/N2气体混合物,煤炭学报,2002, 27:197-200
    [85]L. Zhou and W. Guo, Zhou Yaping. A feasibility study of separating CH4/N2 by adsorption, Chinese J. Chem. Eng., 2002, 10:555-561, 2002
    [86]周理,周亚平,高表面活性炭变压吸附分离甲烷/氮气混合物的方法,CN,02117916.6,2003
    [87]李胜男,吸附法浓缩煤层甲烷的实验研究,硕士学位论文,天津:天津大学, 2006
    [88]A. Olajossy, Methane separation from coal mine methane gas by vacuum pressure swing adsorption, Chemical Engineering Research and Design, 2003, 81, 474-482
    [89]K. A. Baksh MSA, Yang RT, A new composite sorbent for methane-nitrogen separation by adsorption, Separation Science and Technology.,1990, 25: 845-868
    [90]K. Warmuzinski and W. Sodzawiczny, Effect of adsorption pressure on methane purity during PSAseparations of CH4:N2 mixtures, Chemical Engineering and Processing, 1999, 38:55-60
    [91]B. Buczek, Methane recovery from coal mine gases using carbonaceous adsorbents, Inzynieria Chemiczna I Procesowa, 1996, 10: 205-209
    [92]B. B. Balys M, Zietkiewicz, Modeling study of PSA process for methane recovery from mine gases, Inzynieria Chemiczna I Procesowa, vol. 18, pp. 205-210, 1999.
    [93]B.Buczek, Development of texture of carbonaceous sorbent for use in methane recovery from gaseous mixtures, Inzynieria Chemiczna I Procesowa, 2000, 21:385-392
    [94]龚肇元,王宝林,陶鹏万等,变压吸附法富集煤矿瓦斯气中甲烷,85103557, CN,1986
    [95]C. R. Reid and K. M. Thomas, Adsorption of Gases on a Carbon Molecular Sieve Used for Air Separation: Linear Adsorptives as Probes for Kinetic Selectivity, Langmuir,1999,15:3206-3218
    [96]E. Kouvelos, K. Kesore, and T. Steriotis, High pressure N2/CH4 adsorption measurements in clinoptilolites, Microporous and Mesoporous Materials, 2007, 99:106-111
    [97]S. Cavenati, C. A. Grande, and A. r. E. Rodrigues, Separation of Methane and Nitrogen by Adsorption on Carbon Molecular Sieve, Separation Science and Technology, 2005, 40:2721-2743
    [98]C. A. Grande, S. Cavenati, and F. A. D. Silva, Carbon Molecular Sieves for Hydrocarbon Separations by Adsorption, Ind. Eng. Chem. Res.,2005, 44: 7218-7227
    [99]A. M. W and Y. R. T, Kinetic separation by pressure swing adsorption:Method of characteristics modeI, AIChE J, 1990, 36: 1229
    [100]A. I. Fatehi, K. F. Loughlin, and M. M. Hassan, Separation of methane--nitrogen mixtures by pressure swing adsorption using a carbon molecular sieve, Gas Separation & Purification, 1995, 9: 199-204
    [101]章川泉,林文胜,顾安忠,CH4/N2混合气体在CMS上的低温吸附分离实验研究,低温技术,2008, 36:9-12
    [102]M. K. Steven and A. B. Valerie, A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules, Nature, 2001, 412: 720
    [103]M. W. Ackley and R. T. Yang, Adsorption characteristics of high exchange clinoptilolites, Ind. Eng. Chem. Res., 1992, 30:2523
    [104]H.H.Rosario, D.L.Ourdes, and A.A.Gelacio, Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites, Separation and Purification Technology, 1999, 15: 163-173
    [105]J. E. Guest and C. D. Williams, Efficient methane/nitrogen separation with low-sodium clinoptilolite, Chem. Commun., 2002: 2870-2871
    [106]A. Jayaramana, A. J. H. Maldonadoa, and R. T. Yang, Clinoptilolites for nitrogen/methane separation, Chemical Engineering Science, 2004, 59: 2407-2417
    [107]J. A. Delgado, M. A. Uguina, and J. M. G′omez, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures, Separation and Purification Technology, 2006, 48: 223-228
    [108]刘克万,辜敏,鲜晓红,变压吸附分离CH4/N2的分子筛吸附剂进展,材料导报,2010,24:59-63
    [109]H.W.Habgood, The Kinetics of Molecular Sieve Action Sorption of Nitrogen-Methane Mixtures by Linder Molecular Sieve 4A, Can. J. Chem., 1958:1384-1397
    [110]D. V. Cao, R. J. Mohr, and M. B. Rao, Self-Diffusivities of N2, CH4, and Kr On 4A Zeolite Pellets by Isotope Exchange Technique, J. Phys. Chem. B, 2000, 104:10498-10501
    [111]F. H.Tezel and G. Apolonatos, Chromatographic study of adsorption for N2, CO and CH4 in molecular sieve zeolites, Gas Separation & Purification, 1993, 7:11-17
    [112]H. Nazmul and D. M. Ruthven, Chromatographic study of sorption and diffusion in 4A zeolite, J. Colloid Interf. Sci., 1986, 112: 154
    [113]S. M. Kuznicki, V. Bell, and L. Petrovic, Small-pored crystalline titanium moleeular sieve zeolites and their use in gas separation processes, US, 6068682, 2000
    [114]P. J. E. Harlick and F. H. Tezel, Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280, Separation and Purification Technology,2003,33:199-210
    [115]K. Kusakabe, S. Yoneshige, and A. Murata, Morphology and gas permeance of ZSM-5-type zeolite membrane formed on a porous c -alumina support tube, Journal of Membrane Science, 1996,116: 39-46
    [116]S. Cavenati, C. A. Grande, and A. E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, J. Chem. Eng. Data, 2004, 49: 1095-1101
    [117]S. Frenkel,分子模拟.北京:北京化学工业出版社, 2002
    [118]刘志平,黄世萍,汪文川,分子计算科学——化学工程新的生长点,化工学报,2003,54:464-476
    [119]M. J. Field., A Practical Introduction to the Simulation of Molecular Systems. Cambridge: Cambridge University Press, 1999
    [120]C. G. Gray and K. E. Gubbins, Theory of molecular fluids. Oxford: Clarendon Press, 1984
    [121]M. P. Allen, Introduction to Molecular Dynamics Simulation, Computational Soft Matter: From Synthetic Polymers to Proteins, 2004, 23: 1-28
    [122]J. M. Haile, Molecular dynamics simulation: elementary methods. New York: Wiley, 1992
    [123]D. Frenkel, Introduction to Monte Carlo Methods, Computational Soft Matter: From Synthetic Polymers to Proteins, 2004, 23: 29-60
    [124]Z. Tan and K. E. Gubbins, Adsorption in carbon micropores at supercritical temperatures, The Journal of Physical Chemistry, 1990, 94: 6061-6069
    [125]S. Jiang, C. Rhykerd, and K. E. Gubbins, Layering, freezing transitions, capillary condensation and diffusion of methane in slit carbon pores Molecular Physics, 1993,79: 373-391
    [126]J. Zhou and W. Wang, Adsorption and Diffusion of Supercritical Carbon Dioxide in Slit Pores, Langmuir, 2000,16:8063-8070
    [127]E. D. Akten, R. Siriwardane, and D. S. Sholl, Monte Carlo Simulation of Single- and Binary-Component Adsorption of CO2, N2, and H2 in Zeolite Na-4A, Energy & Fuels, 2003,17: 977-983
    [128]A. A. Rafati, S. M. Hashemianzadeh, and Z. Bolinojini, Canonical Monte Carlo Simulation of Adsorption of O2 and N2 Mixture on Single Walled Carbon Nanotube at Different Temperatures and Pressures, Journal of Computational Chemistry, 2010, 31: 1443-1449
    [129]X. Peng, D. Cao, and J. Zhao, Grand canonical Monte Carlo simulation of methane–carbon dioxide mixtures on ordered mesoporous carbon CMK-1 Separation and Purification Technology, 2009: 50-60
    [130]M. K. Song and K. T. No, Grand Canonical Monte Carlo simulations ofhydrogen adsorption on aluminophosphate molecular sieves, International Journal of Hydrogen Energy, 2009, 34: 2325-2328
    [131]Q.Yang, B. Liu, C. Zhong , Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks: Effect of Catenation and Electrostatic Interactions, Chinese Journal of Chemical Engineering, 2009,17(5) :781-790
    [132]T. Suzuki, R. Kobori, and K. Kaneko, Grand canonical Monte Carlo simulation-assisted pore-width determination of molecular sieve carbons by use of ambient temperature N2 adsorption, Carbon, 2000, 38: 623–641
    [133]G. Birkett and D. D. Do, on the physical adsorption of gases on carbon materials from molecular simulation, Adsorption, 2007, 13:407-424
    [134]D. D. Do, H. D. Do, and D. Nicholson, Molecular Simulation of Excess Isotherm and Excess Enthalpy Change in Gas-Phase Adsorption, The Journal of Physical Chemistry B, 2009, 113:1030-1040
    [135]D. D. Do and H. D. Do, Modeling of Adsorption on Nongraphitized Carbon Surface:GCMC Simulation Studies and Comparison with Experiment and Data, The Journal of Physical Chemistry B, vol. 110, pp. 17531-17538, 2006.
    [136]L. F. Herrera and D. D. Do, Birkett G.R. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks, Journal of Colloid and Interface Science, 2008, 320: 415- 422
    [137]A.PN, Q.N and R.S, Methane adsorption on microporous Carbons-A comparison of Experiment, Theory, and Simulation, Carbon, 1992, 30:913-924
    [138]S. Jiang and J. Zollweg, Gubbins KE. High-Pressure Adsorption of Methane and Ethane in Activated Carbon and Carbon Fibers, J Phys Chem., 1994: 5709-5713
    [139]D. D. Do, Adsorption analysis: Equilibria and Kinetics. London: Imperial College Press, 1998
    [140]W. Steele, The interaction of gases with solid surfaces. Pergamon: oxford, 1974.
    [141]R. Dombrowski and D. Hyduke, Pore Size Analysis of Activated Carbons from Argon and Nitrogen Porosimetry Using Density Functional Theory., Langmuir, 2000: 5041-5050
    [142]H. Sun, S. J. Mumby, and J. R. Maple, An ab Initio CFF93 All-Atom Force Field for Polycarbonates, J. Am. Chem. Soc.1994, 116: 2918-2981
    [143]A. K. Rappi, C. J. Casewit, K. S. Colwell, et al., UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc., 1992, 114: 10024-10039
    [144]S. L. Mayo, B. D. Olafson, and W. A. Goddard, DREIDING: A Generic Force Field for Molecular Simulations, J. Phys. Chem., 1994, 94: 8897-8909
    [145]D. Rigby, Fluid density predictions using the COMPASS force field, Fluid Phase Equilibria, 2004, 217: 77-87
    [146]H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys.Chem. B, 1998, 102: 7338-7364
    [147]S. Sircar and Gibbsian, Surface Excess for Gas Adsorption-Revisited, Ind. Eng. Chem. Res., 1999, 38:3670-3682
    [148]F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by powders and porous solids, London: Academic Press, 1999
    [149]孙艳,储气材料及其储能性质的实验研究,硕士学位论文天津:天津大学,2001
    [150]D. M. Ruthven, Principles of Adsorption and Adsorption Processes New York: Wiley, 1984
    [151]J. U. Keller, F. Dreisbach, H. Rave, R. Staudt, and M. Tomalla, Measurements of Gas Mixture Adsorption Equilibria of Natural Gas Compounds on Microporous Sorbents, Adsorption, 1999, 5: 199-214
    [152]K. S. Siddiqi and W. J. Thomas, The Adsorption of Methane-Ethane Mixtures on Activated Carbon, Carbon, 1982, 20:473-479
    [153]D. Tondeur, H. Kabir, L. A. Luo, and J. Grander, Multicomponent Adsorption Equilibria from Impulse Response Chromatography, Chem. Eng. Sci., 1996, 51: 3781-3799
    [154]R. T.Yang, Gas separation by adsorption process, New York: Butterworth, 1987
    [155]D.D.Do, Adsorption analysis: Equilibria and Kinetics. London: Imperial College Press, 1998
    [156]L. Zhou, J. Wu, M. Li, Q. Wu, and Y. Zhou, Prediction of multicomponent adsorption equilibrium of gas mixtures including supercritical components, Chemical Engineering Science, 2005, 60:2833-2844
    [157]Q.Wu, L. Zhou, J. Wu, and Y. Zhou, Adsorption Equilibrium of the Mixture CH4 + N2 + H2 on Activated Carbon, Journal of Chemical & Engineering Data, 2005, 50:635-642
    [158]Y. Zhou, M. Li, and P. Chen, Experimental and Modeling Study of the Adsorption of Supercritical Methane on a High Surface Activated Carbon, Langmuir, 2000, 16: 5955-5959
    [159]S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60: 309
    [160]Z. Ryu, J. Zheng, and M. Wang, Characterization of pore size distributions on carbonaceous adsorbents by DFT, Carbon, 1999, 37: 1257- 1264
    [161]X. Shao, X. Zhang, and W. Wang, Comparison of Density Functional Theory and Molecular Simulation Methods for Pore Size Distribution of Mesoporous Materials, Acta Phys.Chim.Sin., 2003, 19: 538-542
    [162]刘秀武,有序介孔材料吸附功能研究,博士学位论文天津:天津大学, 2005
    [163]熊洪允,曾绍标,毛云英,应用数学基础,天津:天津大学出版社, 1994
    [164]A. Malek and S. Farooq, Effect of velocity variation due to adsorption-desorption on equilibrium data from breakthrough experiments, Chem.Eng. Sci., 1995, 50:727-740
    [165]A. Malek and S. Farooq, Determination of equilibrium isotherms using dynamic column breakthrough and constant flow equilibrium desorption, J. Chem. Eng. Data, 1996, 41:25-32
    [166]A. Malek and S. Farooq, Kinetics of Hydrocarbon Adsorption on Activated Carbon and Silica gel, AIChE. J., 1997, 43: 761-776
    [167]A. Kapoor and R. T. Yang, Roll-up in fixed-bed, multicomponent adsorption under pore-diffusion limitation, AIChE. J. 1987, 33: 1215-1217
    [168]P. L. J. Mayfieldand D. D.Do, Measurement of the single-component adsorption kinetics of ethane, butane, and pentane onto activated carbon using a differential adsorption bed, Ind. Eng. Chem. Res., 1991, 30:1262-1270
    [169]X. J. Hu and D. D.Do, Effect of surface energetic heterogeneity on the kinetics of adsorption of gases in microporous activated carbon, Langmuir, 1993,9 :2530-2536
    [170]M. Baksh, A. Kapoor, and R. Yang, A new composite sorbent for methane-nitrogen separation by adsorption, Separation Science and Technology., 1990, 25: 845-868
    [171]D. Ruthven, Z. Xu, and S. Farooq, Sorption kinetics in PSA systems, Gas Sep. Pur., 1993, 7: 75-81
    [172]J. Delgado, M. Uguina, and J. Sotelo, Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets, Sep. Pur. Technol., 2006, 50:192-203
    [173]S. Cavenati, C. Grande, and R. AE, Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas, Chem. Eng. Sci., 2006, 61:3893-3906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700