中国水仙花色相关基因的分离和反义Psy基因的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国水仙(Narcissus tazetta L.var. chinensis Roem)隶属石蒜科水仙属,多年生草本植物,是多花水仙的一个变种。中国水仙主要产地在福建漳州,上海崇明,浙江舟山,其中以漳州水仙最为有名。目前,种球退化、繁殖速度慢、花色单一已成为制约中国水仙发展的主要障碍,除依靠高效栽培管理措施和脱毒种苗的快繁体系外,非常重要的就是进行品种改良。
     本研究以中国水仙品种“金盏银台”为材料,从中国水仙花瓣中分离得到控制水仙花色的相关基因,构建了八氢番茄红素合成酶(Psy)基因的反义表达载体,在建立中国水仙遗传转化体系的基础上,对中国水仙进行了遗传转化。获得了抗性芽,并进行了初步的分子验证。为创建中国水仙新种质提供技术基础,为水仙品种改良提供新的途径,也为阐明中国水仙花色调控的分子机理提供了研究基础。主要研究结果如下:
     1.提取中国水仙花瓣的RNA,反转录为cDNA二链,并以此为模板克隆类胡萝卜素合成途径中的关键基因Psy、LycB(番茄红素环化酶)和Pds(八氢番茄红素脱饱和酶)。Psy基因全长1272bp,编码423个氨基酸,LycB基因全长1515bp,编码504个氨基酸,Pds基因全长1713bp,编码570个氨基酸。
     2.在已经得到的Psy基因全长的基础上,分离554bp的Psy基因的片段,BamH Ⅰ和Xba Ⅰ双酶切后,连接到同样用BamH Ⅰ和Xba Ⅰ双酶切的pCAMBIA1301双元载体上,构建CaMV35S组成型启动子反义表达载体pCAM35S-PSY。
     3.建立了中国水仙的遗传转化体系。中国水仙鳞茎球双鳞片经消毒处理后在MS+10mg·L~(-1)BAP+0.5mg·L~(-1)NAA+3%蔗糖+0.7%琼脂糖预培养7d,在添加200mg·L~(-1)头孢霉素的基础上筛选潮霉素抗性浓度,30mg·L~(-1)的潮霉素即可使未经转化的外植体完全不分化;侵染时间为15-20min,侵染后的外植体在加入AS的共培养基中黑暗培养3d时瞬时表达效率最高,达92.9%。将共培养后的材料转移到筛选培养基(MS+5mg·L~(-1)BAP+0.1mg·L~(-1)NAA+3%蔗糖+0.7%琼脂糖+200mg·L~(-1)Cef+30mg·L~(-1)Hyg)上进行筛选。20d左右转接一次,直至生长出抗性芽,当抗性幼苗长至2-3cm时,从愈伤组织处切下幼苗,在继代培养基上培养到生长成健壮的小苗。
     4.在已经建立的中国水仙遗传转化体系的基础上,将Psy基因的反义表达载体pCAM35S-PSY转化入预培养7d的中国水仙外植体,经过共培养和分化培养,得到抗性芽,并对抗性芽进行了初步的分子检测,证明得到了转基因植株。
Narcissus tazetta L. var. chinensis Roem is one of the ten Chinese traditional flowers is a kind of perennial plant with beautiful color and sweet fragrance. And it is a favorite flower of common Chinese and a famed traditional export flower for a long time. Chinese narcissus has widely spread in China, including Zhangzhou, Putuo and Chongming, especially the Zhangzhou narcissus is the most fomous. But for the slowly multiplication severe degeneration of varieties and simplex color, the production of Chinese narcissus can not satisfy the demand of global market and its development has been seriously restricted. So it's imperative to develop new varieties with modern breeding methods for the narcissus industry.In order to modify the Narcissus flower color by genetic engineering, the expressinal plasmid of objective genes and regenerate system from callus after gene transformation are two key steps. In present study, we cloned flower color genes from the petal of Chinese narcissus, and constructed plant expressing plasmid vector(pCAM35S-PSY), after the establishment of an efficient gene transformation system, The anti-PSY(phytoene synthase) gene was introduced into Agrobacterium tumefaciens strain LBA4404 and then transferred to the callus tissue of Chinese narcissus.Some hygromycin-resistant shoots were identified with molecular analysis. The main results are as follow:(1) The RNA extracted from Narcissus flower petal was used for the isolation of the Psy, LycB and Pds genes by RT-PCR. The results of analysis of the coding sequences of the genes demonstrated that the gene of Psy, 1272 bp, encoded a protein of 423 amino acid;ZycB(Lycopene (3-cyclase), 1515bp, encoded a protein of 504 amino acid, and Pds(Phytoene desaturase), 1713 bp, encodes a protein of 570 amino acid(2) In order to expression the Psy in plant, A plant expression vecter was constructed with a binary vector pCAMBIA1301. The antisense gene fragment was amplified from the coding region of Psy gene having the sequence of 554 bp, degisted by BamH I and Xba I, then introduced to binary expressional vecter pCAMBIA1301 under the constitutive CaMV 35S promotor, and the resulting construction with antisense Psy was name d pCAM35S-PSY. Results from PCR amplification and restriction digestion showed that the fragment of antisense gene Psy was correctly introduced into pCAMBIA1301 plasmid and then the expression vector pCAM35S-PSY was successfully transferred into Agrobacterium.(3) Effect of hygromycin was studied on the regeneration of Narcissus Tazetta bulb-scales in vitro culture. An efficient gene transformation system is established by co-culturing the bulds pretreated for 7 days with Agrobacterium tumefaciens introducing the plasmid vector pCAMBIA1301. Explants from plantlets are the most sensitive to hygromucin, and 30 mg·L~(-1) hygromycin would inhibit the regeneration. The effect of acetosyringone(AS) on transformation of Chinese narcissus by Agrobacterium tumefaciens was tested in this papers. The results showed that added 100 mg·L~(-1) AS, then co-cultured 3
    days, the instant expression activity of gus gene reached 92.9%.(4) An efficient gene transformation system was established, and the optimum conditions for the transformation of antisense gene Psy fragment were as follow: After preculture of 7 days with the bulb-scales as the primary explants, the explants was infected with Agrobacterium tumefaciens strain LBA4404 contained with pCAM35S-PSY lasting 15-20 min. The coculture time was 3 days. Then the cocultured explants were inoculated into the regeneration MS medium containing 5 mg-L"1 BAP, 0.1 mg-L'1 NAA, 200 mg-L"1 Cef, 30 mg-L'1 Hyg, 3% sucrose and 0.7% agar to obtain the HygR shoot, and the shoots were transfer to fresh medium for growth and exchanged per 3 weeks. The results with PCR analysis showed that some tested lines carried the transgenes. the antisense gene fragment was susucesfully transferred into Narcissus tazetta L. var. chinensis Roem. The in-depth biochemical and molecular biological analysis was undertaken. The study on flower color and stability of this traits will be carried out in the field test in future.
引文
安田齐.花色的生理生物化学.傅玉兰译.北京:中国林业出版社,1989
    白新祥,戴思兰.反义RNA技术在花色育种的应用.植物学通报.2005,22(3):284~291
    包满珠.植物花青素基因的克隆进展及其应用.园艺学报.1997,24(3):279~284
    柴明良,汪炳良.若干花卉转基因研究的现状和前景.园艺学报.2002,29(增刊):664~670
    陈林姣,缪颖,陈德海,等.中国水仙种质资源的遗传多样性分析.厦门大学学报(自然科学版).2002,41(6):800~814
    陈林姣,田惠桥,武剑.中国水仙与欧洲水仙品种RAPD指纹的研究.热带亚热带植物学报.2003,11(2):177~180
    陈以启.中国水仙花考.植物学报.1982,20(3):371~379
    陈振光,邱雪芝,林庆良,等.中国水仙试管育苗研究.福建农学院学报.1986,15(3):204~210
    陈振光.中国水仙种组织培养快速繁殖研究初报,福建农学院学报.1982,1:9~13
    程金水.园林植物遗传学.北京:中国林业出版社,2000
    付永彩,孙传清,李自超,等.农杆菌介导的抑制衰老的嵌合基因转化籼稻的研究.农业生物技术学报.2000,8(1):28~32.
    傅荣昭,马江生,曹光诚,等.观赏植物色香形基因工程研究进展.园艺学报.1995,22(4):381~385
    高丽美,徐子勤,张永彦,等.高羊组织培养再生体系及基因瞬间表达研究.西北植物学报.2005,25(1):40~45
    龚学臣,季静,抗艳红,等.八氢番茄红素合成酶基因Psy对大豆的遗传转化.2005,24(1):30~33
    顾亨森,高翠华,王淑芬.由水仙愈伤组织产生再生植株.植物学报.1987,28(3):336~339
    郝贵霞,朱祯,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨研究.植物学报,1999,41(12):1276-1282.
    何小铃,王金发.观赏花卉的品质基因及其基因工程问题.植物生理学通讯.1998,34 6:462~466
    贺晨霞,夏光敏.农杆菌介导单子叶植物基因转化研究进展.植物学通报.1999,16(5):567~573
    胡毅敏,阙国宁.普陀水仙优良新品种组培繁殖技术研究.林业科学研究.1991,4(2):226~230
    华志明.花发育的基因调控与花性状的改造.生物技术通报.1998(1):16~20
    黄胤怡,沈明山,陈亮,等.中国水仙查尔酮合酶cDNA的克隆及序列分析.实验生物学报.2002,33(5):195~197
    黄胤怡,沈明山,陈亮.查尔酮合酶基因的克隆及双元载体的构建.厦门大学学报(自然科学版).2002,41(5):541~545
    季静,山村三郎,西源昌宏,等.通过转基因提高β.胡萝卜索生物合成量.中国生物化学与分子生物学报.2004.20(8):440~444
    金松恒,翁晓燕,王妮妍,等.Rubisco活化酶基因反义表达载体的构建与水稻的遗传转化.遗传.2004,26(6):881~886
    瞿礼嘉,顾红雅,胡苹,等.现代生物技术导论.北京:高等教育出版社,1998,241~286
    孔英珍,周功克,王根轩,等.影响根癌农杆菌转化的因素及其在单子叶作物上的应用.应用生态学报.2000,11(5): 791~794
    李宝健,欧阳学智,许耀.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究.中国科学B辑.1990,2:144~149
    李洪清,李美茹,潘小平,等.花色改造基因工程.中国生物工程杂志.2003,7:42~46
    李懋学.中国水仙的染色体组型和Giemsa C之带型研究.园艺学报.1980,5(2):29~36
    李倩中,李慧芬.我国花卉育种途径及进展.安徽农业科学.2002,30(5):797~798
    李祥,易自力,蔡能,等.反义RNA及其在植物基因工程中的应用.生物技术通讯.2003,14(2):162~64
    李晓东.花卉产业的发展现状、趋势及思考.深圳职业技术学院学报.2004(1):32~35
    李艳,惠有为,张仲凯,等.转查耳酮合酶基因矮牵牛共抑制的研究.中国科学(C辑).2001,31(5):401~407
    李招文,唐道一.水仙组织培养的研究.园艺学报.1982,9(4):65~68
    林泉.色素基因的表达和调控植物发育的分子机理.北京:科学出版社,1998,107~119
    刘根齐,李秀丽,杨春玲,等.不同调控序列控制下的GUS基因在水稻和毛白杨愈伤组织中的瞬时表达.植物生理与分子生物学学报.2005,31(3):327~330
    刘石泉,余庆波,李小军,等.观赏植物花色基因工程的研究进展.贵州林业科技.2004,32(2):13~18
    刘小莉,刘飞虎.花卉育种技术研究进展(综述).亚热带植物科学.2003,32(2):64~68
    刘志明.论农杆菌介导的单子叶植物转化.遗传.1998,17(增刊):50-52
    刘稚,樊梦康,崔巍.土壤根癌杆菌体外转化胡萝卜悬浮培养细胞.中国科学(B辑).1987,5:507~512
    陆春芳,龚德超,钱爱萍,等.崇明水仙组织培养技术初探.上海农业科技.2002,6:18~19
    皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志,2003,23(1):1~4
    任永霞,季静,王萍,等.农杆菌介导类胡萝卜素合成酶基因LycB转化菊花的研究.吉林农业大学学报.2005,27(3):255~258
    邵莉,李颜,扬美珠等 查尔酮合成酶基因对转基因植物花色和育性的影响.植物学报.1996,38(7):517~524
    邵莉,李毅,潘爱华,陈章良.查尔酮合酶基因的克隆、全序列分析及在大肠杆菌中的高效表达.生物工程学报,1995.11(2):145~148
    宋为民,陈为民.中国水仙愈伤组织的培养及植株分化试验.植物生理学通讯.1981(1):55~56
    苏焕然.花色与色素.生物学杂志.1996,13(5):46~47
    苏姚然,张丹,汪清凰,等.花卉基因工程研究进展.北方园艺.1996,4:26~28
    陶俊,张上隆,徐昌杰,等.类胡萝卜素合成的相关基因及其基因工程.生物工程学报.2002,18(3):276~281
    陶余敏,唐锡华.农杆菌转化单子叶植物的可行性及问题.植物生理学通讯.1992,28(6):402~406
    滕年军,陈发棣.基因工程在花卉遗传改良中的应用研究.植物学通报.2002,19(5):538~545
    汪政科,彭镇华.观赏植物基因工程研究进展.林业科学研究.2000,13(1):97~102
    王关林,方宏筠.植物基因工程.北京:科学出版社,2002
    王金玲,瞿礼嘉,陈军,等.CHS基因外显子2的进化规律及用于植物分子系统学研究的可行性.科学通报.2000.45 (9):942~950
    王俐,杨德,龙春林.中国水仙德离体培养及植株再生.云南农业大学学报.2004,19(5):616~618
    王雪景,孙毅.农杆菌介导的植基因转化研究进展.生物技术通报.1999,1:7~13.
    王艳,任吉君。我国花卉育种现状与发展策略.种子.2002,5:37~39
    吴迪,周长梅,朱延明.酚类化合物对葡萄遗传转化频率的影响.园艺学报.2003,30(1):77~78
    吴菁华,吕柳新,张志忠.用RAPD标记研究多花水仙若干品种类型的亲缘关系.中国农学通报.2005,21(8):299~301
    向阳,夏雨,吕立堂,等.植物基因工程中Ti质粒的研究与应用进展.生物学通讯.2003,38(2):7~9
    谢嘉华,袁建军.中国水仙(Narcissus Tazetta var Chinaensis)的组织培养.生物学杂志.2002,19(3):30~36
    熊华斌,程再全,王玲仙,等.国外转基因花卉的研究进展.西南农业学报.2004,17(增刊):340~346
    徐昌杰,张上隆.植物类胡萝卜素的生物合成及其调控.植物生理学通讯.2000,36(1):64~70
    徐清橘,戴思兰.蓝色花卉分子育种.分子植物育种.2004,2(1):93~99
    徐文兵,江鸿飞.普陀水仙花大球栽培技术试验初报.浙江林业科技.2004,24(4):15~17
    许华欣,黄鹏林.蝴蝶兰苯基苯乙烯酮合成酶cDNA之选殖及分析.中国园艺.1999,45(1):19~35
    许荣义,李益民.中国水仙.福建美术出版社.1992,1~11
    许耀,贾敬芬,郑国昌.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化.科学通报.1988,22:1745~1748
    许智宏,刘春明主编.植物发育的分子机理.北京:科学出版社,1998
    薛淮,刘敏,张纯花,等.花卉分子育种研究进展.生物工程进展.2002,22(2):81~84
    薛淮,刘敏.植物空间诱变的生物效应及其育种研究进展.生物学通报.2002,37(11):7~9
    颜华,李毅,宋云.二羟基黄酮醇还原酶基因的克隆、全序列分析及在大肠杆菌中的表达.应用基础与工程科学学报.1997,5(2):173~181
    颜华,宋云,李羽云,等.1997.查尔酮异构酶基因的克隆序列分析及在大肠杆菌中的表达.植物学报.1997,39 (11):1030~1034
    杨静慧,张伟玉,郭秀民,等.观赏植物的花色基因育种工程.天津农林科技.2002,5:14~16
    杨秀荣,陈永文,方平,等.乙酰丁香酮对根癌农杆菌介导的甘薯遗传转化的影响.西南师范大学学报(自然科学版).2002,27(5):751~755
    叶祖云,郑丽屏,贺静,等.中国水仙(Narcissus tazetta Var.chinensis)基因转化受体系统的建立.云南大学学报(自然科学版).2001,23(3):235~237
    义鸣放.世界花卉产业现状及发展趋势.世界林业研究.1997,10(5):41~47
    于晓南,张启翔.观赏植物的花色素苷与花色.2002,38(3):147~152
    余迪求,李宝健.花色素苷生物合成的遗传和发育调控.植物生理学通讯.1997,33(1):71~77
    余望.植物激累对水仙(Narcissus tazetta var.chinese)愈伤组织形成及分化的影响.福州师专学报(自然科学版).2001.21(5):55~57
    余小林,曹家树.反义CYP86MF基因植物表达载体的构建及其对白菜的转化.浙江大学学报(农业与生命科学版).2004.30(2):179~184
    曾海涛,王义琴,陈英,等.花卉花色基因工程的研究现状及存在问题.中国生物工程杂志.2004,24(6):54~57
    曾荣华,陈亮,沈明山,等.农杆菌介导的中国水仙遗传转化体系的建立.厦门大学学报(自然科学版),2001,40(5):1145~1149
    张石宝,胡虹,李树云.花卉基因工程研究进展Ⅰ:花色.云南植物研究.2001,23(4):479~487
    张秀君,荆玉祥.根癌农杆菌转化禾谷类作物及影响其转化的因素.生命科学.2001,13(5):219~221
    赵昶灵,郭维明,陈俊愉.植物花色呈现的生物化学、分子生物学机制及其基因工程改良.西北植物学报.2003,22(6):1024~1035
    赵昶灵,郭维明,陈俊愉.植物花色形成及其调控机理.植物学通报.2005,22(1):70~81
    赵军良,逯保德,徐鸿林,等.酚类化合物对大白菜遗传转化效率的影响.华北农学报.2005,20(2):19~22
    赵文恩,李艳杰,崔艳红,等.类胡萝卜素生物合成途径及其控制与遗传操作.西北植物学报.2004,24(5):930~942
    赵云鹏,郭维明,陈发棣.观赏植物花色基因工程研究进展.植物学通报.2003,20(1):51~58
    赵祝成,陈燕贤.中国水仙脱种苗培育研究取得重大突破.中国花卉园艺,2003,13:33~33
    郑树松,安成才,李启任,等.乙酰丁香酮对棉花下胚轴遗传转化效率的影响.棉花学报.2003,15(2):125~126
    郑琰燚.我国花卉产业育种工作的现状及分析.江苏林业科技.2002,2:40~42
    郑志亮.花卉作物的花色基因工程.北方园艺.1994,3:37~39
    智卯生.我国花卉种业现状与发展对策.种子科技.2001,5:264~265.
    朱长甫,陈星,王英典.植物类胡萝卜素合成及其相关基因在基因工程中的应用.植物生理与分子生物学学报.2004.30(6):609~618
    朱跃辉,姜建国.类胡萝卜素代谢途径中相关番茄红素环化酶的功能.中国食品添加剂.2005,5:40~43
    朱跃辉,严媛,姜建国,等.盐藻PSY基因cDNA的克隆、序列测定及其进化分析.2004,8(4):329~332
    庄晓英.中国水仙遗传转化及离体诱变体系的研究.浙江大学硕士论文.2005
    Aida R, Yoshida K, Kondo T, et al. Copigmentation gives bluer flowers on transgenic torenia plants with the anti-sense dihydroflavonoll-4-reductasegene. Plant Sci. 2000 (b) , 160:49~56
    Akutsu M, Ishizaki T, Sato H. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens. Plant Cell Rep, 2004, 22 (8) : 561~568
    Al-Babili S, Hugueney P, Schledz et al. Identification of a novel gene coding for neoxanthin synthase from Solarium tuberosum. FEBS lett. 2000, 458:168~172
    Bartley G E, Scolnik P A. Plant carotenoids: Pigments for photoprotection, visual attraction and human health. Plant Cell. 1995, 7:1027~1038
    Bastida J, Fernández JM, Viladomat F, et al. Alkaloids from Narcissus tortuosus. Phytochemistry. 1995, 38 (2) : 549~551
    Beld M, Maartin C,Huits H, et al. Flavoniod synthesisinpetunia hybrida : partial characterization of dihydroflavonol-4-2ductasegenes. Plant Mol Biol. 1989, 13:491~495
    Bernd L, Gerlinde U, Elzbieta W, et al. Inhibition of Narcissus pseudonarcissus Phytoene Desaturase by Herbicidal 3-Trifluoromethyl-l,l-biphenyl Derivatives. Pesticide Biochemistry and Physiology. 1999, 63: 173~184
    Birch R G. Plant transformation: problem and strategies for practical application . Annu Rev Plant Physiol Plant Mol Biol.1997,48:297-326
    Bird C R, Ray J A, Fletcher J D et al. Using antisense RNA to study gene function : Inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio/ Technol. 1991, 9: 635~639
    Bram L P , Teulieres C , Blain I, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J, 1992, 2: 343~349
    Brenda W S. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology.Plant Physiol. 2001, 126: 485-493
    Brouillard R. The in vivo expression of anthocyanin colour in plants. Phytochemistry. 1998, 22: 1311~1323
    Cunningham F ,Pogson B, Sun Z. et al. Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell. 1996, 8: 1613 - 1626
    Dariusz S, Teresa 0. The obtaining of narcissus plants free from potyviruses via adventitious shoot regeneration in vitro from infected bulbs. Sci Hortic. 2005, 103: 219 - 225
    Darren O S, James Lynn, Neil Hammatt. Somatic embryogenesis in Narcissuspseudonarcissus cvs. Golden Harvest and St.Keverne. Plant Sci. 2000, 150: 209 - 216
    Ei-ichiro F, Kengo K, Shin'ichiro K, et al. Flower color modulations of Torenia hybrida by down regulation of chalcone synthase genes with RNA interference. J Biotechnology. 2004, 111: 229 - 240
    Elomaa P, Honkanen J, Puska R, et al. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/technol. 1993, 11:508-511
    Florence B, Alaind H, Bilal C. Molecular Analysis of Carotenoid Cyclase Inhibition. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS. 1997, 346 (1) : 53 - 64
    Forkmann G. Flavonoids as flower pigments the formation of the natural spectrum and its extension by genetic engineering.Plant Breeding. 1991, 106: 1-26
    Gerhard S. Genetic manipulation of carotenoid biosynthesis: strategies,problems and achievements. Trends in Plant Sci.2001,6 (1) : 14-17
    Gutterson N C. Molecularbreedingforcolor,flavorandfragranceJ. Sci Horticul. 1993, 55: 141 - 160
    Hamid R, Shuuji Y, Kinya T, et al. Transgenic plant production mediated by Agrobacteriunim in Indica rice. Plant Cell Rep.1996,5:727-730.
    Heinrich M, Lee T H. Galanthamine from snowdrop-the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J Ethnopharmacol, 2004, 92 (2-3) : 147 - 162
    Henkel J, Forkmann G, Min B W, et al. Anthocyanin biosynthesis in distinct genotypes of China aster (Calliste phus chinensis) . Acta Horticul .2000, 508: 213 - 214
    Hiei Y, Ohta S, Komari T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6 (2) : 271~282
    Hirschberg J, Cohen M, Harker M, et al. Molecular genetics of the carotenoid biosynthesis pathway in plants and algae.Pure Appl Chem. 1997, 69 :2151~2158
    Holton T A, Brugliera F, Lester DR, et al. Cloning and expression of cytochrome P450 genes controlling flower color.Nature. 1993,366:276-279
    James D , Uratsu S , Cheng J ,et al. Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple . Plant Cell Rep. 1993 , 12: 559 - 563.
    Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6: 3901~3907
    Jesus E, Gunther N, Michael S, et al. T-DNA transfer in meristematic cells of maize provided with intracellular Agrobacterium. Plant J. 1996, 10 (2) : 355-360
    Joseph H. Carotenoid biosynthesis in flowering plants. Plant Bio. 2001, 4: 210 - 218
    Julio S, Isabal S, Roberto S. In viro production of bulbs of Narcissus bulbocodium flowering in the first season of growth.Sci Hortic. 1998, 76: 205 -217
    Koes R E, Spelt C E, Vander E, et al. Cloning and molecular characterization of the chalcone sythase multigene family of petunia hybrida. Gene. 1989, 81: 245 - 257
    Krenzaler F. Flavanone synthase from petroselium hortense,molecular weight,subunit composition,size of messengerRNA and absence of pantethenyl residue. Eru J Biochem. 1979, 99~114
    Kumagai M H, Keller Y, Bouvier F, et al. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant J. 1998, 14: 305 - 315
    Langens G M, Nashimoto S. Improved protocol for the propagation of Narcissusinvitro.Acta Hortic. 1997, 430: 331 - 334
    Lin J J, Nacyra A G, Jonathan K. Plant hormone effect of antibiotics on transformation efficient of plant tissue by Agrobacterium tumefaciens cells. Plant Sci. 1995, 109: 171 - 177
    Lin J C , Xue Y Z, Li G, et al. Efficient callus induction and plant regeneration from anther of Chinese narcissus (NarcissustazettaL.var.chinensis Roem) . Plant Cell Rep. 2005, 24: 401 - 407
    Lu C Y, Nugent G, Wardley R T, et al. Agrobacterium-mediated tannsformation of carnation (Dianthus carryophyllus L.) .Bio/ Technol. 1991, 9: 864 - 868
    M. Cheng, J. E. Fry, S. Pang, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol.1997, 115:971 -980
    Marco B, Anja S, Rudiger H. Functional analysis of the early steps of carotenoid biosynthesis in Tobacco. Plant Physiol.2002, 128:439-453
    Martin C, Carpenter R, Sommer H. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1991, 1:37-49
    Masako A, Takuma I, Hiroji S. Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Molecular Breeding. 2004, 13:69-78
    Masaya Kato, Yoshinori Ikoma, Hikaru Matsumoto, et al. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 2004, 134: 824~837
    Men S Z, Ming X T, Liu R W, et al. Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tiss Org. 2003, 73 (1) : 63-71
    Meyer P, Heidmann I, Forkmann G, et al. A new petunia flower colour generationed of a mutant with a maze gene. Nature.1987,330:677-678
    Michael S, Salim A, Johannes L, et al Phytoene synthese from narcissus pseudonarcissus: funcational expression, galactolipid requirement, topological distribution in chromoplasts and inducation during flowering. Plant J. 1996, 10(5) : 781 -792
    Ming-Tsair Chan, Tse-Min Lee, Hsin-Hsiung Chang. Transformation of Indica Rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 1992, 33 (5) : 577 - 583
    Mol J N M, Holton T A, Koes R E. Genetic engineering of commercial traits of floral crops. Trends Biotechnol. 1995, 13:350-355
    Mol J, Grotewold E, Koes RE . How genes paint flowers and seeds. Trends in Plant Sci. 1998, 3:212-217
    Okkels E T, Pedersen M G. The toxicity to plant tissue and to Agrobactium tumefaciens of some antibiotics. Acta Hort.1988,225: 199-207
    Pecker I, Gabbay R , Francis X, et al. Cloning and characterization of the cDNAfor lycopeneβ-cyclase from tomato revealsdecrease in its expression during fruit ripening. Plant Mol Biol. 1996, 30: 807 - 819
    Robinson K, Firoozabady E. Transformation of floriculture crops. Sci Hortic. 1993, 55: 83 - 99
    Romer S, Lubeck J, Kauder F, et al. Genetic Engineering of a Zeaxanthin-rich Potato by Antisense Inactivation and Co-suppression of Carotenoid Epoxidation. Metabolic Engineering. 2002, 4: 263-272
    Sage D O, Lynn J, Hammatt N. Somatic embryogenesis in Narcissus pseudonarcissus cvs.. Golden Harvest and St.Keverne. Plant Sci. 2000, 150: 209-216
    Sahi S V, Chilton M, Chilton W S. Corn Metabolites Affect Growth and Virulence of Agrobacterium tumefaciens. PNAS 1990,87:3879-3883
    Schafer W, Gorz A, Kahl G, et al. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature. 1987, 327: 529-532
    Schledz M, Beyer P. Nucleotide Sequence of a Narcissus pseudonarcissus cDNA for Phytoene Synthase. Plant Physiol.1995,110:336-336
    Schmimidt D C. Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol. 2000, 11: 255 - 261
    Scolnik P A, Bartley G E. Nucleotide sequence of an arabidopsis cDNA for geranygeranyl pyrophosphate synthase. Plant Physiol. 1994, 104:305-315
    Slogteren H V, Hooykaas P J, Schilperoort RA, et al. Expression of Ti plasmid genes in monocotyledomous plants infected with Agrobacterium tumefaciens. Nature. 1984, 11: 763~776
    Sonia T, David M, Roger K et al. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 1997, 11 (6): 1369-1376
    Steinitz B, Yabel H. In vitro propagation of Narcissus tazetta. Hortsci. 1982, 17 (3) : 333~334
    Stewart R N, Noris K H, Asen S (1975) Microspectropho-tometric measurement of pH and pH effect on color of petal epidermal cells. Phytochemistry. 1975, 14: 837~942
    Tae W B, Hae R P, Youn S K, et al. Agrobacterium tumefaciens-mediated transformation of a medicinal plant Taraxacumplatycarpum. Plant Cell, Tis Org. 2005, 80: 51~57
    Tanaka Y, Tauda S, Kusuni T. Metabolic engineering to modify flower color. Plant Cell Physiol. 1998, 11: 1119-1126
    Timothy A. H, Edwina C C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995, 7: 1071~1083
    Vander KrolA R, Lenting R J , Veenstra J G, et al. An antisense chalone synthase gene in transgenetic plants inhibits flower pigmentation. Nature. 1988, 333: 860 - 869
    Vijayachandra K, Palanichelvam K, Veluthambi. K . Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol Bio. 1995, 29: 125~133
    VonLintig J, Welsch R, Bonk M, et al. Light dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and ismediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings.Plant J. 1997, 12:625-634
    Wang T W, Arteca R N. Identification and characterization of cDNAs encoding ethylene biosynthetic enzymes from Pelargonium x hortorum cv Snow Mass leaves. Plant Physiol. 1995, 109: 627 - 636
    Yamaguchi T, Tanaka F S, Inagaki Y, Saito N, et al. Genes encod-ing the vacular Na /H exchanger and flower coloration. Plant & Cell Physiol. 2001, 42: 451 - 461
    Yu H, Yang S H, Goh C J. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene D0H1. Plant Cell Rep. 2001, 20: 301~305
    Yu-Rong Bi, Kung-Hing Yung, Yum-Shing Wong. Physiological effects of narciclasine from the mucilage of Narcissus tazetta L. bulbs. Plant Sci. 1998, 135:103~108
    Zhao Z Y, Cai T S, Tagliani L, et al. Agrobacterium-mediated sorghum transformation. Plant Mol Biol. 2000, 44: 789 -798
    Zuker A. Genetic engineering for cutflower improvement. Biotech Advaces. 1998, 16 (1) : 33~79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700