神经轴突导向因子Slit2和受体Robo1、Robo4调控角膜血管新生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:角膜病是世界三大致盲眼病之一,中国公民因单眼和双眼角膜病致盲的盲人约四百万,占眼科致盲眼病的第2位。新生血管是角膜病致盲的主要原因,但其机制至今尚未完全清楚,目前亦无理想治疗方法,因此探索角膜新生血管形成机制及其防治措施具有重要的理论价值和实际意义。为了从全新的角度阐明角膜新生血管的分子机制,我们关注到与血管具有相似结构的系统——神经系统。在生物体内,神经和血管不但距离很近,而且彼此存在很多的关联,具有解剖的相似性和功能的平行性。鉴于神经和血管行为的相似性,两个系统可能共享相同的信号分子。目前已证实四个神经轴突导向因子家族同时调节血管发育,即Ephrins,Semaphorins, Netrins和Slits。我们将目标定位于神经系统中仅有单向调控作用的Slit及其受体Roundabout(Robo)家族。本研究将探讨神经轴突导向因子Slit2和Robo受体是否参与了角膜新生血管形成。方法:角膜囊袋法诱导大鼠角膜新生血管模型,实时荧光定量PCR测定Slit2和Robo 1-4在正常角膜与新生血管角膜的差异表达,免疫组化法和原位杂交法定位。体外培养原代的脐静脉内皮细胞,RT-PCR测定细胞Robo 1-4受体的表达。制备重组的人Slit2蛋白,测定其对血管内皮细胞迁移的影响。结果:大鼠新生血管角膜的Slit2表达量仅为正常角膜的55%,Robo1和Robo4受体表达量分别为正常角膜的2.7倍和1.77倍,差异呈显著性(P<0.05)。Slit2、Robo1和Robo4受体均表达于正常角膜上皮层的全层。随着新生血管区角膜基质中血管内皮细胞侵入的增加,上皮层表达Slit2. Robo1和Robo4减少,而基质层血管内皮细胞表达Robo1和Robo4增多。原代的脐静脉内皮细胞仅表达Robo1和Robo4受体,且重组的人Slit2能抑制脐静脉内皮细胞的移行(P<0.05)。结论:本研究首次探讨了神经轴突导向因子Slit2与角膜新生血管的关系。研究发现:Slit2通过Robo1、Robo4受体介导抑制角膜病理性新生血管过程,其可能成为角膜新生血管治疗的新靶点。
Background and Objective:Corneal diseases, which include infections, chemical and mechanical injuries, immunologic diseases and degenerations, are a major cause of blindness worldwide. Corneal neovascularization (NV) is involved in many corneal diseases as an important pathological process. Although a number of regulatory factors have been identified to play a role, the molecular mechanisms of corneal NV are still not fully understood and there is no ideal therapy for corneal NV currently as a result. Therefore, further investigation of pathological mechanisms that control corneal NV is needed to improve our understanding of this complex process. To elucidate the molecular mechanisms of corneal NV from a whole new angle, we focus our attention on the nervous system that possesses similar structure to the vascular system. Nerves and blood vessels are in close proximity and in connection with each other, sharing anatomical similarities and functional parallels. Given the behavioral similarities between nervous and vascular system, there may be molecular cross talk and common cues. Four families of classical neuronal guidance cues have so far been identified as regulators of vascular development:the Ephrins, Netrins, Semaphorins and Slits. We focus on the Slits family that regulates monodirectionally in nervous system. Our objective was to investigate whether neuronal guidance cue Slit2 and Roundabout (Robo) receptors are involved in corneal NV. Methods:Corneal NV model in rats was induced by implantation of agarose-coated gelfoam pellets containing basic fibroblast growth factor (bFGF) into corneal stroma. Differential expression of Slit2 and Robol-4 between normal and neovascularized cornea was detected by real-time RT-PCR and visualized by immunohistochemistry and in situ hybridization. Primary human umbilical vein endothelial cells (HUVECs) were harvested and their expression of Robol-4 was detected by RT-PCR. Recombinant human Slit2 protein was prepared and the effect of it on the migration of vascular endothelial cells was examined using cell migration assay. Results:Agarose-coated gelfoam pellets were able to induce well-localized and reproducible corneal NV model. A significant down-regulation of Slit2 and a strong up-regulation of Robol and Robo4 were seen in neovascularized cornea when compared with normal cornea (P<0.05). Slit2, Robol and Robo4 were throughout the epithelium in normal cornea and markedly weak or absent in epithelium in neovascularized cornea, with Robol and Robo4 being prominent in vascular endothelial cells invading the stroma. Primary HUVECs were confirmed to express both Robol and Robo4 receptors and their migration was inhibited by Slit2 (P<0.05). Conclusion:This is the first study to assess the association between Slit2 and corneal NV. Our findings suggest that the interaction of Slit2 with Robol and Robo4 receptors plays an essential role in inhibiting pathological neovascular processes of the cornea and may represent a new therapeutic target for corneal NV.
引文
1.刘祖国,张惠.重视我国角膜病的基础研究.中华眼科杂志,2006,42(8):673-675.
    2. Chang JH, Gabison EE, Kato T, Azar DT,2001. Corneal neovascularization. Curr Opin Ophthalmol.12(4),242-249.
    3. Urbich C, Dimmeler S,2004. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res.95(4),343-353.
    4. Patan S,2004. Vasculogenesis and angiogenesis. Cancer Treat Res.117,3-32.
    5. Felmeden DC, Blann AD, Lip GY,2003. Angiogenesis:basic pathophysiology and implications for disease. Eur Heart J.24(7),586-603.
    6. Rundhaug JE,2005. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 9(2),267-285.
    7. Ferrara N,2000. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res.55,15-35.
    8. Carmeliet P,2003. Blood vessels and nerves:common signals, pathways and diseases. Nat Rev Genet.4(9),710-720.
    9. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C,2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol.161(6), 1163-1177.
    10. Suchting S, Bicknell R, Eichmann A,2006. Neuronal clues to vascular guidance. Exp Cell Res.312(5),668-675.
    11. Yang Y, Zou L, Wang Y, Xu KS, Zhang JX, Zhang JH,2007. Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol Ther. 6(5),743-748.
    12.杨昀,邹丽,王勇,张进祥.轴突导向因子Netrin-1在血管生成中的调节作用.中华医学杂志,2007,87(7):475-478.
    13.杨艳,张明昌.小鼠角膜新生血管中ephrin-B2 mRNA的表达.中华眼科杂志,2007,43(8):899-900.
    14. Yuan K, Hong TM, Chen JJ, Tsai WH, Lin MT,2004. Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood.104(4), 1025-1033.
    15. Nguyen-Ba-Charvet KT, Chedotal A,2002. Role of Slit proteins in the vertebrate brain. JPhysiol Paris.96(1-2),91-98.
    16. Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M,2004. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron.42(2),213-223.
    17. Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Zh, Zhang Xc, Rao Y,2001. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature.410(6831),948-952.
    18. Kramer SG, Kidd T, Simpson JH, Goodman CS,2001. Switching repulsion to attraction:changing responses to slit during transition in mesoderm migration. Science.292(5517),737-740.
    19. Piper M, Georgas K, Yamada T, Little M,2000. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev.94(1-2),213-217.
    20. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY,2003. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol.261(1),251-267.
    21. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY,2008. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med.14(4),448-453.
    1. McCarty MF, Baker CH, Bucana CD, Fidler IJ,2002. Quantitative and qualitative in vivo angiogenesis assay. Int J Oncol.21(1),5-10.
    2. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D'Amato RJ,1996. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci.37(8), 1625-1632.
    3. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW,2000. Quantitative Reverse Transcription-Polymerase Chain Reaction to Study mRNA
    Decay:Comparison of Endpoint and Real-Time Methods. Anal Biochem.285(2), 194-204.
    4.刘祖国,张惠.重视我国角膜病的基础研究.中华眼科杂志,2006,42(8):673-675.
    5. Chang JH, Gabison EE, Kato T, Azar DT,2001. Corneal neovascularization. Curr Opin Ophthalmol.12(4),242-249.
    6. Schwartz S, George J, Ben-Shoshan J, Luboshits G, Avni I, Levkovitch-Verbin H, Ziv H, Rosner M, Barak A,2008. Drug modification of angiogenesis in a rat cornea model. Invest Ophthalmol Vis Sci.49(1),250-254.
    7. Tong S, Yuan F,2008. Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay:I. Experimental characterizations. Microvasc Res.75(1),10-15.
    8. Suchting S, Bicknell R, Eichmann A,2006. Neuronal clues to vascular guidance. Exp Cell Res.312(5),668-675.
    9. Yang Y, Zou L, Wang Y, Xu KS, Zhang JX, Zhang JH,2007. Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol Ther.6(5),743-748.
    10.杨昀,邹丽,王勇,张进祥.轴突导向因子Netrin-1在血管生成中的调节作用.中华医学杂志,2007,87(7):475-478.
    11.杨艳,张明昌.小鼠角膜新生血管中ephrin-B2 mRNA的表达.中华眼科杂志,2007,43(8):899-900.
    12. Yuan K, Hong TM, Chen JJ, Tsai WH, Lin MT,2004. Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood.104(4), 1025-1033.
    13. Pan X, Wang Y, Zhang M, Pan W, Qi ZT, Cao GW,2004. Effects of endostatin-vascular endothelial growth inhibitor chimeric recombinant adenoviruses on antiangiogenesis. World J Gastroenterol.10(10),1409-1414.
    14. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N,2003. Angiogenesis assays: a critical overview. Clin Chem.49(1),32-40.
    1. Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Zh, Zhang Xc, Rao Y,2001. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature.410(6831),948-952.
    2. Dickson BJ,2002. Molecular mechanisms of axon guidance. Science.298(5600), 1959-1964.
    3. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY,2003. Robo4 is a vascular-specific receptor that inhibits
    endothelial migration. Dev Biol.261(1),251-267.
    4. Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP,2005. Magic roundabout, a tumor endothelial marker:expression and signaling. Biochem Biophys Res Commun.332(2),533-541.
    5. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG,2003. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell.4(1), 19-29.
    6. Hivert B, Liu Z, Chuang CY, Doherty P, Sundaresan V,2002. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci. 21(4),534-545.
    7. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C,2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol.161(6), 1163-1177.
    8. Isogai S, Horiguchi M, Weinstein BM,2001. The vascular anatomy of the developing zebrafish:an atlas of embryonic and early larval development. Dev Biol.230(2),278-301.
    9. Weinstein BM,2002. Plumbing the mysteries of vascular development using the zebrafish. Semin Cell Dev Biol.13(6),515-522.
    10. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY,2008. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med.14(4),448-453.
    1. Conway EM, Collen D, Carmeliet P,2001. Molecular mechanisms of blood vessel growth. Cardiovasc Res.49(3),507-521.
    2. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC,1996. Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat. Circ Res.79(5),1015-1023.
    3. Ie Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A,2004. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development.131(2),361-375.
    4. Carmeliet P,2003. Blood vessels and nerves:common signals, pathways and diseases. Nat Rev Genet.4(9),710-720.
    5. Martin P, Lewis J,1989. Origins of the neurovascular bundle:interactions between developing nerves and blood vessels in embryonic chick skin. Int J Dev Biol.33(3),379-387.
    6. Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J, 2002. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron.35(2),267-282.
    7. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD, 2004. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell.118(2),243-255.
    8. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ,2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell.109(6),693-705.
    9. Dickson BJ,2002. Molecular mechanisms of axon guidance. Science.298(5600), 1959-1964.
    10. Isogai S, Horiguchi M, Weinstein BM,2001. The vascular anatomy of the developing zebrafish:an atlas of embryonic and early larval development. Dev Biol.230(2),278-301.
    11. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C,2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol.161(6), 1163-1177.
    12. Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K,2003. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature.423(6943), 990-995.
    13. Klein R,2004. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol.16(5),580-589.
    14. Poliakov A, Cotrina M, Wilkinson DG,2004. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell.7(4), 465-480.
    15. Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R,2002. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell.9(4),725-737.
    16. Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL, Daniel TO,1998. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev.12(5),667-678.
    17. Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW, Yancopoulos GD,1998. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron.21(6),1453-1463.
    18. Bruckner K, Pablo Labrador J, Scheiffele P, Herb A, Seeburg PH, Klein R,1999. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron.22(3),511-524.
    19. Wilkinson DG,2000. Eph receptors and ephrins:regulators of guidance and assembly. Int Rev Cytol.196,177-244.
    20. Gerety SS, Wang HU, Chen ZF, Anderson DJ,1999. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell.4(3),403-414.
    21. Wang HU, Chen ZF, Anderson DJ,1998. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell.93(5),741-753.
    22. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R,1999. Roles of ephrinB ligands and EphB receptors in cardiovascular development:demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev.13(3),295-306.
    23. Adams RH, Diella F, Hennig S, Helmbacher F, Deutsch U, Klein R,2001. The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell.104(1),57-69.
    24. Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG,2003. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci.116(Pt 12),2461-2470.
    25. Helbling PM, Saulnier DM, Brandli AW,2000. The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development.127(2),269-278.
    26. Oike Y, Ito Y, Hamada K, Zhang XQ, Miyata K, Arai F, Inada T, Araki K, Nakagata N, Takeya M, Kisanuki YY, Yanagisawa M, Gale NW, Suda T,2002. Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood.100(4), 1326-1333.
    27. Zhang XQ, Takakura N, Oike Y, Inada T, Gale NW, Yancopoulos GD, Suda T, 2001. Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood.98(4),1028-1037.
    28. Maekawa H, Oike Y, Kanda S, Ito Y, Yamada Y, Kurihara H, Nagai R, Suda T, 2003. Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb Vasc Biol.23(11),2008-2014.
    29. Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB,2004. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA.101(15),5583-5588.
    30. Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG,1996. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol.179(2),382-401.
    31. McBride JL, Ruiz JC,1998. Ephrin-A1 is expressed at sites of vascular development in the mouse. Mech Dev.77(2),201-204.
    32. Daniel TO, Stein E, Cerretti DP, St John PL, Robert B, Abrahamson DR,1996. ELK and LERK-2 in developing kidney and microvascular endothelial assembly.
    Kidney Int Suppl.57, S73-S81.
    33. Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM,1995. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science.268(5210),567-569.
    34. Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC, Chen J,2004. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Racl GTPase activation. J Cell Sci.117(Pt 10),2037-2049.
    35. Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, Yancopoulos G, Cerretti DP, Daniel TO, Chen J,2002. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res.1(1),2-11.
    36. Bagri A, Tessier-Lavigne M,2002. Neuropilins as Semaphorin receptors:in vivo functions in neuronal cell migration and axon guidance. Adv Exp Med Biol.515, 13-31.
    37. Takagi S, Hirata T, Agata K, Mochii M, Eguchi G, Fujisawa H,1991. The A5 antigen, a candidate for the neuronal recognition molecule, has homologies to complement components and coagulation factors. Neuron.7(2),295-307.
    38. Fujisawa H,2004. Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. JNeurobiol.59(1),24-33.
    39. Klagsbrun M, Takashima S, Mamluk R,2002. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol.515,33-48.
    40. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y,2002. The neuropilins:multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med.12(1),13-19.
    41. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD,1997. Neuropilin is a semaphorin III receptor. Cell.90(4),753-762.
    42. He Z, Tessier-Lavigne M,1997. Neuropilin is a receptor for the axonal
    chemorepellent Semaphorin Ⅲ. Cell.90(4),739-751.
    43. Luo Y, Raible D, Raper JA,1993. Collapsin:a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell.75(2),217-227.
    44. Raper JA,2000. Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol.10(1),88-94.
    45. Neufeld G, Shraga-Heled N, Lange T, Guttmann-Raviv N, Herzog Y, Kessler O, 2005. Semaphorins in cancer. Front Biosci.10,751-760.
    46. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M,1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell.92(6),735-745.
    47. Klagsbrun M, Soker S,1993. VEGF/VPF:the angiogenesis factor found? Curr Biol.3(10),699-702.
    48. Gagnon ML, Bielenberg DR, Gechtman Z, Miao HQ, Takashima S, Soker S, Klagsbrun M,2000. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor:In vivo expression and antitumor activity. Proc Natl Acad Sci USA.97(6),2573-2578.
    49. Kawakami A, Kitsukawa T, Takagi S, Fujisawa H,1996. Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. JNeurobiol.29(1),1-17.
    50. Nakamura F, Goshima Y,2002. Structural and functional relation of neuropilins. Adv Exp Med Biol.515,55-69.
    51. Mamluk R, Gechtman Z, Kutcher ME, Gasiunas N, Gallagher J, Klagsbrun M, 2002. Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its blb2 domain. JBiol Chem.277(27),24818-24825.
    52. Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, Ginty DD, Kolodkin AL,2002. Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem.277(20),18069-18076.
    53. Chen H, He Z, Bagri A, Tessier-Lavigne M,1998. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class Ⅲ semaphorins. Neuron.21(6),1283-1290.
    54. Giger RJ, Urquhart ER, Gillespie SK, Levengood DV, Ginty DD, Kolodkin AL, 1998. Neuropilin-2 is a receptor for semaphorin IV:insight into the structural basis of receptor function and specificity. Neuron.21(5),1079-1092.
    55. Renzi MJ, Feiner L, Koppel AM, Raper JA,1999. A dominant negative receptor for specific secreted semaphorins is generated by deleting an extracellular domain from neuropilin-1. J Neurosci.19(18),7870-7880.
    56. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM,1999. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell.99(1),71-80.
    57. Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M,2001. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron.32(2),249-263.
    58. Winberg ML, Tamagnone L, Bai J, Comoglio PM, Montell D, Goodman CS, 2001. The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance. Neuron.32(1), 53-62.
    59. Puschel AW,2002. The function of neuropilin/plexin complexes. Adv Exp Med Biol.515:71-80.
    60. Tamagnone L, Comoglio PM,2004. To move or not to move? Semaphorin signalling in cell migration. EMBO Rep.5(4),356-361.
    61. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M,2002. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem.85(2),357-368.
    62. Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, Poo M,
    1998. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science.281(5382),1515-1518.
    63. de Castro F, Hu L, Drabkin H, Sotelo C, Chedotal A,1999. Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J Neurosci.19(11),4428-4436.
    64. Wong JT, Wong ST, O'Connor TP,1999. Ectopic semaphorin-la functions as an attractive guidance cue for developing peripheral neurons. Nat Neurosci.2(9), 798-803.
    65. Bagnard D, Lohrum M, Uziel D, Puschel AW, Bolz J,1998. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development.125(24),5043-5053.
    66. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H, 1999. A requirement for neuropilin-1 in embryonic vessel formation. Development.126(21),4895-4902.
    67. Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD,2003. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell.5(1),45-57.
    68. Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M,1999. Neuropilin-1 mediates collapsin-1/semaphorin Ⅲ inhibition of endothelial cell motility:functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol.146(1),233-242.
    69. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Puschel AW, Bussolino F,2003. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature.424(6947),391-397.
    70. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC, Klagsbrun M,2004. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest.114(9),
    1260-1271.
    71. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G,2004. Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res.64(3),1008-1015.
    72. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A,2002. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development.129(20),4797-4806.
    73. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki Ji J, Hirota S, Kitamura Y, Kitsukawa T, Fujisawa H, Klagsbrun M, Hori M,2002. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA.99(6),3657-3662.
    74. Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van N Pham, Fishman MC, Childs S, Epstein JA, Weinstein BM,2004. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell.7(1),117-123.
    75. Childs S, Chen JN, Garrity DM, Fishman MC,2002. Patterning of angiogenesis in the zebrafish embryo. Development.129(4),973-982.
    76. Gitler AD, Lu MM, Epstein JA,2004. PlexinDl and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell.7(1), 107-116.
    77. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL, Ginty DD,2005. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science.307(5707),265-268.
    78. Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM, Bussolino F, Giordano S,2005. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood.105(11),4321-4329.
    79. Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS,2004. Class Ⅳ semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res.64(15),5212-5224.
    80. Hedgecock EM, Culotti JG, Hall DH,1990. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron.4(1),61-85.
    81. Ishii N, Wadsworth WG, Stern BD, Culotti JQ Hedgecock EM,1992. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron.9(5),873-881.
    82. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M, 1994. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell.78(3),409-424.
    83. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M,1996. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell.87(6),1001-1014.
    84. Van Raay TJ, Foskett SM, Connors TD, Klinger KW, Landes GM, Burn TC,1997. The NTN2L gene encoding a novel human netrin maps to the autosomal dominant polycystic kidney disease region on chromosome 16p13.3. Genomics. 41(2),279-282.
    85. Wang H, Copeland NG, Gilbert DJ, Jenkins NA, Tessier-Lavigne M,1999. Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J Neurosci.19(12), 4938-4947.
    86. Koch M, Murrell JR, Hunter DD, Olson PF, Jin W, Keene DR, Brunken WJ, Burgeson RE,2000. A novel member of the netrin family, beta-netrin, shares homology with the beta chain of laminin:identification, expression, and functional characterization. J Cell Biol.151(2),221-234.
    87. Yin Y, Sanes JR, Miner JH,2000. Identification and expression of mouse netrin-4. Mech Dev.96(1),115-119.
    88. Dickson BJ,2002. Molecular mechanisms of axon guidance. Science.298(5600),
    1959-1964.
    89. Dickson BJ, Keleman K,2002. Netrins. Curr Biol.12(5), R154-R155.
    90. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RQ Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA,1997. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature.386(6627),796-804.
    91. Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG, 1996. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell.87(2),187-195.
    92. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M,1996. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell.87(2),175-185.
    93. Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, Culotti JG,1992. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell.71(2),289-299.
    94. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB, 1997. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature.386(6627),838-842.
    95. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M,1997. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature.386(6627),833-838.
    96. Engelkamp D,2002. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech Dev.118(1-2),191-197.
    97. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E,1999. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell.97(7), 927-941.
    98. Keleman K, Dickson BJ,2001. Short-and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron.32(4),605-617.
    99. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A,2004. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature.432(7014),179-186.
    100.Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, Kuo CJ, Li DY,2004. The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A.101(46),16210-16215.
    101.Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S,1990. Slit:an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev.4(12A), 2169-2187.
    102.Holmes GP, Negus K, Burridge L, Raman S, Algar E, Yamada T, Little MH,1998. Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev. 79(1-2),57-72.
    103.1toh A, Miyabayashi T, Ohno M, Sakano S,1998. Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res Mol Brain Res. 62(2),175-186.
    104.Piper M, Georgas K, Yamada T, Little M,2000. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev.94(1-2),213-217.
    105.Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A,2002. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol.442(2),130-155.
    106.Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Zh,
    Zhang Xc, Rao Y,2001. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature.410(6831),948-952.
    107.Kidd T, Bland KS, Goodman CS,1999. Slit is the midline repellent for the robo receptor in Drosophila. Cell.96(6),785-794.
    108.Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M,2004. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron.42(2),213-223.
    109.Kidd T, Russell C, Goodman CS, Tear G,1998. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron.20(1),25-33.
    110.Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G,1998. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell.92(2), 205-215.
    111.Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R,2002. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics.79(4),547-552.
    112.Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V,2004. Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci.26(2),232-240.
    113.Howitt JA, Clout NJ, Hohenester E,2004. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBOJ.223(22), 4406-4412.
    114.Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY,2003. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol.261(1),251-267.
    115.Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R,2005. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J.
    19(1),121-123.
    116.Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS,2000. Repulsive axon guidance:Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell.101(7),703-715.
    117.Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y,2001. Signal transduction in neuronal migration:roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell.107(2),209-221.
    118.Kramer SG, Kidd T, Simpson JH, Goodman CS,2001. Switching repulsion to attraction:changing responses to slit during transition in mesoderm migration. Science.292(5517),737-740.
    119.Grieshammer U, Le Ma, Plump AS, Wang F, Tessier-Lavigne M, Martin GR, 2004. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell.6(5),709-717.
    120.Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JQ 2003. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell.4(1), 19-29.
    121.Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA, Li DY, Ramchandran R,2005. roundabout4 is essential for angiogenesis in vivo. ProcNatl Acad Sci USA.102(18),6373-6378.
    122.Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY,2008. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med.14(4),448-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700