脯氨酸离子液体在不对称合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称有机小分子催化已经成为不对称合成领域至关重要的组成部分。小分子催化所实现的全新的底物活化方式给人们提供了除过渡金属催化剂外的更多的选择。脯氨酸作为一种结构简单、商品化的、廉价手性小分子催化剂,在多种不对称催化反应中表现出非常好的催化性能。脯氨酸的广泛应用将不对称的有机小分子催化带入了一个崭新的时代。
     近年来,离子液体作为一种绿色的介质,既可以作反应的溶剂又可以做催化剂,是近年来有机合成的新兴研究的热点之一。它具有不挥发性,不易燃性,热稳定性,极高的离子导电性,对与绝大多数有机和无机化合物有较好的溶解性,用离子液体作溶剂或催化剂具有反应速度快、产物后处理方便、而且催化剂离子液体易于回收。
     在各种各样的离子液体中,手性离子液体无疑是离子液体研究的焦点,因为它兼具溶剂和手性催化剂的双重特性,在不对称有机合成中有很大的应用潜力。手性氨基酸离子液体根据氨基酸主体在离子液体中的位置不同,可以分为氨基酸修饰的阳离子手性离子液体和氨基酸修饰的阴离子手性离子液体。以氨基酸修饰的阳离子手性离子液体为催化剂的研究已经受到化学家的广泛关注,但基于阴离子修饰的手性氨基酸离子液体用作催化剂还未见报道。
     因此,我们首次以脯氨酸为手性阴离子的离子液体[EMIm][Pro]为催化剂,用于Mannich反应、Diels-Alder反应和Aldol反应的不对称催化合成之中。通过对反应溶剂、温度、催化剂用量等条件的优化,我们可以得到高立体选择性的目标产物。该离子液体催化的Diels-Alder反应和Aldol反应可以循环使用多于四次,绿色环保,减少了有机溶剂的使用,符合绿色化学的原子经济性原则。
Organocatalysis has become a field of central importance for the asymmetric synthesis of chiral molecules. Novel modes of substrate activation have been achieved using organocatalysts that can now deliver unique, orthogonal, or complementary selectivities comparable to many established metal-catalyzed transformations. Notably, proline has been gradually recognized as a simple, commercial and cheap chiral catalyst for many asymmetric organic reactions. The use of simple proline as catalyst for asymmetric organic reactions at the beginning of this century became a milestone in the growth of organocatalysis as a useful synthetic strategy.
     In the recent years, ionic liquids are attracting considerable attention as reaction solvents and catalysts for their remarkable properties, including a negligibly small vapor pressure, high thermal stability, immiscibility with most organic/inorganic solvents, high ionic conductivity and easily recovered by careful washing in ether or pentane.
     Among the various ionic liquids, chiral ionic liquids are particularly attractive and important for their widespread potential applications in asymmetric synthesis. Some derived from natural amino acids, which have shown to serve as effective catalysts. Amino acid ionic liquids have mostly been designed using a series of cationic derivatives due to their convenient chemical modification, but there is much less information about the effect of anion structure.
     Therefore, we first employed proline anion as an effective module with ionic liquid for the asymmetric Mannich reaction, Diels-Alder reaction and Aldol reaction. Different solvents, reaction temperatures and the ratio of catalyst were investigated in these reactions. Under optimal conditions, high enantio-and diastereoselectivities compounds have been achieved. Most importantly, regarding to atom economy and green chemistry, this efficient system can be reused more than 4 runs in Diels-Alder reaction and Aldol reaction.
引文
[1]List B. Proline-catalyzed asymmetric reactions. Tetrahedron,2002,58:5573-5590
    [2]Jarvo E R, Miller S J. Amino acids and peptides as asymmetric organocatalysts. Tetrahedron,2002,58:2481-2495
    [3]List B. Asymmetric Aminocatalysis. Synlett,2001,1675~1686
    [4]List B, Lerner R A,. Barbas III C F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J Am Chem Soc, 2000,122:2395-2396
    [5](a) Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem,1974,39:1615~1621;
    (b)Hajos Z G, Parrish D R. GP 2102623,1971;
    (c)Eder U, Sauer G, Wiechert R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew Chem Int Ed,1971,10:496~497:
    (c) Eder U, Sauer G, Wiechert R. GP 2014757.1971
    [6]Danishefsky S J, Masters J J, Young W B, et al. Total Synthesis of Baccatin III and Taxol. J Am Chem Soc,1996,118:2843~2859
    [7]Pidathala C, Hoang L, Vignola N, et al. Direct catalytic asymmetric enolexo aldolizations. Angew Chem Int Ed,2003,42:2785~2788
    [8]June M E. A review of annulation. Tetrahedron,1976,32:3-31
    [9]List B, Hoang L, Martin H J, et al. Proceedings of the National Academy of Sciences of the United States of America,2004,101:5839~5842
    [10](a) Agami C, Platzer N, Sevedtre H. Bulletin de la Societe Chimique de France,1987,2: 358;
    (b)Agami C, Meynier F, Puchot C, et al. Stereochemistry-59:New insights into the mechanism of the proline-catalyzed asymmetric robinson cyclization; structure of two intermediates, asymmetric dehydration. Tetrahedron,1984,40:1031~1038
    [11]Rajagopal D, Moni M S, Subramanian S, et al. Tetrahedron:Asymmetry,1999,10: 1631~1634
    [12](a) Bahmanyar S, Houk K N. The Origin of Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions. J Am Chem Soc,2001,123:12911~12912;
    (b) Bahmanyar S, Houk K N. Transition states of amine-catalyzed aldol reactions involving enamine intermediates:theoretical studies of mechanism, reactivity, and stereoselectivity. JAmChemSoc,2001,123:11273~11283
    [13]Clemente F R, Houk K N. Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew Chem Int Ed,2004,43: 5766~5768
    [14]Kotrusz P, Kmentova I, Gotov B, et al. Proline-catalysed asymmetric aldol reaction in the room temperature ionic liquid [bmim]PF6. Chem Commun,2002,2510-2511
    [15]Loh T P, Feng L C, Yang H Y, et al.1-Proline in an ionic liquid as an efficient and reusable catalyst for direct asymmetric aldol reactions. Tetrahedron Lett,2002,43: 8741~8743
    [16]List B, Pojarliev P, Castello C. Proline-catalyzed asymmetric aldol reactions between ketones and a-unsubstituted aldehydes. Org Lett,2001,3:573~575
    [17]Bogevig A, Kumaragurubaran N, Jorgensen K A. Direct catalytic asymmetric aldol reactions of aldehydes. Chem Commun,2002,620~621
    [18]Cordova A, Notz W, Barbas Ⅲ C F. Direct organocatalytic aldol reactions in buffered aqueous media. Chem Commun,2002,3024~3025
    [19]Peng Y Y, Ding Q P, Li Z C, et al. Proline catalyzed aldol reactions in aqueous micelles: an environmentally friendly reaction system. Tetrahedron Lett,2003,44:3871~3875
    [20](a) Chandrasekhar S, Narsihmulu C, Reddy N R, et al. Non-heme iron catalysts for the benzylic oxidation:a parallel ligand screening approach. Tetrahedron Lett,2004,45: 4581~4582;
    (b)Chandrasekhar S, Reddy N R, Sultana S S, et al.1-Proline catalysed asymmetric aldol reactions in PEG-400 as recyclable medium and transfer aldol reactions. Tetrahedron,2006,62:338~345
    [21]Nyberg A I, Usano A, Pihko P M. Proline-Catalyzed Ketone-Aldehyde Aldol Reactions are Accelerated by Water. Synlett,2004,1891~1896
    [22]Benaglia M, Cinquini M. Cozzi F, et al. Poly(Ethylene Glycol)-Supported Proline:A Versatile Catalyst for the Enantioselective Aldol and Iminoaldol Reactions. Adv Synth Catal,2002,344:533-542
    [23]Giacalone F, Gruttadauria M, Marculescu A M, et al. Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and a-selenenylation of aldehydes. Tetrahedron Lett,2007,48:255~259
    [24]Zhong L, Xiao H L, Li C. An unexpected inversion of enantioselectivity in direct asymmetric aldol reactions on a unique L-proline/γ-Al2O3 catalyst. J Catal,2006,243: 442~445
    [25]Sekiguchi Y, Sasaoka A, Shimomoto A, et al. High-Pressure-Promoted Asymmetric Aldol Reactions of Ketones with Aldehydes Catalyzed byl-Proline. Synlett,2003,1655~1658
    [26]Hayashi Y, Tsuboi W, Shoji M, et al. Application of high pressure, induced by water freezing, to the direct asymmetric aldol reaction. Tetrahedron Lett,2004,45:4353~4356
    [27]Zhou Y, Shan Z X. Chiral diols:A new class of additives for direct aldol reaction catalyzed by L-proline. J Org Chem,2006,71:9510~9512
    [28]Pan Q B, Zou B L, Wang Y J, et al. Diastereoselective Aldol Reaction of N,N-Dibenzyl-a-amino Aldehydes with Ketones Catalyzed by Proline. Org. Lett,2004,6: 1009~1012
    [29]Bogevig A, Gothelf K V, Jorgensen K A. Nucleophilic Addition of Nitrones to Ketones: Development of a New Catalytic Asymmetric Nitrone-Aldol Reaction. Chem Eur J,2002, 8:5652~5661
    [30]Bernard A M, Frongia A, Guillot R, et al. L-Proline-Catalyzed Direct Intermolecular Asymmetric Aldol Reactions of 1-Phenylthiocycloalkyl Carboxaldehydes with Ketones. Easy Access to Spiro-and Fused-Cyclobutyl Tetrahydrofurans and Cyclopentanones. Org Lett,2007,9:541~544
    [31]Cordova A, Notz W, Barbas IIIC F. Proline-Catalyzed One-Step Asymmetric Synthesis of 5-Hydroxy-(2E)-hexenal from Acetaldehyde. J Org Chem,2002,67:301~303
    [32]Chowdari N S, Ramachary D B, Cordova A, et al. Proline-catalyzed asymmetric assembly reactions:enzyme-like assembly of carbohydrates and polyketides from three aldehyde substrates. Tetrahedron Lett,2002,43:9591~9595
    [33]Northrup A B, MacMiilan D W C. Two Step Synthesis of Carbohydrates by Selective Aldol Reactions. Science,2004,305:1752-1755
    [34](a) Northrup A B, MacMillan D W C. The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes. J Am Chem Soc,2002,124:6798~6799;
    (b)Mangion L K, MacMillan D W C. Total Synthesis of Brasoside and Littoralisone. J Am Chem Soc,2005, 127:3696~3697
    [35]Cordova A. Direct catalytic asymmetric cross-aldol reactions in ionic liquid media. Tetrahedron Lett,2004,45:3949~3952
    [36]Northrup A B, Mangion 1 K, Hettche F, et al. Enantioselective Organocatalytic Direct Aldol Reactions of a-Oxyaldehydes:Step One in a Two-Step Synthesis of Carbohydrates. Angew Chem lnt Ed,2004,43:2152~2154
    [37]Zimmerman H E, Traxler M D. The Stereochemistry of the Ivanov and Reformatsky Reactions. J Am Chem Soc,1952,79:1920~1923
    [38]Clemente F. R, Houk K N. Computational Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline. Angew Chem Int Ed,2004,43: 5766~5768
    [39]Rankin K N, Gauld J W, Boyd R J. Density Functional Study of the Proline-Catalyzed Direct Aldol Reaction. J Phys Chem A,2002,106:5155~5159
    [40]Yamasaki S, Iida T, Shibasaki M. Direct catalytic asymmetric Mannich reaction of unmodified ketones:Cooperative catalysis of an AlLibis(binaphthoxide) complex and La(OTf)3·nH2O. Tetrahedron,1999,55:8857-8867
    [41]List B. J Am Chem Soc,2000,122:9336-9337
    [42]Notz W, Sakthivel K, Bui T, et al. The Direct Catalytic Asymmetric Three-Component Mannich Reaction. Tetrahedron Lett,2001,42:199~201
    [43]List B, Pojarliev P, Biller W T, et al. The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction:Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols. J Am Chem Soc,2002,124: 827~833
    [44]Cordova A, Watanabe S, Tanaka F, et al. A Highly Enantioselective Route to Either Enantiomer of Both a-and β-Amino Acid Derivatives. J Am Chem Soc,2002,124: 1866~1867
    [45](a) Notz W, Tanaka F, Watanabe S, et al. The Direct Organocatalytic Asymmetric Mannich Reaction:Unmodified Aldehydes as Nucleophiles. J Org Chem,2003,68: 9624~9634;
    (b)Cordova A, Barbas C F. Direct organocatalytic asymmetric Mannich-type reactions in aqueous media:one-pot Mannich-allylation reactions. Tetrahedron Lett,2003, 44:1923~1926
    [46]Watanabe S, Crodova A, Tanaka F, et al. One-Pot Asymmetric Synthesis of (3-Cyanohydroxymethyl α-Amino Acid Derivatives:Formation of Three Contiguous Stereogenic Centers. Org Lett,2002,4:4519~4522
    [47](a) Hayashi Y, Tsuboi W, Ashimine I, et al. The Direct and Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes. Angew Chem Int Ed,2003,42: 3677~3680;
    (b)Cordova A. One-Pot Organocatalytic Direct Asymmetric Synthesis of y-Amino Alcohol Derivatives. Synlett,2003,1651~1654
    [48]Hayashi Y. Tsuboi W, Shoji M, et al. Application of High Pressure Induced by Water-Freezing to the Direct Catalytic Asymmetric Three-Component List-Barbas-Mannich Reaction. J Am Chem Soc,2003,125:11208~11209
    [49]Enders D, Grondal C, Vrettou M, et al. Asymmetric Synthesis of Selectively Protected Amino Sugars and Derivatives by a Direct Organocatalytic Mannich Reaction. Angew Chem Int Ed,2005,44:4079~4083
    [50]Westermann B, Neuhams C. Dihydroxyacetone in Amino Acid Catalyzed Mannich-Type Reactions. Angew Chem Int Ed,2005,44:4077~4079
    [51]Rodriguez B, Bolm C. Thermal Effects in the Organocatalytic Asymmetric Mannich Reaction. J Org Chem,2006,71:2888~2891
    [52]Kantam M. L, Rajasekhar C V, Gopikrishna G, et al. Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Lett,2006,47:5965~5967
    [53]Yamaguchi M. Shiraishi T, Minami T. The Michael addition of dimethyl malonate to a, β-unsaturated aldehydes catalysed by proline lithium salt. Chem Commun,1991, 1088~1089
    [54]Yamaguchi M, Shiraishi T, Hirama M. A Catalytic Enantioselective Michael Addition of a Simple Malonate to Prochiral α,β-Unsaturated Ketoses and Aldehydes. Angew Chem Int Ed,1993,32:1176~1178
    [55](a) Yamaguchi M, Shiraishi T, Hirama M. Asymmetric Michael Addition of Malonate Anions to Prochiral Acceptors Catalyzed by L-Proline Rubidium Salt. J Org Chem,1996, 61:3520~3530;
    (b)Yamaguchi M, Igarashi Y, Reddy R S, et al. Asymmetric Michael addition of nitroalkanes to prochiral acceptors catalyzed by proline rubidium salts. Tetrahedron,1997,53:11223~11236
    [56]Hanessian S, Pham V. Catalytic Asymmetric Conjugate Addition of Nitroalkanes to Cycloalkenones. Org Lett,2000,2:2975~2978
    [57]Kotrusz P, Toma T. L-Proline Catalyzed Michael Additions of Thiophenols to α,β-Unsaturated Compounds, Particularly α-Enones, in the Ionic Liquid [bmim]PF6. Molecules,2006,11:197~205
    [58]Kotrusz P, Toma S. L-Proline catalysed Michael additions of different active methylene compounds to a-enones in ionic liquid. Arkivoc,2006,100~109
    [59]List B, Pojarliev P, Martin H J. Efficient Proline-Catalyzed Michael Additions of Unmodified Ketones to Nitro Olefins. Org Lett,2001,3:2423~2425
    [60]Enders D, Seki A. Proline-Catalyzed Enantioselective Michael Additions of Ketones to Nitrostyrene. Synlett,2002,26~28
    [61]Terakado D, Takano M, Oriyama T. Highly Enantioselective (S)-Homoproline-catalyzed Michael Addition Reactions of Ketones to β-Nitrostyrenes. Chem Lett,2005,34:962~963
    [62]List B, Castello C. A Novel Proline-Catalyzed Three-Component Reaction of Ketones, Aldehydes, and Meldrum's Acid. Synlett,2001,1687~1689
    [63]Kotrusz P, Toma S, Schmalz H G, et al. Michael Additions of Aldehydes and Ketones to β-Nitrostyrenes in an Ionic Liquid. Eur J Org Chem,2004,7:1577~1583
    [64]Luo S Z, Mi X L, Zhang L, et al. Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angew Chem Int Ed, 2006,45:3093~3097
    [65]Kozikowski A P, Mugrage B B. Redox glycosidation via thionoester intermediates. J Org Chem,1989,54:2275~2277
    [66]Waldmann H. (S)-Proline benzyl ester as chiral auxiliary in Lewis acid catalyzed asymmetric Diels-Alder reactions. J Org Chem,1988,53:6133-6136
    [67]Asato A E, Watanabe C, Li X Y, et al. The proline and β-lactoglobulin mediated asymmetric self-condensation of β-ionylideneacetaldehyde, retinal and related compounds. Tetrahedron Lett,1992,33:3105~3108
    [68]Ramachary D B, Chowdari N S, Barbas Ⅲ C F. Amine-catalyzed direct self Diels-Alder reactions of α,β-unsaturated ketones in water:synthesis of pro-chiral cyclohexanones. Tetrahedron Lett,2002,43:6743~6746
    [69]Ramachary D B, Chowdari N S, Barbas Ⅲ C F. Organocatalytic Asymmetric Domino Knoevenagel/Diels-Alder Reactions:A Bioorganic Approach to the Diastereospecific and Enantioselective Construction of Highly Substituted Spiro[5,5]undecane-1,5,9-triones. Angew Chem Int Ed,2003,42:4233~4237
    [70]Sunden H, Ibrahem I, Eriksson L, et al. Direct Catalytic Enantioselective Aza-Diels-Alder Reactions. Angew Chem Int Ed,2005,44:4877~4880
    [71]Chandrasekhar S, Vijeender K, Reddy K V. New synthesis of flavanones catalyzed by 1-proline. Tetrahedron Lett,2005,46:6991~6993
    [72]Aznar F, Garcia A B, Cabal M P. Proline-Catalyzed Imino-Diels-Alder Reactions: Synthesis of meso-2,6-Diaryl-4-piperidones. Adv Synth Catal,2006,348:2443~2448
    [73](a) Northrup A B, MacMillan D W C. The First General Enantioselective Catalytic Diels-Alder Reaction with Simple a,P-Unsaturated Ketones. J Am Chem Soc,2002,124: 2458~2460;
    (b)Notz W, Tanaka F, Barbas Ⅲ C F. Enamine-Based Organocatalysis with Proline and Diamines:The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Alder Reactions. Accounts of Chemical Research,2004,37:580-591
    [74]List B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J Am Chem Soc,2002, 124:5656~5657
    [75]Bogevig A, Juhl K, Kumaragurubaran N, et al. Direct Organo-Catalytic Asymmetric α-Amination of Aldehydes-A Simple Approach to Optically Active α-Amino Aldehydes, α-Amino Alcohols, and a-Amino Acids. Angew Chem Int Ed,2002,41:1790~1793
    [76]Kumaragurubaran N, Juhl K, Zhuang W, et al. Direct L-Proline-Catalyzed Asymmetric α-Amination of Ketones. J Am Chem Soc,2002,124:6254~6255
    [77](a) Baumann T, Vogt H, Brase S. The Proline-Catalyzed Asymmetric Amination of Branched Aldehydes. Eur J Org Chem,2007,266~282;
    (b)Vogt H, Vanderheiden S, Brase S. Proline-catalysed asymmetric amination of a, a-disubstituted aldehydes: synthesis of configurationally stable enantioenriched a-aminoaldehydes. Chem Commun, 2003,2448~2449
    [78]Brown S P, Brochu M P, Sinz C J, et al. The Direct and Enantioselective Organocatalytic a-Oxidation of Aldehydes. J Am Chem Soc,2003,125:10808~10809
    [79]Zhong G F. A Facile and Rapid Route to Highly Enantiopure 1,2-Diols by Novel Catalytic Asymmetric a-Aminoxylation of Aldehydes. Angew Chem Int Ed,2003,42: 4247~4250
    [80]Hayashi Y, Yamaguchi J, Hibino K, et al. Direct proline catalyzed asymmetric α-aminooxylation of aldehydes. Tetrahedron Lett,2003,44:8293~8296
    [81](a) Hayashi Y, Yamaguchi J, SumiyaT, et al. Direct Proline-Catalyzed Asymmetric a-Aminoxylation of Aldehydes and Ketones. J Org Chem,2004,69:5966-5973;
    (b) Hayashi Y, Yamaguchi J, Sumiya T, et al. Direct Proline-Catalyzed Asymmetric a-Aminoxylation of Ketones. Angew Chem Int Ed,2004,43:1112~1115
    [82]Bogevig A, Sunden H, Cordova A. Direct Catalytic Enantioselective a-Aminoxylation of Ketones:A Stereoselective Synthesis of a-Hydroxy and α,α'-Dihydroxy Ketones. Angew Chem Int Ed,2004,43:1109~1112
    [83](a) Huang K, Huang Z Z, Li X L. Highly Enantioselective a-Aminoxylation of Aldehydes and Ketones in Ionic Liquids. J Org Chem,2006,71:8320~8323;
    (b)Guo H M, Niu H Y, Xue M X. L-Proline in an ionic liquid as an efficient and reusable catalyst for direct asymmetric a-aminoxylation of aldehydes and ketones. Green Chem,2006,8: 682~684
    [84]Shi M, Jiang J K, Li C Q. Direct proline catalyzed asymmetric a-aminooxylation of aldehydes. Tetrahedron Lett,2002,43:127~130
    [85]Davies H J, Ruda A M, Tomkinson N C O. Aminocatalysis of the Baylis-Hillman reaction:an important solvent effect. Tetrahedron Lett,2007,48:1461~1464
    [86]Chen S H, Hong B C, Su C F, et al. An unexpected inversion of enantioselectivity in the proline catalyzed intramolecular Baylis-Hillman reaction. Tetrahedron Lett,2005,46: 8899~8903
    [87]Tang H Y, Zhao G F, Zhou Z H, et al. Synthesis of some new tertiary amines and their application as co-catalysts in combination with 1-proline in enantioselective Baylis-Hillman reaction between o-nitrobenzaldehyde and methyl vinyl ketone. Tetrahedron Lett,2006,47:5717~5721
    [88]Utsumi N, Zhang H L, Tanaka F, et al. A Way to Highly Enantiomerically Enriched aza-Morita-Baylis-Hillman-Type Products. Angew Chem Int Ed,2007,46:1878~1880
    [89]Tungler A, Fogassy G. Catalysis with supported palladium metal, selectivity in the hydrogenation of C=C, C=O and C=N bonds, from chemo-to enantioselectivity. Mol J Catal A Chem,2001,173:231-247
    [90]Umino N, Iwakuma T, Itoh N. Asymmetric Reduction of Various Ketones with the Sodium Salts of a-Amino Acid Borane Complexes. Chem Pharm Bull,1979,27: 1479-1481
    [91]Wallbaum S, Martens J. Asymmetric syntheses with chiral oxazaborolidines. Tetrahedron: Asymmetry,1992,3:1475~1504
    [92]Ohta T, Nakahara S. Shigemura Y, et al. a-Amino acidate-Ru(Ⅱ) Catalysts for Asymmetric Transfer Hydrogenation:First Utilization of a-Amino Acids as an Efficient Ligand. Chem Lett,1998,27:491~492
    [93](a) Levina A, Muzart J. Enantioselective allylic oxidation in the presence of the Cu(I)/Cu(II)-proline catalytic system. Tetrahedron:Asymmetry,1995,6:147~156;
    (b) Zondervan C, Feringa B L. Tetrahedron:Asymmetry,1996,7:1895-1898
    [94]Reddy K R, Rajasekhar C V, Ravindra A. L-Proline-H2O2:A New Chemoselective Approach for Oxidation of Sulfides to Sulfoxides. Synthetic Commun,2006,36: 3761~3766
    [95]Anastas P T, Warner J C. Green Chemistry:Theory and Practice. New York:Oxford University Press,1998, p 30
    [96](a)邓友全.离子液体—性质、制备与应用.北京:中国石化出版社.2006.1:12~14;
    (b)刘建国,李治国等一种新的绿色溶剂—室温离子液体辽宁大学学报,2003,30(2):180-183;
    (c)邓有权离子液体-21世纪的绿色材料中国高校科技与产业化2003,11,33~35;
    (d)于澄洁,王大伟.室温离子液体及其在绿色化学中的应用.西安石油学院学报,2002,Vol.17(5):59~63
    [97]Camichael A J, Earle M J, Seddon K R, et al. The heck reaction in ionic liquids:a multiphasic catalyst system. Org Lett,1999,1:997~1000
    [98](a)杨绮琴电化学,2001,7(1):10-17;
    (b)Heldebrant D, Jessop P G. Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide:A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts. J Am Chem Soc,2003,125, 5600~5601
    [99]Sugden S, Wilkinns H. CLXⅦ.-The parachor and chemical constitution. Part XII. Fused metals and salts. J Chem Soc,1929,1291~1298
    [100]Huley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts. Journal of the Electrochemical Society,1951,98:203~206
    [101]Koch V R, Milleer L L, Osteryoung R A. Electroinitiated Friedel-Crafts transalkylations in a room-temperature molten-salt medium. J Am Chem Soc,1976,98:5277~5284
    [102]Robonson J, Osteryoung R A. Solid-state photooligomerization of an extended chiral bifunctional monomer, (+)-2,4:3,5-di-O-methylene-D-mannitol 1,6-di-trans-cinnamate. J Am Chem Soc,1979,102:323~327
    [103]Cale R J, Osteryoung R A. Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem,1979, 18:1603~1605
    [104]Carpio R A, Hussey C L. ENDOR of Spin-Correlated Radical Pairs in Photosynthesis at High Magnetic Field:A Tool for Mapping Electron Transfer Pathways. J Am Chem Soc, 1979,126:1644~1645
    [105](a) Hussey C L. King L A, Carpio R A. The electrochemistry of copper in a room temperature acidic chloroaluminate melt. J Electro Chem Soc,1979,126:1029~1034
    [106]Fuller J, Carlin R T, DeLong H C. Structure of 1-ethyl-3-methylimidazolium hexafluoro-phosphate:model for room temperature molten salts. Chem Commun,1994:299-301
    [107]Bonhote P, Dias A P, Armand M. Hydrophobic, Highly Conductive Ambient-temperature Molten Salts. Inorg Chem,1996,35:1168~1178
    [108]Peter B H, Kennnth R S. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(Ⅲ) ionic liquids. J Chem Soc Dalton Tran,1995, 3467~3471
    [109]Bonhote P, Nicholus A P D. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg Chem,1996,35:1168~1178
    [110]John D H, Fook S T, Christopher A R. Designing Ionic Liquids:Imidazolium Melts with Inert Carborane Anions. J Am Chem Soc,2000,122:7264~7272
    [111]Howarth J, Hanlon K, Fayne D, et al. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in the Diels-Alder Reaction. Tetrahedron Lett,1997,38:3097~3100
    [112]Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures. Green Chem,1999,1: 23~25
    [113]Trohalaki S, Pachter R, Drake G W, et al. Quantitative structure-property relationships for melting points and densities of ionic liquids. Energy& Fuels,2005,19:279~284
    [114]Gu Z, Brennecke J F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium based ionic liquids. J Chem Eng,2002,47:339~345
    [115]Amett E M, Wolf J F. Electrochemical Scrutiny of Organometallic Complexes and Hexamethyl-benzene in Room Temperature Molten Salt. J Am Chem Soc,1975,97: 3264~3265
    [116]刘晓庚,刘长鹏,汪峰,等.离子液体在化学合成和萃取分离中的应用.化学与生物工程,2004,Vol.4:13~15
    [117]Gordon C M. New development in catalysis using ionic liquids. Appl Catal A:Gen,2001, 222:101~117
    [118]Koch V R, Miller I, Osteryoung R A. Eletroinitiated trans-alkylation in a room temperature molten-salt medium. J Am Chem Soc,1976,98:5277~5284
    [119](a) Wilkes J S, Mamantov G, Marassi R. NATO ASI series C:Mathematical and Physical Sciences. Reichel Publishing Company,1987,202:405~416;
    (b)Boon J A, Levisky J A, Pflug J L, et al. Friedel-Crafts reaction in ambient-temperature malt salt. Org.Chem,1986,51:480~483
    [120]Hao Y, Zaher M A, Judeh, et al. Selective alkylation of phenol with tert-butyl alcohol catalyzed by [bmim]PF6. Tetrahedron Letters,2003,44:981~983
    [121]Lin J H, Zhang C P, Zhu Z, Qet al. A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethane-sulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. Fluorine Chem.2009,130:394~398
    [122]乔熴、邓友全。室温离子液体中HCl促进苯的烷基化反应研究.分子催化.2002,Vol.16:187~190
    [123]Gmouh S, Yang H, Vaultier M. Activation of bismuth (III) derivatives in ionic liquids: Novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds. Org Lett,2003,5:2219~2222
    [124]Ross J, Xiao J. Friedel-Crafts acylation reactions using metal triflatesin ionic liquid. Green Chem,2002,4:129~133
    [125]丁仁岭,伊光明,王德胜,等.离子液体中苯与己烯的烷基化反应.北京石油化工学院学报,2003,11:8-11
    [126]Song C E, Shim W H, Roh E J, Choi J H. Scandium (Ⅲ) triflate immobilized in ionic liquids:a novel and recyclable catalytic system for Friedel-Crafts alkylation of aromatic compounds with alkenes. Chem. Commun,2000,17:1695~1696
    [127]Kaufmann D E, Nouroozian M, Ilenze H. Molten Salts as an Efficient Medium for Palladium Catalyzed C-C Coupling Reactions. Synlett,1996,1091~1092
    [128]Liu S F, Fukuyama T, Sato M, et al. Continuous Microflow Synthesis of Butyl Cinnamate by a Mizoroki-Heck Reaction Using a Low-Viscosity Ionic Liquid as the Recycling Reaction Medium. Org Proc Res Dev,2004,8:477~481
    [129]Hagiwara H, Sugawara Y. Immobilization of Pd(OAc)2 in Ionic Liquid on Silica: Application to Sustainable Mizoroki-Heck Reaction. Org Lett,2004,6:2325~2328
    [130]Xie X G, Lu J P, Chen B, et al. Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating. Tetrahedron Lett,2004,45:809~811
    [131]Adrian J. Carmichael, Martyn J. Earle, John D. Holbrey, et al. The Heck Reaction in Ionic Liquids:A Multiphasic Catalyst System. Org Lett,1999,1:997~1000
    [132]Soon Bong Park, Howard Alper. Highly Efficient, Recyclable Pd (Ⅱ) Catalyst s with Bisimidazole Ligands for the Heck Reaction in Ionic Liquids. Org Lett,2003,5:3209~ 3212
    [133]Herrmann W A, Bohm V P W. Heck reaction catalyzed by phospha-palladacycles in non-aqueous ionic liquids. J Organometallic Chem,1999,572:141~145
    [134]Xu L, Chen W. Xiao J. Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbine complexes of palladium. Organometallics,2009,19:1123~1127
    [135]Vincenzo C, Angelo N, Luigi L. Heck reaction in Ionic Liquids Catalyzed by a Pd-benzothiazole Carbine Complex. Tetrahedron Lett,2000,41:8971~8976
    [136]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation: Heck reaction at ambient condition in room temperature ionic liquids. Chem Commun, 2001,17:1544~1545
    [137]Li S H, Lin Y J, Xie H B, etal. Bronsted Guanidine Acid-Base Ionic Liquids:Novel Reaction Media for the Palladium-Catalyzed Heck Reaction. Org Lett,2006,8:391~394
    [138]Gerritsma DA, Robertson A 1, Mnulty J, et al. Heck reactions of aryl halides in phosphonium salt ionic liquids:library screening and applications. Tetrahedron Lett,2004, 45:7629~7631
    [139]Hany S T, Zhang X. Organic synthesis in ionic liquids:the Stille coupling. Org Lett,2001, 32:233~236
    [140]Anna M M, Gallo V, Mastrorilli P, et al. Metal catalysed Michael additions in ionic liquids. Chem Commun,2002,5:434-435
    [141]Gallo V, Mastrorilli P, Nobile C F, et al. How does the presence of impurities change the performance of catalytic systems in ionic liquids? A case study:the Michael addition of acetylacetone to methyl vinyl ketone. J Chem Soc Dalton Trans,2002,23:4339~4342
    [142]Dere R T, Pal R R, Patil P S, et al. Influence of ionic liquids on the phase transfer catalyzed enantioselective Michael reactions. Tetrahedron Lett,2003,44:5351~5353
    [143]罗书平,王丽萍,岳华栋等.L-脯氨酸对离子液体介质中的不对称Michael反应催化性能研究.2006,64:1483~1488
    [144]Wang Z M, Wang Q, Zhang Y, et al. Synthesis of chiral ionic liquids from natural acids and their applications in enantioselective Michael addition Tetrahedron Lett,2005,46: 4657~4660
    [145]Luo, S. Z., Mi, X. L., Zhang, L.,et al. Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angew Chem IntEd,2006,45:3093~3097
    [146]Yoshitaka H, Hisashi T, Daido H, et al. Immobilization and reuse of Pd complexes in ionic liquid:efficient catalytic asymmetric fluorination and Michael reactions with a-Ketoesters.2003,5:3225~3228
    [147](a) Hawarth J, James P, Dai J F. Immobilized baker's yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett,2001,42:7517~7519;
    (b) Adams C J, Earle M J. Stereoselective hydrogenation reactions in chloroaluminate(Ⅲ) ionic liquids:a new method for the reduction of aromatic compounds. Chem Commun, 1999,11:1043~1044
    [148]Reynolds J L, Erdner K R, Jone P B. Photoreduction of Benzophenones by Amines in Room-Temperature Ionic Liquids. Org Lett,2002,4:917~919
    [149]Monteriro A L, ZinnF K. Souza RF. et al. Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methylimidazolium tetrafluoroborate molten salt. Tetrahedron:Asymmetry,1997,8:177~179
    [150]Li Y Q, Luo H M. BMImPF6/H2O biphasic system promoted chemoselective reduction of aldehydes and ketones with potassium borohydride as reduatant. Chinese Journal of Chemistry,2005,23:345-348
    [151]罗书平等.离子液体中芳香醛选择性还原胺反应的研究。高等化学工程学报,2006,Vol.20:306
    [152]Geldbach T J, Dyson P J. A Versatile Ruthenium Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation:Conventional vs Task-Specific Catalysts. J Am Chem Soc,2004,126:8114~8115
    [153]Xiao Y, Malhotra S V. Asymmetric reduction of aromatic ketones in pryridinium-based ionic liquids. Tetrahedron:Asymmetry,2006,17:1062-1065
    [154]Qian W X, Jin E L, Bao W L, et al. Tetrahedron,2006,62:556
    [155]Adam W, Humpf H U, Roschmann K J, et al. Enantioselective Epoxidation with Chiral Mnlll(salen) Catalysts:Kinetic Resolution of Aryl-Substituted Allylic Alcohols. J Org Chem,2001,66:5796~5800
    [156]Song C E, Roh E J. Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid. Chem Commun,2000,837-838
    [157]Bernini R, Coratti A, Fabrizi G, et al. CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction. Tetrahedron Lett,2003,44:8991~8994
    [158]Peng Y. Q, Cai Y. Q., Song G. H, et al. Ionic Liquid-Grafted Mn(Ⅲ)-Schiff Base Complex:A Highly Efficient and Recyclable Catalyst for the Epoxidation of Chalcones. Synlett 2005,2147~2150
    [159](a) Welton T. Room temperature ionic liquids:solvents for synthesis and catalysis. Chem Rev,1999,99:2071-2083;
    (b)Fischer T, Sethi A, Welton T, et al. Diels-Alder Reaction in room temperature ionic liquids. Tetrahedron Lett,1999,40:793~796;
    (c)Jaeger D A, Tuck C E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett,1989,30:1785-1788
    [160]Yadav J S, Reddy B V, Reddy J S, et al. Aza-Diels-Alder reaction in ionic liquid:a facile synthesis of pyrano-and futanoquinolins. Tetrahedron,2003,59:1599~1604
    [161]Evans D A,Woerpel KA, Hinman M M, et al. Bis(oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. Catalytic, asymmetric cyclopropanation of olefins. J Am Chem Soc,1991,113:726~728
    [162]Davies D L, Kandola S K, Patel R K. Asymmetric cyclopropanation in ionic liquids: effect of anion and impurities. Tetrahedron:Asymmetry,2004,15:77~80
    [163]Mi X L, Luo S Z. Ionic Liquid-Immobilized Quinuclidine-Catalyzed Morita-Baylis-Hillman Reactions. J Org Chem,2005,70:2338~2341
    [164]Mi X L, Luo S Z, Cheng J P. Hydroxyl ionic liquid (HIL)-immobilized quinuclidine for Baylis-Hillman catalysis:synergistic effect of ionic liquids as organocatalyst supports. Tetrahedron,2006,62:2537~2544
    [165]Pegot B, Vo-Thanh G ,Gori D, et al. First application of chiral ionic liquids in asymmetric Baylis-Hillman reaction. Tetrahedron Lett,2004,45:6425~6428
    [166]Zhou L, Wang L. Chiral Ionic Liquid Containing L-Proline Unit as a Highly Efficient and Recyclable Asymmetric Organocatalyst for Aldol Reaction. Chem Lett,2007,36:628~629
    [167]Miao W S, Chan TH. Ionic-Liquid-Supported organocatalyst:efficient and recyclable Ionic-Liquid-Anchored proline for asymmetric aldol reaction. Adv Synth Catal,2006,348: 1711~1718
    [168]Zhou L.Wang L. Chiral ionic liquid containing L-Proline unit as a highly efficient and recyclable asymmetric organocatalyst for aldol reaction. Chem Lett,2007,36:628~629
    [169]Luo S Z, Mi X L, Zhang L, et al. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron,63:1923~1930
    [170]Siyutkin D E, Kucherenko A S, Struchkova M I, et al. A novel (S)-proline-modified task-specific chiral ionic liquid-an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett,2008,49:1212~1216
    [171]Lombardo M, Easwar S, Pasi F, et al. The ion tag strategy as a route to highly efficient organocatalysts for the direct asymmetric aldol reaction. Adv Synth Catal,2009,351: 276~282
    [172]Hu S Q, Jiang T, Zhang Z F, et al. Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions.Tetrahedron Lett,2007,48: 5613~5617
    [173]Dubreuil F, Bourahla K, Rahmouni M, et al. Polyelectrolytes Tethered to a Free Surface. Catal Commun,2002,3:185~190
    [174]Deng Y, Shi F. Ionic liquid as a green catalytic reaction medium for esterifications. J Mol Catal,2001,165:33~36
    [175]Frag-Dubreull J; Bourahla K, Rahmouni M, et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catal Commun,2002,3:185~190
    [176]Bouliare V B, Gree R. Witting reaction in the ionic solvent [BMIm]BF4. Chem Commun, 2000,2195~2196
    [177]Rebeiro G, Khadilkar B M A. Safe and efficient procedure to prepreealkyl and alkoxyalkyl chlorides and dichlwrides by catalytic decomposition of the corresponding alkyl and alkoxyalkyl cholformates and bischelofoformates with hexabutyl guanidinium chloride. Synthesis,2001,3:370~372
    [178]Fuller J, Carlin R T, Osteryoung R A. The room temperatureionic liquid 1-ethyl-3-methyl imidazolium tetrafluoroborate:electrochemical coup les and physical p roperties. J Electro chem. Soc,1997,144:3881~3885
    [179]Sell Christopher. Liquid gold. Engineer,2005,293:36
    [180]Abbott A P, Capper G, Swain B G, et al. Electropolishing of stainless steel in an ionic liquid. Transactionof the Institute of Metal Finshing,2005,83:51-53
    [181](a)李汝雄,王建基.绿色溶剂—离子液体的制备与应用.化工进展,2002,21:43~48;
    (b) Vanjundiah C, McDevitte, Koch V R. J Electrochem Soc,1997,144:3392~3397
    [182]Kubo W, Kitamura T, Hanabusa K. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator.Chem Commun.2002. 4:374~375
    [183]Mccluskey A, Garner J, Yong D J, et al. Tetrastannane and weinreb amides a simple route to N-protected homoallylic alcohols and alkyl ketones. Tetrahedron Lett,2000,41: 8147~8151
    [184]Branco L, Afonso CAM. Ionic liquids as recyclable reaction media for the tetrahydro-pyronylation of alcohols. Tetrahedron Lett,2001,57:4405~4410
    [185]Ren R X, Wu J X. Miled conversion of alcohols to alkyl halides using halide-based ionic liquids at room temperature. Org Lett,2001,23:3727~3728
    [186]Stark A, Maclean B L, Singer R D. Organometalsyllic synthesis in ambient temperature chloroaluminate (Ⅲ) ionic liquids:ligand exchanging reaction of ferrocene. J Chem Soc Dalton Trans,1997,3465~3467
    [187]Crofts D, Dyson P J, Sanderson K M, et al. Chloroaluminate (Ⅲ) ionic liquid mediate synthesis of transition metal-cyclophane complexes:their role as solvent and Lewis acid catalyst. Organmet Chem,1999,57:292~298
    [188]Huddlestion, Jonathan G, Reichert W M, et al. Charaction and comparison of hydrophilic and hydrophobic room temperature ionic liquids in corporating imidazolium cation. Green Chem,2001,3:156~164
    [1](a) Howarth J, Hanlon K, Fayne D, et al. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in the Diels-Alder Reaction. Tetrahedron Lett.1997,38,3097~3100;
    (b)Boger B, Benecke J, Cieplik A, et al. US:5409733,1995.
    [2]Haramoto Y, Miyashita T, Nanasawa M. Liquid crystal properties of new ionic liquid crystal compounds having a 1,3-dioxane ring. Liq. Cryst.2002,29,87~90
    [3]Biedron T, Kubisa P. Ionic liquids as reaction media for polymerization processes. Polym. Int.2003,52,1584-1588
    [4]Lee S G, Zhang Y J, Piao J Y, et al. Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligand. Chem. Commun.2003,2624~2625
    [5]Doherty S, Goodrich P, Hardacre V, et al. Efficient Heterogeneous Asymmetric Catalysis of the Mukaiyama Aldol Reaction by Silica-and Ionic Liquid-Supported Lewis Acid Copper(II) Complexes of Bis(oxazolines). Adv. Synth. Catal.2008,350:295~302
    [6]Ujiie S, limura K. Ion Complex Type of Novel Chiral Smectic C* Liquid Crystal Having Chiral Hydrogentartrate Counterion. Chem Lett,1994,23:17~20
    [7]Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures. Green Chem.1999,1: 23~25
    [8]Jodry J J, Mikami K. New chiral imidazolium ionic liquids:3D-network of hydrogen bonding. Tetrahetron Lett,2004,45:4429~4431
    [9]Tosoni, M.; Laschat, S.; Baro, A. Synthesis of Novel Chiral Ionic Liquids and Their Phase Behavior in Mixtures with Smectic and Nematic Liquid Crystals. Helv. Chim. Acta 2004,87:2742~2749
    [10]Ma H, Wan X. Design and synthesis of novel chiral ionic liquids and their application in free radical polymerization of methyl methacrylate. Chin J Polym Sci,2003,21:265~270.
    [11]Ding J, Desikan V, Han X, et al. Use of Chiral Ionic Liquids as Solvents for the Enantioselective Photoisomerization of Dibenzobicyclo[2.2.2]octatrienes. Org. Lett.2005. 7:335~337
    [12]Wasserscheid P, Bosmann A, Bolm C. Synthesis and properties of ionic liquids derived from the'chiral pool'. Chem. Commun,2002,200-201
    [13]Thanh G V, Pegot B, Loupy A. Solvent-Free Microwave-Assisted Preparation of Chiral Ionic Liquids from (-)-N-Methylephedrine. Eur J Org Chem,2004,1112~1116
    [14]Levillain J, Dubant G, Abrunhosa I, et al. Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chem. Commun.2003,2914-2915
    [15]Gadenne B, Hesemann P, Moreau J J E. Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde. Tetrahedron Lett.2004,45,8157~8160
    [16]Zhou W, Xu L W, Qiu H Y, et al. Synthesis of a novel chiral ionic liquid and its application in enantioselective'aldol reactions. Helv. Chim. Acta,2008,91:53~59
    [17](a) Wasserscheid P, Boesmann A, Bolm C. Synthesis and properties of ionic liquids derived from the chiral pool. Chem. Commun.2002,200~201;
    (b)Boesmann A, Wasserscheid P, Bolm C, et al. DE10003708,2001
    [18]Gaumont A C, Bregeon D, Levillain J, et al. Fudan Xuebao, Ziran Kexueban,2005,44: 674~675
    [19]Bao W, Wang Z, Li Y. Synthesis of Chiral Ionic Liquids from Natural Amino Acids. J Org Chem.2003,68:591~593
    [20]Clavier H, Boulanger L, Audic N, et al. Design and synthesis of imidazolinium salts derived from (L)-valine. Investigation of their potential in chiral molecular recognition. Chem Commun,2004,1224~1225
    [21](a) Shan Y, Dai L, Ye S, et al. CN 1383920,2002,15;
    (b)Shan Y, Dai L, Ye S, et al. CN 1383921,2002
    [22]Tao G, He L, Sun N, et al. New generation ionic liquids:cations derived from amino acids. Chem Commun,2005,3562~3564
    [23]Luo S, Xu D, Yue H, et al. Synthesis and properties of novel chiral-amine-functionalized ionic liquids. Tetrahedron:Asymmetry,2006,17:2028~2033
    [24]Rizvi S A A, Shamsi S A. Synthesis, Characterization, and Application of Chiral Ionic Liquids and Their Polymers in Micellar Electrokinetic Chromatography. Anal Chem, 2006,78:7061~7069
    [25](a) Ni B, Zhang Q, Headley A D. Design and Synthesis of Pyridinium Chiral Ionic Liquids Tethered to a Urea Functionality. J Org Chem,2006,71:9857-9860;
    (b)Ni B, Headley A D. Novel imidazolium chiral ionic liquids that contain a urea functionality. Tetrahedron Lett,2006,47:7331~7334
    [26](a) Ni B, Headley A D, Li G. Design and Synthesis of C-2 Substituted Chiral Imidazolium Ionic Liquids from Amino Acid Derivatives. J Org Chem,2005,70: 10600~10602;
    (b)Ni B, Garre S, Headley A D. Design and synthesis of fused-ring chiral ionic liquids from amino acid derivatives. Tetrahedron Lett,2007,48:1999~2002
    [27]Ou W, Huang Z. Retracted article:An efficient and practical synthesis of chiral imidazolium ionic liquids and their application in an enantioselective Michael reaction. Green Chem.2006,8:731~734
    [28]Hannig F, Kehr G, Froehlich R, et al. Formation of chiral ionic liquids and imidazol-2-ylidene metal complexes from the proteinogenic aminoacid 1-histidine. J Organomet Chem,2005,690:5959~5972
    [29]Guillen F, Bregeon D, Plaquevent J. (S)-Histidine:the ideal precursor for a novel family of chiral aminoacid and peptidic ionic liquids. Tetrahedron Lett,2006,47:1245~1248.
    [30]Fukumoto K, Yoshizawa M, Ohno H. Room Temperature Ionic Liquids from 20 Natural Amino Acids. J Am Chem Soc,2005,127:2398~2399
    [31]Kagimoto J, Fukumoto K, Ohno H. Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids. Chem Commun,2006, 2254~2256
    [32]Zhang J, Zhang S, Dong K, et al. Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chem Eur J,2006,12:4021~4026
    [33]Fukumoto, K.; Ohno, H. Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids. Chem. Commun.2006,3081-3083
    [1](a) Kobayashi S, Ishitani H. Catalytic Enantioselective Addition to Imines. Chem Rev, 1999,99:1069~1094;
    (b)Arend M, Westermann B, Risch N. Modern Variants of the Mannich Reaction. Angew Chem Int Ed,1998,37:1044~1070;
    (c)Arend M. Asymmetric Catalytic Aminoalkylations:New Powerful Methods for the Enantioselective Synthesis of Amino Acid Derivatives, Mannich Bases, and Homoallylic Amines. Angew Chem Int Ed, 1999,38:2873~2874;
    (d)Kleinmann E F. in:Comprehensive Organic Synthesis, vol.2 (Eds.:Trost B M, Flemming I.), Pergamon Press, New York,1991. Chapter 4.1;
    (e) Denmark S, Nicaise O J C. in:Comprehensive Asymmetric Catalysis, vol.2 (Eds.: Jacobsen E N, Pfaltz A, Yamomoto H.), Springer, Berlin,1999.93;
    (f)Cordova A. The direct catalytic asymmetric mannich reaction. Ace Chem Res,2004,37:102~112;
    (g) Tramontini M, Angiolini L. Further advances in the chemistry of mannich bases. Tetrahedron,1990,46:1791~1837;
    (h)Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem Rev,1999,99:1069-1094;
    (i)Marques M M B. Catalytic Enantioselective Cross-Mannich Reaction of Aldehydes. Angew Chem lnt Ed, 2006,45:348~352;
    (j)Ting A, Schaus S E. Organocatalytic asymmetric mannich reactions:new methodology, catalyst design, and synthetic applications. Eur J Org Chem, 2007,5797~5815;
    (k)Verkade J M M, van Hemert L J C, Quaedflieg P J L M, et al. Organocatalysed asymmetric Mannich reactions. Chem Soc Rev,2008,37:29~41:
    (I) Kobayashi S, Ueno M. in:Comprehensive Asymmetric Catalysis, supplement 1, Springer, Berlin,2004. chapter 29.5,143;
    (m)Friestad G K, Mathies A K. Tetrahedron,2007,63: 2541~2569:
    (n)Danishefsky S J, Masters J J, Young W B, et al. Total synthesis of Baccatin Illand Taxol. J Am Chem Soc,1996,118:2843~2859;
    (o)for a recent overview of multicomponent reactions, see:Ramon D J, Yus M. Angew Chem Int Ed,2005,44: 1602~1634;
    (p)Arrayas R G, Carretero J C. Catalytic asymmetric direct Mannich reaction: a powerful tool for the synthesis of α,β-diamino acids. Chem Soc Rev,2009,38: 1940~1948
    [2](a) Tomioka K, Fujieda H, Hayashi S, et al. Catalytic asymmetric reaction of lithium ester enolates with imines. Chem Commun,1999,715~716;
    (b)Yi W B, Cai C. Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth (111) perfluorooctane sulfonates catalysts in fluorous media. J Fluorine Chem,2006,127:1515~1521;
    (c)Wang L M, Han J W, Sheng J, et al. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot Mannich reaction:three component synthesis of β-amino carbonyl compounds. Catal Commun,2005,6:201~204
    [3](a) Wenzel A G, Jacobsen E N. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives:enantioselective synthesis of β-aryl-β-amino acids. J Am Chem Soc,2002, 124:12964~12965;
    (b)Hayashi Y, Tsuboi W, Ashimine I, et al. The Direct and Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes. Angew Chem Int Ed,2003,42:3677~3680;
    (c)List B, Pojarliev P, Biller W T, et al. The proline-catalyzed direct asymmetric three-component Mannich reaction:scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols. J Am Chem Soc,2002,124:827~833;
    (d)Chowdari N S, Ahmad M, Albertshofer K F, et al. Expedient synthesis of chiral 1,2-and 1,4-diamines:protecting group dependent regioselectivity in direct organocatalytic asymmetric Mannich reactions. Org Lett,2006,8:2839~2842;
    (e)Ibrahem 1, Zou W, Engqvist M, et al. Acyclic chiral amines and amino acids as inexpensive and readily tunable catalysts for the direct asymmetric three-component mannich reaction. Chem Eur J,2005,11:7024~7029;
    (f) Ramasastry S S V, Zhang H, Tanaka F, et al. Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-Aldol reactions. J Am Chem Soc,2007,129:288~289;
    (g)Cheng L L, Wu X Y, Lu Y Y. Direct asymmetric three-component organocatalytic anti-selective Mannich reactions in a purely aqueous system.Org Biomol Chem,2007,5:1018~1020;
    (h)Cheong P H Y,
    Zhang H. Thayumanavan R. Pipecolic acid-catalyzed direct asymmetric Mannich reactions. Org Lett.2006,8:811~814;
    (i)Chandler C, Galzerano P, Michrowska A. The proline-catalyzed double mannich reaction of acetaldehyde with N-Boc imines. Angew Chem Int Ed,2009,48:1978~1980;
    (j)Hahn B T, Frohlich R, Harms K, et al. Proline-catalyzed highly enantioselective and anti-selective mannich reaction of unactivated ketones:synthesis of chiral α-amino acids. Angew Chem Int Ed.2008,47: 9985~9988;
    (k)Parasuk W, Parasuk V. Theoretical investigations on the stereoselectivity of the proline catalyzed Mannich reaction in DMSO. J Org Chem,2008,73:9388~9392;
    (I)Srinivas N, Bhandari K. Proline-catalyzed facile access to Mannich adducts using unsubstituted azoles. Tetrahedron Let,2008,49:7070~7073;
    (m)Yang J W, Stadler M, List B. Proline-catalyzed mannich reaction of aldehydes with N-Boc-imines. Angew Chem Int Ed,2007,46:609~611;
    (n)Srinivasan M, Perumal S, Selvaraj S. (L)-Proline catalysed efficient synthesis of 3-substituted 2,6-diarylpiperidin-4-ones. ARK1VOC,2005, 11:201-208:
    (o)Chowdari N S, Suri J T, Barbas Ⅲ C F. Asymmetric synthesis of quaternary α-and β-amino acids and β-lactams via proline-catalyzed Mannich reactions with branched aldehyde donors. Org Lett,2004,6:2507-2510;
    (p)Yang J W, Chandler C, Stadler M, et al. Proline-catalysed Mannich reactions of acetaldehyde. Nature,2008,452: 453~455;
    (q)Qian Y B, Xiao S Y, Liu L, et al. A mild and efficient procedure for asymmetric Michael additions of cyclohexanone to chalcones catalyzed by an amino acid ionic liquid. Tetrahedron:Asymmetry,2008,19:1515~1518
    [4](a) Arkiyama T, Itoh J, Yokota K, et al. Enantioselective mannich-type reaction catalyzed by a chiral bronsted acid. Angew Chem Int Ed,2004,43:1566~1568;
    (b)Sickret M, Schneider C. The enantioselective, bronsted acid catalyzed, vinylogous mannich reaction. Angew Chem Int Ed,2008,47:3631~3634;
    (c)Yi L, Lei H S, Zou J H,et al. The Mannich Reaction Between Aromatic Ketones, Aromatic Aldehydes and Aromatic Amines. Synthesis,1991,717~718;
    (d)Duthaler R O. Proline-catalyzed asymmetric a-amination of aldehydes and ketones-an astonishingly simple access to optically active α-hydrazino carbonyl compounds. Angew Chem Int Ed,2003,42:975~978;
    (e)Iimura S, Nobutou D, Manable K, et al. Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst. Chem Commun,2003,1644~1645;
    (f)Akiyama T, Takaya J, Kagoshima H. Bronsted Acid-Catalyzed Mannich-Type Reactions in Aqueous Media. Adv Synth Catal,2002,344:338~347;
    (g)Azizi N, Torkiyan L, Saidi M R. Highly efficient one-pot three-component mannich reaction in water catalyzed by heteropoly acids. Org Lett,2006,8:2079~2082;
    (h)Akiyama T, Takaya J, Kagoshima H. One-pot mannich-type reaction in water:HBF4 catalyzed condensation of aldehydes, amines, and silyl enolates for the synthesis of β-amino carbonyl compounds. Synlett, 1999,9:1426~1428;
    (i)Akiyama T, Matsuda K, Fuchibe K. HCl-Catalyzed Stereoselective Mannich Reaction in H2O-SDS System. Synlett,2005,322~324;
    (j) Manabe K, Mori Y, Kobayashi S. Three-component carbon-carbon bond-forming
    reactions catalyzed by a Bransted acid-surfactant-combined catalyst in water. Tetrahedron, 2001,57:2537~2544;
    (k)Akiyama T, Takaya J, Kagoshima H. A highly stereo-divergent Mannich-type reaction catalyzed by Bransted acid in aqueous media. Tetrahedron Lett, 2001,42:4025~4028
    [5](a) List B. The direct catalytic asymmetric three-component mannich reaction. J Am Chem Soc,2000,122:9336~9337;
    (b)List B. Introduction:Organocatalysis. Chem Rev. 2007,107:5413~5415;
    (c)Guo Q X, Liu H, Guo C, et al. Chiral bransted acid-catalyzed direct asymmetric mannich reaction. J Am Chem Soc,2007,129:3790~3791
    [6]Ibrahem I, Casas J, Cordova A. Direct catalytic enantioselective a-aminomethylation of ketones. Angew Chem Int Ed,2004,43:6528~6531
    [7]Chowdari N S, Ramachary D B, Barbas Ⅲ C F Organocatalysis in ionic liquids:highly efficient L-proline-catalyzed direct asymmetric mannich reactions involving ketone and aldehyde nucleophiles. Synlett,2003,12:1906~1909
    [8]Ibrahem I, Cordova A. Direct catalytic asymmetric anti-selective Mannich-type reactions. Chem Commun,2006,1760-1762
    [9]Notz W, Tanaka F, Watanabe S, et al. The direct organocatalytic asymmetric mannich reaction:unmodified aldehydes as nucleophiles. J Org Chem,2003,68:9624~9634
    [10]Mitsumori S, Zhang H, Cbeong P H, et al. Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J Am Chem Soc,2006,128:1040~1041
    [11]Cobb A J A, Shaw D M, Ley S V.5-Pyrrolidin-2-yltetrazole:a new, catalytic, more soluble alternative to proline in an organocatalytic asymmetric mannich-type reaction. Synlett,2004,558~560
    [12]Hayashi Y, Urushima T, Aratake S, et al. Organic solvent-free, enantio-and diastereoselective, direct mannich reaction in the presence of water. Org Lett,2008,10: 21~24
    [13]Zhuang W, Saaby S, J(?)rgensen K A. Direct organocatalytic enantioselective Mannich reactions of ketimines:an approach to optically active quaternary a-amino acid derivatives. Angew Chem Int Ed,2003,43:4476~4478
    [14](a) Zhao G Y, Jiang T, Gao H X, et al. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem.2004,6:75-77;
    (b)Gu Y L, Ogawa C, Kobayashi J, et al. A heterogeneous silica-supported scandium/ionic liquid catalyst system for organic reactions in water. Angew Chem Int Ed,2006,45:7217~7220;
    (c)Fang D, Fei Z H, Liu Z L. Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media. Catal Commun,2009,10:1267~1270;
    (d)Li J Z, Peng Y Q, Song G H. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media. Catal Lett,2005,102:159~162;
    (e)Fang D, Lou J, Zhou X L, et al. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catal Lett,2007,116: 76~80;
    (f)Gu Y L, Ogawa C, Kobayashi S. Novel hydrophobic br(?)nsted acidic ionic-liquids as efficient and reusable catalysts for organic reactions in water. Chem Lett, 2006,35:1176~1177;
    (g)Sahoo S, Joseph T, Halligudi S B. Mannich reaction in Brosted acidic ionic liquids:A facile synthesis of β-amino carbonyl compounds. J Mol Catal A, 2006,244:179-182;
    (h)Liu B Y, Xu D Q, Dong J F, et al. Highly efficient AILs/L-Proline synergistic catalyzed three-component asymmetric mannich reaction. Synth Commun, 2007,37:3003~3010;
    (i)Chen S L, Ji S J, Loh T P. Asymmetric Mannich-type reactions catalyzed by indium(Ⅲ) complexes in ionic liquids. Tetrahedron Lett,2003,44: 2405-2408;
    (j)Sahoo S, Joseph T. Halligudi S B. Mannich reaction in Bronsted acidic ionic liquid:A facile synthesis of β-amino carbonyl compounds. Journal of Molecular Catalysis A:Chemical,2006,244:179~182;
    (k)Fang D, Luo J, Zhou X-L, et al. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catalysis Letters,2007,116:76~80;
    (1)Fang D, Fei Z, Liu Z. Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media. Catalysis Communications,2009,10:1267~1270
    [15](a) Yang H, Carter R G. N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide:a practical proline mimetic for facilitating enantioselective aldol reactions. Org Lett,2008, 10:4649~4652;
    (b)Hayashi Y, Sumiya T, Takahashi J, et al. Highly diastereo-and enantioselective direct aldol reactions in water. Angew Chem Int Ed,2006,45:958~961;
    (c)Aratake S, Itoh T, Okano T, et al. Highly diastereo-and enantioselective direct aldol reactions of aldehydes and ketones catalyzed by siloxyproline in the presence of water. Chem Eur J,2007,13:10246~10256;
    (d)Itoh T, Yokoya M, Miyauchi K, et al. Proline-catalyzed asymmetric addition reaction of 9-tosyl-3,4-dihydro-β-carboline with ketones. Org Lett,2003,5:4301~4304;
    (e)Notz W, Watanabe S, Chowdari N S, et al. The scope of the direct proline-catalyzed asymmetric addition of ketones to imines. Adv Synth Catal,2004,346:1131~1140
    [1](a) Kumar A, Pawar S S. Converting exo-selective Diels-Alder reaction to endo-selective in chloroloaluminate ionic liquids. J Org Chem,2004,69,1419~1420;
    (b) Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem Rev,1999, 99:1069~1094;
    (c)J φ rgensen K A. Catalytic asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines. Angew Chem Int Ed,2000,39:3558~3588;
    (d)Kumar A. Salt Effects on Diels-Alder Reaction Kinetics. Chem Rev,2001,101:1-20;
    (e) Yamashita Y, Mizuki Y. Kobayashi S. Catalytic asymmetric aza Diels-Alder reactions of hydrazones using a chiral zirconium catalyst. Tetrahedron Lett,2005,46:1803-1806
    [2]Evans D A.Wu J. Enantioselective rare-earth catalyzed quinone Diels-Alder reaction. J Am Chem Soc,2003,125,10162~10163
    [3]Earle M J,McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. Green Chem,1999,23~25
    [4]Aggarwal A, Lancaster N L, Sethi A R,Welton T. The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chem,2002,4:517~520
    [5]Berson J A, Hamlet Z, Mueller W A. The correlation of solvent effects on the stereoselectivites of Diels-Alder reactions by means of linear free energy relationships a new empirical measure of solvent polarity. J Am Chem Soc,1962,84:297~304
    [6]Diganta S, Anil K. Rare earth metal triflates promoted Diels-Alder reactions in ionic liquids. Applied Catalysis A:General,2008,335:1-6
    [7]Paulaitis M E, Alexander G C. Reactions in supercritical fluids a case study of the thermodynamic solvent effects on a Diels-Alder reaction in supercritical carbon dioxide. Pure& Appl Chem,1987,59:61~68
    [8]Breslow R, Rideout D. Hydrophobic acceleration of Diels-Alder reactions. J Am Chem Soc,1980,102:7816~7817
    [9]Sunwook K, Keith P J. Adjustment of the selectivity of a Diels-Alder reaction network using supercritical fluids. Chem Eng Comm,1988,63:49~59
    [10]Shin-ichi F, Ken M, Shin-ichi E. Asymmetric Diels-Alder reactions in supercritical carbon dioxide catalyzed by rare earth complexes. Tetrahedron,2003,59:10445~10452
    [11]David A J, Charles E T. Diels-Alder reactions in ethylammonium nitrate a low-melting fused salt. Tetrahedron Lett,1989,30:1785~1788
    [12](a) Gaddam V, Nagarajan R. A one-pot synthetic approach to the functionalized isomeric ellipticine derivatives through an imino Diels-Alder reaction. Tetrahedron Lett,2009,50: 1243~1248;
    (b)Takahashi K, Nakano H, Fujita R. Reuse of chiral cationic Pd-phosphinooxazolidine catalysts in ionic liquids:highly efficient catalytic asymmetric Diels-Alder reactions. Chem Commun,2007,263~265;
    (c)Yeom C E, Kim H W, Shin Y J, et al. Chiral bis(oxazoline)-copper complex catalyzed Diels-Alder reaction in ionic liquids:remarkable reactivity and selectivity enhancement, and efficient recycling of the catalyst. Tetrahedron Lett,2007,48:9035~9039;
    (d)Yadav J S, Reddy B V S, Kondaji G, et al. Intramolecular imino-Diels-Alder reactions in [bmim]BF4 ionic medium:Green protocol for the synthesis of tetrahydrochromanoquinolines. J Mol Catal A:Chem,2006, 258:361~366;
    (e)Doherty S, Goodrich P, Hardacre C, et al. Marked enantioselectivity enhancements for Diels-Alder reactions in ionic liquids catalysed by platinum diphosphine complexes. Green Chem,2004,6:63~67;
    (f)Zulfiqar F, Kitazume T. One-pot aza-Diels-Alder reactions in ionic liquids. Green Chem,2000,2:137~139;
    (g) Yadav J S, Reddy B V S, Reddy J S S, et al. Aza-Diels-Alder reactions in ionic liquids:a facile synthesis of pyrano-and furanoquinolines. Tetrahedron,2003,59:1599~1604;
    (h) Janus E, Maciejewska I G, Lozynski M, et al. Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett,2006,47:4079~4083
    [13](a) Buu O N V, Aupoix A, Thanh G V. Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction. Tetrahedron,2009,65:2260~2265;
    (b)Buu O N V, Aupoix A, Hong N D T, et al. Chiral ionic liquids derived from isosorbide:synthesis, properties and applications in asymmetric synthesis. New J Chem,2009,33:2060~2072
    [14](a) Sunden H, Ibrahem H, Eriksson L, et al. Direct catalytic enantioselective aza-Diels-Alder reactions. Angew Chem Int Ed,2005,44:4877~4880;
    (b)Liu H, Cun L F, Mi A Q, et al. Enantioselective direct aza hetero-Diels-Alder reaction catalyzed by chiral br(?)nsted acids. Org Lett,2006,8:6023~6026;
    (c)Yang J W, Chandler C, Stadler M, et al. Proline-catalysed Mannich reactions of acetaldehyde. Nature,2008,452: 453~455;
    (d)Lu L Q, Xing X N, Wang X F, et al. Highly chemo-and diastereoselective synthesis of substituted tetrahydropyran-4-ones via organocatalytic oxa-Diels-Alder reactions of acyclic α,β-unsaturated ketones with aldehydes. Tetrahedron Lett.2008,49: 1631~1635;
    (e)Janus E, Stefaniak W. The Diels-Alder reaction in phosphonium ionic liquid catalysed by metal chlorides, triflates and triflimides. Catal Lett,2008,124: 105~110
    [15]Yamamoto Y, Momiyama N, Yamamoto H. Enantioseletive tandem o-nirtoso Aldol/Michael reaction. J Am Chem Soc,2004,126:5962~5963
    [16]Sunden H, Ibrahem I, Erikssion L. Direct Catalytic Enantioselective aza-Diels-Alder reactions. Angew Chem Int Ed,2005,44:4877~4880
    [17]Yang H, Carter R G. Asymmetric construction of nitrogen-containing [2.2.2] bicyclic scaffolds using N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide. J Org Chem, 2009,74:5151~5156
    [1](a) List B, Pojarliev P. Barbas C E. Proline catalyzed asymmetric Aldol reactions between ketones and unsubstituted aldehydes. Org Lett.2001,3:537:
    (b)Notz W, List B. Catalytic asymmetric synthesis of anti-1,2-diols. J Am Chem Soc.2000,122:7386;
    (c) Bahmanyar S, Houk K N. The origin of stereoselectivity in proline catalyzed intramolecular Aldol reactions. J Am Chem Soc,2001,123:12911~12912
    [2]Trost B M. Comprehensive Organic Synthesis, Pergamon Press, Oxford 1991. Vol.2, Charpter 2,629~631
    [3]陆熙炎.绿色化学与有机合成及有机合成中的原子经济性.化学进展,1998(10):123~13.
    [4](a) List B, Lerner R A, Barbas Ⅲ C F. Proline catalyzed direct Aldol reactions. J Am Chem Soc.2000,122:2395~2396;
    (b)Sakthivel K, Notz W, Bui T, et al. Amino acid catalyzed direct asymmetric aldol reactions:a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming reactions. J Am Chem Soc,2001,123: 5260-5267
    [5]List B. Proline catalyzed asymmetric reactions. Tetrahedron,2002,58:5573~5590
    [6]B(?)pgevig A, Kumaragurubaran N, J(?)rgensen K A. Direct catalytic asymmetric Aldol reactions of aldehydes. Chem Commun,2002,620~621
    [7]Kumar I, Rode C V. Stereoselective Synthesis of 2-amio-1,3,5-hexane triols using L-proline catalyzed Aldol reaction. Tetrahedron:Asymmetry,2006,17:763~766
    [8](a) Northrup A B, MacMillan DWC. The first direct and enantioselective cross-Aldol reaction of aldehydes. J Am Chem Soc,2002,124:6798~6799;
    (b)Alcaide B, Almendros P. The direct catalytic asymmetric cross-Aldol reaction of aldehydes. Angew Chem Int Ed, 2003,42:858~860
    [9]Pan Q B, Zou B L, Wang Y J, et al. Diastereoselective Aldol reaction of N, N-dibenzyl-r-amino aldehydes with ketones catalyzed by proline. Org Lett,2004,6: 1009~1012
    [10](a) Zhong G F, Fana J H, Barbas Ⅲ C F. Amino alcohol catalyzed direct asymmetricAldol reactions:enantioselective synthesis of anti-α-fluoro-β-hydroxy ketones. Tetrahedron Lett, 2004,45:5681~5684;
    (b)Nobuyuki M, Fujie T, Barbas Ⅲ C F. Rapid fluorescent screening for bifunctional amine-acid catalysts:efficient syntheses of quaternary carbon-containing aldols under organocatalysis. Org Lett,2003,5:4369~4372;
    (c) Nobuyuki M, Fujie T, Barbas Ⅲ C F. Synthesis of α,β-hydroxyaldehydes with stereogenic quaternary carbon centers by direct organocatalytic asymmetric Aldol reactions. Angew Chem Int Ed,2004,43:2420-2423;
    (d)Dickerson T J, Janada K D. Aqueous Aldol catalysis by a nicotine metabolite. J Am Chem Soc,2002,124: 3220~3221
    [11]Nakadai M, Saito S, Yamamoto H. Diversity-based strategy for discovery of environmentally benign organocatalyst:diamine-protonic acid catalysts for asymmetric direct aldol reaction. Tetrahedron,2002,58:8167
    [12]Tang Z, Jiang F. Gong L Z, et al. Novel small organic molecules for a highly enantioselective direct Aldol reaction. J Am Chem Soc,2003,125:5262~5263
    [13]Ian K M, Northrup A B, MacMillan D W C. The importance of iminium geometry control in enamine catalysis:indentification of a new catalyst architecture for aldehyde-aldehyde couplings. Angew Chem Int Ed,2004,43:6722~6724
    [14]Torii H, Nakadai M, Ishihara K, et al. Asymmetric direct Aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angew Chem Int Ed,2004,43:1983
    [15]Albercht B, Burkhard K, Johann L. Proline-derived N-sulfonylcarboxamides:readily available, highly enantioselective and versatile catalysts for direct Aldol reactios. Adv Synth Catal,2004,346:1141~1146
    [16](a) Nobuyuki M, Yusuke N, Naoko O, et al. Organocatalytic direct asymmetric Aldol reactions in water. J Am Chem Soc,2006,128:734~735;
    (b)Wang W, Mei Y J, Li H, et al. A novel pyrrolidine imide catalyzed direct formation of α,β-unsaturated ketones from unmodified ketones and aldehydes. Org Lett,2005,7:601~604;
    (c)McGlacken G P, Breeden S W. A highly enantioselective, moderately anti-selective Aldol reaction using a novel hydrazone moiety as stereo director. Tetrahedron:Asymmetry,2005,16: 3615~3618;
    (d)Jiang M, Zhu S F, Yang Y, et al. Asymmetric Aldol reactions catalyzed by new spiro diamine derivatives. Tetrahedron:Asymmetry,2006,17:384~387;
    (e) Mukherjee S, Yang J W, Hoffmann S, et al. Asymmetric enamine catalysis. Chem Rev, 2007,107:5471-5569;
    (f)Guillena G, Najera C, Ramon D J. Enantioselective direct aldol reaction:the blossoming of modern organocatalysis. Tetrahedron Asymmetry,2007,18: 2249~2293;
    (g)Zhang S P, Fu X K, Fu S D, et al. Highly efficient 4-phenoxy substituted organocatalysts derived from N-prolylsulfonamide for the asymmetric direct aldol reaction on water. Catal Commun,2009,10:401~405;
    (h)Shah J, Blumenthal H, Yacob Z, et al. Proline-Catalyzed asymmetric aldol reaction in guanidine-derived ionic liquids. Adv Synth Catal,2008,350:1267~1270;
    (i)Inoue H, Kikuchi M, Ito J, et al. Chiral Phebox-rhodium complexes as catalysts for asymmetric direct aldol reaction. Tetrahedron, 2008,64:493~499;
    (j)Siyutkin D E, Kucherenko A S, Struchkova M I, et al. A novel (S)-proline-modified task-specific chiral ionic liquid-an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett,2008,49:1212~1216;
    (k) Huang J, Zhang X, Armstrong D W. Highly efficient asymmetric direct stoichiometric aldol reactions on/in water. Angew Chem Int Ed,2007,46:9073~9077;
    (1)Rodriguez B, Bruckmann A, Bolm C. A highly efficient asymmetric organocatalytic aldol reaction in a ball mill. Chem Eur J,2007,13:4710~4722;
    (m)Luo S, Li J, Xu H, et al. Chiral amine-polyoxometalate hybrids as highly efficient and recoverable asymmetric enamine catalysts. Org Lett,2007,9:3675~3678
    [17](a) Anastas P T, Williamson T C. Frontiers in green chemistry:in Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes PP1-26;
    (b)Anastas P T, Warner J C. Green chemistry:Theory and practice. New York:Oxford University press,1998;
    (c) Anastas P T, Williamson T C. Overview:in Green chemistry:designing chemistry for environment,Washington:American Chemical Society,1996,626
    [18](a) Shah J, Blumenthal H, Yacob Z, et al. Adv Synth Catal,2008,350:1267-1270; (b) M. Lombardo, S. Easwar, F. Pasi, C. Trombinia and D. D. Dhavale, Tetrahedron 2008,64, 9203-9207;
    (b)Guo H M, Cun L F, Gong L Z, et al. Chem Commun,2005,1450-1452;
    (c)Liu Y H, Zhang Y W, Ding Y P, et al. Chin J Chem,2005,23:634~636
    [19]Kotrusz P, Kmentova I, Gotov B, et al. Proline-catalyzed asymmetric Aldol reaction in the room temperature ionic liquid [bmim]PF6. Chem Commun,2002,21:2510-2511
    [20]Loh T P. L-proline in an ionic liquid as an efficient and reusable catalyst for direct asymmetric aldol reactions. Tetrahedron Lett,2002,43:8741-8743
    [21]Cordova A. Direct catalytic asymmetric cross-Aldol reactions in ionic liquid media. Tetrahedron Lett,2004,45:3949~3952
    [22]Gruttadauria M, Riela S, Meo P L, et al. Supportionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed Aldol reaction. Tetrahedron Lett,2004,45:6113~6116
    [23](a) Aprile C, Giacalone F, Gruttadauria M, et al. New ionic liquid-modified silica gels as recyclable materials for L-proline-or H-Pro-Pro-Asp-NH2-catalyzed aldol reaction. Green Chem.2007,9:1328~1334;
    (b)Luo S, Mi X, Zhang L, et al. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron,2007,63:1923~1930;
    (c) Gruttadauria M, Riela S, Aprile C, et al. Supported ionic liquids. New recyclable materials for the L-Proline-Catalyzed aldol reaction. Adv Synth Catal,2006,348:82~92.
    [24]Miao W S, Chan T H. Ionic-Liquid-Supported organocatalyst:efficient and recyclable Ionic-Liquid-Anchored proline for asymmetric aldol reaction. Adv Synth Catal,2006,348: 1711~1718
    [25]Lombardo M, Pasi F, Easwar S, et al. An improved protocol for the direct asymmetric aldol reaction in ionic liquids, catalysed by onium Ion-Tagged prolines. Adv Synth Catal, 2007,349:2061~2065
    [26]Zhou L,Wang L. Chiral ionic liquid containing L-Proline unit as a highly efficient and recyclable asymmetric organocatalyst for aldol reaction. Chem Lett,2007,36:628~629
    [27](a) Luo S Z, Mi X L, Zhang L, et al. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron,2007,63:1923~1930;
    (b)Zhang L, Luo S Z, Mi X L, et al. Combinatorial synthesis of functionalized chiral and doubly chiral ionic liquids and their applications as asymmetric covalent/non-covalent bifunctional organocatalysts. Org Biomol Chem,2008,6:567-576
    [28]Siyutkin D E, Kucherenko A S, Struchkova M I. A novel (S)-proline-modified task-specific chiral ionic liquid-an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett,2008,49:1212~1216
    [29](a) Siyutkin D E, Kucherenko A S, Zlotin S G. Hydroxy-a-amino acids modified by ionic liquid moieties:recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron,2009,65:1366~1372;
    (b)Siyutkin D E. Kucherenko A S, ZJotin S G. A new (S)-prolinamide modified by an ionic liquid moietyda high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron.2010,66:513~518
    [30]Lombardo M, Easwar S, Pasi F, et al. The ion tag strategy as a route to highly efficient organocatalysts for the direct asymmetric aldol reaction. Adv Synth Catal,2009,351: 276~282
    [31]Hu S Q, Jiang T, Zhang Z F, et al. Functional ionic liquid from biorenewable materials: synthesis and application as a catalyst in direct aldol reactions.Tetrahedron Lett,2007,48: 5613~5617

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700