西藏隆子县滑坡灾害形成机理及非线性预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡作为一种全球性突发地质灾害,影响和危害程度重大,常造成人民生命财产严重损失、严重破坏人类赖以生存的生态地质环境和阻碍区域经济社会的可持续发展,如瓦伊昂滑坡导致数千人死亡和水库失效、新滩滑坡致使长江断流数日、“5·12”汶川地震诱发大量滑坡次生灾害。因此,认清滑坡形成机理和科学有效地评价与预测滑坡灾害具有极大的社会意义、经济价值,是防灾、减灾决策的重要理论基础。
     论文遵循“地质过程机制分析”和“量化评价”的学术思想,以西藏隆子县列麦乡-加玉乡研究区段内的滑坡灾害为研究对象,以遥感影像和地理信息系统空间分析为信息技术源、以三维电子沙盘可视滑坡场景为辅、野外现场调查与核实为主的综合集成研究途径,对滑坡典型地质特征、发育特征、空间分布特征、形成条件及影响因素进行了相关分析,宏观探讨了滑坡灾害形成的共有规律性和研究区滑坡灾害特有的形成机理,基于模糊物元理论、突变理论分别建立起滑坡危险性评价计算模型,实现了滑坡危险程度的预测和可靠性对比验证,基于经验模型进行滑坡水平最大滑移距离预测,采用BP神经网络模型进行了滑坡特征参数与滑坡水平最大滑移距离的非线性映射与预测,取得以下主要研究结论:
     (1)借助遥感影像和GIS空间分析,以研究区遥感影像为地表纹理贴面与相应地数字高程模型镶嵌融合,制作出三维电子沙盘纹理地形,形象地展示出滑坡灾害体的空间分布,提高了灾害特征识别的时效性,是行之有效的分析方法。
     (2)现场调查得知,隆子县列麦乡-加玉乡段内滑坡灾害主要分布在隆子雄曲、觉拉雄曲、伦巴支沟河谷两岸、重要交通干线和人口居住密集区,具有不同程度的潜在危险性,给当地居民生命财产安全带来的威胁不容忽视。
     (3)研究区滑坡发育特征、空间分布特征表现为:滑坡物质以土质滑坡为主,规模以大型滑坡为主,易滑地层以侏罗系日当组为主,滑坡为老滑坡,运动形式属牵引式,滑坡空间分布主要在3500~4300m高山区,阳坡比阴坡利于滑坡分布,侏罗系日当组、维美组、遮拉组、陆热组为主要分布地层,滑坡分布面积随断层影响距、道路影响距、河流影响距的增加呈减少态势。
     (4)区域性滑坡灾害形成机理的宏观共有规律性表明:基本因素(地形地貌、地质构造、地层岩性等)是滑坡灾害产生及发展演化的内在因素,诱发因素(降雨强度、河流冲刷、人类工程活动等)是促进滑坡灾害发生的外在原因,滑坡形成是基本因素和诱发因素共同耦合作用的结果,是个复杂的非线性动态系统。
     (5)研究区滑坡灾害特有的形成机理表现为:区内滑坡为堆积土滑坡,堆积体表层物质经多次改造滑坡堆积而成,灾害形成经历滑坡体堆积阶段→变形扩展阶段→滑动破坏阶段的演化过程,未来变形破坏模式为滑塌-拉裂式和蠕滑-拉裂式,最终导致滑坡灾害形成。
     (6)以喜马拉雅山地区隆子县列麦乡-加玉乡段内的地质环境条件和滑坡工程地质特征为研究基础,建立起“滑坡形成机理分析→主要评价指标选取→评价指标量化→数学模型构建→模型计算分析评价”的基本评价思路,可为研究区滑坡危险性评价服务。
     (7)以基本因素、滑坡体特征、诱发因素为出发点,选取高程、坡向、断层影响距、滑体平均坡度、河流影响距、土地利用等13项评价指标,基于偏好系数法组合赋权的模糊物元理论、突变理论分别建立起滑坡危险性评价模型,判定滑坡危险性分为高度危险、中度危险、低度危险,并与现场调查结果对比验证,滑坡潜在危险以中度危险性最为发育,提出采用突变级数判别滑坡危险性的新依据。
     (8)以典型滑坡滑移距离进行经验模型预测的适用性检验,采用适宜经验模型予以研究区滑坡滑距预测,基于BP神经网络基本理论,以滑体高度、滑坡体积、滑体平均厚度、滑坡平均坡度作为输入量,以滑坡水平最大滑动距离为输出量,建立起4-9-1三层BP人工神经网络模型,实现滑坡特征参数与滑坡水平最大滑移距离的非线性映射与预测,综合确定出研究区滑坡危害范围并进行潜在危害程度评估,滑坡潜在危害程度有特重级、重级、中级、轻级。
The influence and damage of landslide taken as a global and sudden geological disaster is significant, which often causes the great loss of life and property, seriously destroys the geological ecology environment of human livelihood and hinders the sustainable development of regional economies society. Taking an example, Vajont landslide led to thousands of persons's death and reservoir expired, the new beach landslide raised the Yangtze River to be blocked and unflowed by several days, and 5.12-Wenchuan earthquake induced massive landslides which is the secondary disasters of the earthquake. Therefore, recognizing formation mechanism clearly and appraising of landslide disaster sciencely and effectively have enormous social significance, economic value, which is also an important theoretical basis for the decision-making of prevention and mitigation of disaster.
     Following academic thought of "mechanism analysis of the geological process" and "the quantitative appraisal", the landslides within the zone of Liemai-Jiayu town, Longzi county in Tibet is taken as the research object, remote sensing and geographic information system spatial analysis can be taken as information technology sources supplemented by three-dimensional electronic sandbox of landslide visualization scenarios, spot investigation and checking primarily as metasynthesis research way. Typical geological feature, growth characteristics, spatial distribution characteristics, formation conditions and influencing factors are analyzed correspondingly. The common law and specific formation mechanism of landslide in the study area is macroscopically discussed. Based on fuzzy matter-element theory and catastrophe theory, the appraisal computation models of landslide risk are suggested separately, and the reliability of landslide hazard prediction are contrastly checked. The maximum sliding distance of the landslide is predicted based on empirical model. The nonlinear mapping and prediction of landslide parameters and maximum sliding distance is completed by BP neural network. The main research conclusions are as follows:
     (1) The terrain texture of remote sensing image and the digital elevation model are correspondingly mosaic fusion by GIS spatial analysis. The three-dimensional electronic sandbox of terrain texture is made, which demonstrate the landslide disaster body's spatial distribution vividly and improve the timeliness of disaster feature's recognition. It is an effective method of analysis.
     (2) Spot investigation shows that landslide disasters within the zone of Liemai-Jiayu town, Longzi county in Tibet are mainly distributed at both banks of Longzi river, Juela river and Lunba tributary valley, important transportation route areas and densely populated areas. Landslides in study area have different degrees of potential danger, which bring the threat to the local resident personal safety and property which can not be ignored.
     (3) Landslide development, spatial distribution, characteristics of the formation conditions and factors:The developmental scale of the landslides is large and the soil landslides in study area are formed by general materials. Generally speaking, the Jurassic layer is the slippery layer. The landslides here are mainly old and traction slope. They are mainly developed in the elevation range of 3500~4000m. The sunny slopes are more fitable to the distribution of landslides. The main layer is Ridang group of Jurassic layer, Weimei group, Zhela group, Lure group. The number of landslides decreases as the influence distances of faults, rivers, roads increase.
     (4) The Regional regularity of Landslide formation mechanism indicates that based factors (topography, geological structure, lithology, etc.) are intrinsic factors of landslide generation, development and evolution. Induced factors (rainfall intensity, river erosion, human engineering activities, etc.) are external factors of landslide promotion and occurrence. The formation mechanism of landslide is the based and induced factors coupled together, which forms a complex non-linear dynamic system.
     (5) The formation mechanism of landslides in study area:the landslides in study area are formed by accumulating soil that is made up by many times landslide accumulations. The formation can be concluded as stage of landslide accumulation→stage of deformation developing→stage of sliding. The future deformation styles are mainly slump-crack-type and creep-crack-type which finally lead to the formation of landslide.
     (6) Based on unique geological environment condition and landslide geological characteristic of Liemai-Jiayu town, Longzi county in Himalayan area, landslide risk assessment system of "analysis of landslide formation mechanism→selection of main evaluating indexes→quantification of evaluating indexes-establishment of mathematical model→calculation and evaluation of model" are established. This system can be used for the analysis of landslide risk in study area.
     (7) Starting from geological factors, landslide characteristics, environmental factors, altitude, aspect, fault affecting distance, landslide average slope, river affecting distance, land utilization and so on 13 indexes are selected. Based on fuzzy element theory and catastrophe theory, the landslide risk models are separately suggested and the results are verified and compared with field survey results. Landslide risks are divided into high risk, moderate risk, low risk, and the potential risk level of landslides is mainly middle. A new judgment of landslide risk is proposed by catastrophe progression method.
     (8) The applicability of empirical model was verrified by classical sliding distance of landslide which can choose a proper empirical model to predict the sliding distance in the study area. Based on theory of BP neural network, taking landslide height, landslide volume, landslide average thickness, landslide average slope as the input and landslide maximum sliding distance as output, the author establishs a three-layer BP artificial neural network of 4-9-1 type which builds a relationship between landslide parameters and maximum sliding distance very well. The range of landslide hazards in study area was confirmed and the landslide potential hazard was estimated. The potential hazard of landslides is mainly classified as level of very heavy, heavy, media and light in this study.
引文
[1]国土资源部地质环境司,国土资源部宣传教育中心编.中国地质灾害与防治[M].北京:地质出版社.2003.
    [2]钱新.各国滑坡灾害减灾做法[J].现代职业安全,2010,(9):82-85.
    [3]中国统计局编.中国统计年鉴-2008[J].出版社:中国统计出版社,2008.
    [4]殷跃平.西藏波密易贡高速巨型滑坡特征及减灾研究[J].水文地质工程地质,2000,27(4):8-11.
    [5]黄润秋,李为乐.“5·12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [6]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009,28(6):1239-1249.
    [7]胡广韬,张珂,毛延龙,等著.滑坡动力学[J].北京:地质出版社,1995.
    [8]Piyoosh Rautelal,Ramesh Chandra Lakhera. Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya(India)[J]. The International Institute for Aerial Survey and Earth Sciences,2000,2(3-4):153-160.
    [9]Mark R, Ellen K. Statistical and simulation models for mapping debris flow hazard[C]//Carrara A.and Guzzetti F. Geographical Information System in Assessing Natural Hazards. Dordrecht, The Netherlands:Kluwe ademic Publishers,1995,93-106.
    [10]Larsen M C, Torres-Sanchez A J. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico [J].Geomorphology,1998,24:309-331.
    [11]A.Uormeihy, M R Mahdavifar. Landslide hazard zonation of the Khorshrostam area, Iran [J]. Bull Eng Geol Environ,2000,58:207-213.
    [12]Dai F C, Lee C F, Li J, et al. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong[J]. Environmental Geology,2001,40(3):381-391.
    [13]Lee S, Chw ae U, Min K D. Landslide susceptibility mapping by correlation between topography and geological structure the Janghung area, Korea[J]. Geomorphology,2002, 46(3-4):149-162.
    [14]Soldati M, Corsini A, Pasuto A. Landslides and climate change in the Italian Dolomites since the late glacial[J]. Geomorphic Impacts of Rapid Environmental Change,2004,55(2):141-161.
    [15]乔建平,吴彩燕,田宏岭.三峡库区云阳-巫山段地层因素对滑坡发育的贡献率研究[J].岩石力学与工程学报,2004,23(17):2920-2924.
    [16]吴彩燕,乔建平.三峡库区云阳-巫山段坡向因素对滑坡发育的贡献率研究[J].四川大学学报(工程科学版),2005,37(4):25-29.
    [17]乔建平,吴彩燕.三峡库区云阳-巫山段斜坡高差因素对滑坡发育的贡献率研究[J].中国地质灾害与防治学报,2005,16(4):16-19.
    [18]乔建平,吴彩燕,田宏岭.三峡库区云阳-巫山段坡形因素对滑坡发育的贡献率研究[J].工程地质学报,2006,14(1):19-22.
    [19]乔建平,吴彩燕,田宏岭.长江三峡库区云阳-巫山段斜坡坡度对滑坡的贡献率[J].山地学报.2007,25(2):207-211.
    [20]樊晓一,乔建平,陈永波.西藏妥昌公路K351滑坡形成机制及危险性评价[J].水土保持研究.2004,11(1):152-155.
    [21]童立强,祁生文,刘春玲.喜马拉雅山东南地区地质灾害发育规律初步研究[J].工程地质学报,2007,15(6):721-729.
    [22]刘春玲,祁生文,童立强,等.喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究[J].工程地质学报,2010,18(5):669-676.
    [23]李军霞,王常明,王钢城,等.基于数量化理论Ⅲ的滑坡发育影响因素及耦合作用强度分析[J].岩石力学与工程学报,2010,29(6):1206-1213.
    [24]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J],岩石力学与工程学报,2007,26(3):433-454.
    [25]Terzaghi K. Mechanism of landslide[J]. In S. Paige(ed) Application of Geology to Engineering Practice, Geological Society of America, Berkey,1950:83-123.
    [26]Za'ruba. Q, Mencl. V. Landslides and their control[M]. Publishing House of the Czechoslovak Academy of Sciences,1969.
    [27]Skempton, A. W. Some observations on tectonic shear zones[J]. Proc. 1st.lnt. Cong. Soc. Rock Mech, Libson,1966,1:329-335.
    [28]E·Ⅱ·叶米里扬诺娃.滑坡作用的基本规律[M].铁道部科学研究院西北所译.重庆:重庆出版社.1986.
    [29]G. Furuya, K. Sassa, H. Hiuta, et al. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan[J]. Engineering Geology,1999,53:311-325.
    [30]Y. Sasaki, A. Fujii, K. Asai. Soil creep process and its role in debris slide generation—field measurements on the north side of Tsukuba Mountain in Japan[J]. Developments in Geotechnical Engineering,2000,84:199-219.
    [31]陈守义.试论土的应力应变模式与滑坡发育过程的关系[J]岩土力学,1996,17(3):21-26.
    [32]戴福初.李焯芬,王思敬.松散击实火山岩坡残积土的应力应变特性及其对滑坡的意义[J].岩土工程学报,1999,21(3):257-262.
    [33]Premchitt. J, Brand E W, Chen P Y M-Rain-induced landslides in Hong Kong,1972-1992[J]. Asia Engineer,1994 (June):43-51.
    [34]戴福初.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(1):127-130.
    [35]胡明鉴,汪发武,程谦恭.基于高速环剪试验易贡巨型滑坡形成原因试验探索[J].岩土工程学报,2009,31(10):1602-1606.
    [36]Varnes, D J. Slope movement types and processes, Special Report-Transportation Research. BoardNational Research Council,1978, (176):11-33.
    [37]E.Hoek, J.Bray. Rock Slope Engineering[M].1983.
    [38]Erisman, T.H, Abele. G. Dynamics of rockslides and rockfalls. Berlin:Springer-Verlag,2001.
    [39]Sassa, K. Geotechnical model for the motion of landslides, Special Lecture of the 5th International Symposium on Landslides. Rotterdam:Balkema, "Landslides",1988,1:37-55.
    [40]Sassa,K. Mechanism of flows in granular soils.In:GeoEng2000-An International Conference on Geotechnical and Geological Engineering, (1):Invited Papers. Lancaster, Pennsylvania: Technomic Publishing Co.Inc,2000.
    [41]E.Bromhead. Landslides in Research, Theory and Practice[A]. Proceedings of 8thInternational Symposium on Landslides[C].2000:1-3.
    [42]Douglas Stead, Erik Eberhardt. Development in the analysis of footwall slopes in surface coal mining[J]. Engineering Geology,1997,146(1):41-70.
    [43]殷坤龙,韩再生,李志忠.国际滑坡研究新进展[J].水文地质工程地质,2000,27(5):1-3.
    [44]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [45]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730-741.
    [46]黄润秋,裴向军,张伟锋,等.再论大光包滑坡特征与形成机制[J].工程地质学报,2009,17(6):725-736.
    [47]黄润秋,赵松江,宋肖冰,等.四川省宣汉县天台乡滑坡形成过程和机理分析[J].水文地质工程地质,2005,32(1):13-15.
    [48]范宣梅,许强,张倬元,等.平推式滑坡成因机制研究[J].岩石力学与工程学报,2008,27(Supp2):3753-3759.
    [49]黄润秋,许强.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [50]胡卸文,黄润秋,施裕兵,等.唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J].岩石力学与工程学报,2009,28(1):181-189.
    [51]杨铁.唐家山高速滑坡滑动及堵江机制研究[D].西南交通大学硕士学位论文,2010.
    [52]李会中,王团乐.孙立华,等.三峡库区千将坪滑坡地质特征与成因机制分析[J].岩土力学,2006,27(Supp2):1239-1244.
    [53]李守定,李晓,刘艳辉,等.千将坪滑坡滑带地质演化过程研究[J].水文地质工程地质,2008,35(2):18-23.
    [541殷跃平,李廷强,唐军.四川省丹巴县城滑坡失稳及应急加固研究[J].岩石力学与工程学报,2008,27(5):971-977.
    [55]祝建,雷英,赵杰.西藏樟木口岸特大型古滑坡形成机理分析[J].水文地质工程地质,2008, 35(1):49-52.
    [56]殷跃平.西藏波密易贡高速巨型滑坡特征及减灾研究[J].水文地质工程地质,2000,27(4):8-11.
    [57]Fellenius W. Earth static calculations with fiction and cohesion and use of circular sliding surfaces[M]. Berlin:Emst,1927.
    [58]Bishop A W. The use of the slip circle in the stability analysis of earth slopes[J]. Geotechnique, 1955,5(1):7-17.
    [59]Janbu N. Earth pressure and bearing capacity calculations by generalized procedure of slices[J]. Proceedings of the fourth international conference on soil mechanics and foundation engineering, Vol.2,1957.
    [60]Morgenstern N R, Prince V E. The analysis of the stability of general slip surfaces[J]. Geotechnique,1965,15(1):79-93.
    [61]Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Geotechnique,1967,17(1):11-26.
    [62]Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23(3): 423-433.
    [63]Sarma S K. Stability analysis of embankments and slopes[J]. J Geotech Engng Div, ASCE,1979, 105(12):1151-1524.
    [64]Jaeger C. The Malpasset report[J]. Water Power,1965.15(2):55-61.
    [65]Bellier J, Londe P. The Malpasset Dam[J].Evaluation of Dam safety, Engineering Foundation Conference Proceedings,1976,76-136.
    [66]Muller L. New Consideration on Vajont slide[J]. Rock Mech. Eng. Geol,1964,6:1-19.
    [67]Muller Salzburg L. The Vajont catastrophe-a personal review[J]. Engineering Geology,1987,24: 423-444.
    [68]Seed H B. Duncan J M. The failure of Teton dam[J]. Engineering Geology,1987.24:173-205.
    [69]Leps T M. Failure of Teton dam,1976-invited discusser's responses to prepared questions[J]. Engineering Geology,1987,24:217-220.
    [70]Wittke W. Leonhards G A. Modified hypothesis for failure of Malpasset Dam[J]. Engineering Geology,1987,24:367-394.
    [71]Habib P. The Malpasset dam failure[J]. Engineering Geology,1987,24:331-338.
    [72]Post G, Bonazzi D. Latest thinking on the Malpasset accident[J]. Engineering Geology,1987,24: 339-353.
    [73]Huang C C,Tsai C C.Chen Y H. Generalized method for three-dimensional slope stability analysis[J]. Journal of Geotechnical and Geo-environmental Engineering, ASCE,2002,128(10): 836-848.
    [74]胡兴娥,李明超,徐长义.库区滑坡稳定性二维、三维分析与应用[J].岩土工程学报,2007,29(11):1642-1646.
    [75]Manzari M T, Nour M A. Significance of soil dilatancy in slope stability analysis[J]. Geotech Geoenviron Engng,ASCE,2000,126(1):75-80.
    [76]邓华锋,李建林,王乐华,等.基于强度折减法的库岸滑坡三维有限元分析[J].岩土力学,2010,31(5):1604-1608.
    [77]张晨,陈剑平,肖云华.基于神经网络对有限元强度折减法分析[J].吉林大学学报(地球科学版),2009,39(1):114-118.
    [78]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,21(3):1-6.
    [79]谢谟文,蔡美峰,江崎哲郎.基于GIS边坡稳定三维极限平衡方法的开发及应用[J].2006,27(1):117-122.
    [80]柴贺军.王士天,许强,等.西藏易贡滑坡物质运动全过程数值模拟研究[J].地质灾害与环境保护,2001,12(2):1-3+82.
    [81]程康,何君莲,张魏,等.西藏山南地区泽曲公路罗木得滑坡稳定性分析[J].武汉理工大学学报.2004,26(12):69-71+75..
    [82]黄润秋.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [83]汪斌,唐辉明,朱杰兵,等.考虑流固耦合作用的库岸滑坡变形失稳机制[J].岩石力学与工程学报,2007,26(Supp2):4484-4489.
    [84]徐文杰,陈祖煜,何秉顺,等.肖家桥滑坡堵江机制及灾害链效应研究[J].岩石力学与工程学 报,2010.29(5):933-942.
    [85]许建聪,尚岳全.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学,2008,26(1):106-112+118.
    [86]任伟中,白世伟,唐新建,等.双层反翘型滑坡成灾机制研究[J].岩石力学与工程学报,2009.28(3):552-559.
    [87]冯文凯.何川,石豫川,等.复杂巨型滑坡形成机制三维离散元模拟分析[J].岩土力学,2009,30(4):1122-1126.
    [88]殷跃平.斜倾厚层山体滑坡视向滑动机制研究-以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226.
    [89]尚文涛.基于监测数据的滑坡预测与数值模拟研究[D].重庆交通大学硕士论文,2009.
    [90]XIE M, ESAKI T, ZHOU G Y, et al. Geographic Information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment[J].Journal of Geotechnical and Geo-environmental Engineering,2003,129(12):1109-1118.
    [91]钟登华,安娜.李明超.库岸滑坡体失稳三维动态模拟与分析研究[J].岩石力学与工程学报,2007,26(2):360-367.
    [92]张敬一,倪卫达,史吏.浅谈滑坡危害及相应的空间预测理论[J].科技信息(科学教研),2008,(23):100.
    [93]吴益平,殷坤龙,陈丽霞.滑坡空间预测数学模型的对比及其应用[J].地质科技情报,2007,26(6):95-100.
    [94]#12
    [95]#12
    [96]Van Dijke J J. Van Westen C J. Rockfall hazard:A geomorphological application of neighbourhood analysis with IL WIS[J]. ITC Journal,1990, (1):40-44.
    [97]Aleotti P,Baldelli P,Polloni G,et al. Hydrogeological risk assessment of the Po river basin(Italy)[Z]. Landslides in research, theory and practice,13-18, Thomas Telford,London, 2000.
    [98]李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报.1997,16(5):490-495.
    [99]M J Garcia-Rodriguez, J A Malpica, B Benito etc. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression [J]. Geomorphology, 2008,95:172-191.
    [100]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641.
    [101]朱良峰,吴信才,殷坤龙.基于GIS的中国滑坡灾害风险分析[J].岩土力学,2003,24(Supp2):221-224+230.
    [102]刘沐宇.基于范例推理的边坡稳定性智能评价方法研究[D].武汉:武汉理工大学,2001.
    [103]S.Lee, K.Min. Statistical analysis of landslide susceptibility at Yongin, Korea[J]. Environmental Geology,2001,40:1095-1113.
    [104]Lin Meei-Ling, Tung Chi-Che. A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake [J]. Engineering Geology,2003,71:63-77.
    [105]G.C.Ohlmacher, J.C.Davis. Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas,USA[J]. Engineering Geology,2003,69:331-343.
    [106]毕华兴,中北理,阿部和时.GIS支持下的滑坡空间预测与危险等级划分[J].自然灾害学报,2004,13(3):50-57.
    [107]周国云,陈光齐.基于GIS和数量化理论Ⅱ的滑坡危险性预测[J].岩石力学与工程学报,2008,22(12):2494-2500.
    [108]石菊松,徐瑞春,石玲.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘,2007,14(6):119-128.
    [109]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-284.
    [110]唐红梅.重庆库区松散土体滑坡危险性评价-万州区天城实验小学滑坡危险性分区评价[J].重庆交通学院学报,2004,23(4):73-77.
    [111]Adrian E Scheidegger. On the prediction of the reach and velocity of catastrophic landslide[J]. Rock Mechanics,1973,5:231-236.
    [112]森协·宽.滑坡滑距的地貌预测[J].王念秦译.铁路地质与路基,1989,3:45-48.
    [113]王念秦,张倬元,王家鼎.一种典型黄土滑坡的滑距预测方法[J].西北大学学报:自然科学版,2003.33(1):111-114.
    [114]李秀珍,孔纪名.“5·12”汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版),2010,42(5):243-249.
    [115]徐峻龄译,刘光代校.关于滑坡运动的土工模型(一)[J].路基工程,1993,(3):70-75+64.
    [116]徐峻龄译,刘光代校.关于滑坡运动的土工模型(二)[J].路基工程,1993,(4):66-72.
    [117]郭崇元.超大型滑坡及其速度计算[M].滑坡文集(第三集).北京:中国铁道出版社,1982.
    [118]徐峻龄译,刘光代校.关于滑坡运动的土工模型(三)[J].路基工程,1993,(5):64-72.
    [119]Hungr O, McDougall S. Two numerical models for landslide dynamic analysis[J].Computers & Geosciences,2009,35 (5):978-992.
    [120]江晓禹,乔建平.典型滑坡危险性的接触力学预测模型[J].工程力学,2006,23(8):106-109+95.
    [121]李远华,姜琦刚.基于遥感调查与GIS分析的林芝地区地质灾害评价[J].国土资源遥感,2006.2:57-60.
    [122]欧阳华平.遥感和G1S技术在西藏昌都县地质灾害调查与评价中的应用[D].中南大学硕士学位论文,2010.
    [123]滕云,穆元皋,朱进守,等主编.《西藏自治区隆子县地质灾害调查与区划报告》(1:10万)[R].西藏自治区地质环境监测总站,西藏自治区生态环境地质研究所,2007,12.
    [124]王常明,王钢城,刘伟,等主编.《喜马拉雅山地区重大地质灾害调查与减灾措施研究报告》(1:25万)[R].西藏自治区地质环境监测总站,吉林大学地质调查院,2010,9.
    [125]马冠卿.西藏区域地质基本特征[J].中国区域地质,1998,17(1):16-24.
    [126]西藏地质局综合普查大队.中华人民共和国地质图拉萨幅H-46及说明书[M].北京:地质出版社,1981.
    [127]中华人民共和国地质矿产行业标准.滑坡防治工程勘查规范(DZ/T 0218-2006).北京:中国标准出版社.2006,11.
    [128]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2008.
    [129]王治平.RS+GCPs获取滑坡基本信息[J].中国地质灾害与防治学报,2004,3(19):94-101.
    [130]单新建,叶洪,李焯芬,等.遥感、GIS结合与区域天然滑坡调查[J].地质论评,2001,47(6):645-652.
    [131]王治平.滑坡遥感调查、监测与评估[J].国土资源遥感,2007,(1):10-15+23.
    [132]常士骠,张苏民主编.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
    [133]http://baike.baidu.com/view/931672.html?fromTaglist.
    [134]Dias J M S. Multi-user 3D Virtual Environment[J]. IEEE Computer Graphics and Applications, 2007,17(2):66-69.
    [135]王黎明,文辉,王英.重庆市区域规划电子沙盘系统的设计与实现[J].地理研究,2005,24(2):304-310.
    [136]姚宏伟,徐颖.南水北调电子沙盘系统的研究与开发[J].系统仿真学报,2002,14(12):1598-1602.
    [137]中国地质调查局.中国地质调查局地质调查技术标准滑坡崩塌泥石流灾害详细调查规范[S].2007,12.
    [138]国土资源部.县(市)地质灾害调查与区划基本要求[S].2000,3.
    [139]谢洪,王士革.孔纪名.“5·12”汶川地震次生山地灾害的分布与特点[J].山地学报,2008,26(4):396-401.
    [140]柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报,2004,23(8):1280-1284.
    [141]杨继红,董金玉,刘汉东,等.某水电站左坝肩上方堆积体成因机制分析及稳定性评价[J].岩土力学,2009,30(Supp2):408-413.
    [142]祁生文,许强,刘春玲,等.汶川地震极重灾区地质背景次生斜坡灾害空间发育规律[J].工程地质学报,2009,17(1):39-49.
    [143]程强,吴事贵,苏玉杰.映秀·卧龙公路沿线汶川地震地质灾害研究[J].工程地质学报,2010, 18(2):160-167.
    [144]地矿部土工试验规程(DT-92)[M].北京:地质出版社,1984.
    [145]张业成,胡景江,张春山,等.中国地质灾害危险性分析与灾变区划[J].海洋地质与第四纪地质.1995,15(3):55-67.
    [146]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社.2004.
    [147]张春山,张业成,胡景江,等.中国地质灾害时空分布特征与形成条件[J].第四纪研究,2000,20(6):559-566.
    [148]舒斯特R.T,等.滑坡的分析与防治[M].北京:中国铁道出版社,1987.
    [149]冲村孝.地形要因ガゥた山腹坏发生危险度评价の一手法[J].新砂防,35(3):126+58.
    [150]乔建平.不稳定斜坡危险度的判别[J].山地研究,1991,9(2):117-122.
    [151]向立斌.秭归县鸡鸣寺滑坡监测预报方法初报[J].中国水土保持,1992,(11):25-27.
    [152]Kienholz. H.et.al. Leg ende modulable pour la cartographie des phenomenes[M].1995,12-16.
    [153]王成华.滑坡的危险斜坡判别模型[A].中国泥石流滑坡编目数据库与区域规律研究[M].成都:四川科学技术出版社,1998,25-27.
    [154]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994.
    [155]张斌,雍岐东,肖芳淳.模糊物元分析[M].北京:石油工业出版社,1997.
    [156]王广月,刘健.围岩稳定性的模糊物元评价方法[J].水利学报.2004,35(5):20-24.
    [157]王琛,潘峰.围模糊物元模型在岩土边坡稳定性综合评价中的应用[J].水利水电技术,2004,35(9):34-36.
    [158]尚敏,陈剑平,王征亮,等.向家河大桥库岸地质灾害危险性分区的可拓学评价[J].岩土力学,2007,28(11):2445-2450.
    [159]匡乐红,徐林荣,刘宝琛.组合赋权法确定地质灾害危险性评价指标权重[J].地下空间与工程学报,2006,2(6):1063-1067+1075.
    [160]金新政,厉岩.优序图和层次分析法在确定权重时的比较研究及应用[J].中国卫生统计,2001,18(2):119-120.
    [161]张晨,王清,陈剑平,等.基于组合赋权法对金沙江流域泥石流的危险度评价[J].岩土力学,2011,32(3):831-836.
    [162]邱道宏.括苍山高速公路隧道岩爆非线性预测研究[D].长春:吉林大学博士论文,2008.
    [163]桑博德(P.T.Saunders)(英)著,凌复华译.突变理论入门[M.上海:上海科学技术文献出版社,1983.
    [164]Poston T, Ian Stewant. Catastrophe Theory and Application[M]. Lord:Pitman 1978,172-191.
    [165]门峰,刘子先,杜慧滨.基于突变理论的评价方法在经营者激励评价中的应用[J].内蒙古农业大学学报(社会科学版),2008,10(5):112-113+116.
    [166]李绍飞,孙书洪,王向余.突变理论在海河流域地下水环境风险评价中的应用[J].水利学报,2007.38(11):1312-1317.
    [167]何金平,李珍照.基于环境突变理论综合评价的水电站建设方案优选[J].水电站设计,1998,14(1):11-15.
    [168]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.
    [169]赵志峰.徐卫亚.基于突变理论的边坡安全稳定性综合评价[J].岩石力学与工程学报,2007, 26(Suppl):2707-2712.
    [170]凌复华著.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [171]都兴富.突变理论在经济领域的应用(下册)[M].成都:电子科技大学出版社,1994.
    [172]乔建平.滑坡减灾理论与实践[M].北京:科学出版社,1997,100-150.
    [173]徐俊龄.高速远程滑坡研究现状综述[A].滑坡论文集编委会编.滑坡文集(第12集)[C].北京:中国铁道出版社,1997.
    [174]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测[A].滑坡论文集编委会编滑坡论文集[C].成都:四川科技出版社,1989.
    [175]龙建辉.高速远程黄土滑坡预测预报方法研究[D].长安大学博士学位论文,2008.
    [176]王治华.数字滑坡技术及其在天台乡滑坡调查中的应用[J].岩土工程学报,2006,28(4):516-520.
    [177]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444.
    [178]郑勇,韩刚,赵其华.汶川八级地震触发何家沟碎屑流滑坡基本特征及形成机理[J].地质灾害与环境保护,2009,20(4):86-90.
    [179]CROSTA G B, CHENB H, LEEC C F. Replay of the 1987 Val Pola Landslide,Italian Alps[J]. Geomorphology,2004,60(1-3):127-146.
    [180]CROSTA G B. Failure and flow development of a complex slide:the 1993 Sesa landslide[J]. Engineering Geology,2001,59(1-2):173-199.
    [181]Hattanji T,Moriwaki H. Morphometric analysis of relic landslides using detailed landslide distribution maps:Implications for forecasting travel distance of future landslides [J]. Geomorphology,2009,103:447-454.
    [182]Okura Y,Kitahara H,Sammori T, et al.The effects of rockfall volume on runout distance[J]. Engineering Geology,2000,58:109-124.
    [183]Dexuan Zhang, Gonghui Wang. Study of the 1920 Haiyuan earthquake-induced landslides in loess(China)[J]. Engineering Geology,2007,94:76-88.
    [184]杨品,王家鼎,谷天峰.滑带黄土振陷预测中的BP神经网络方法[J].西北大学学报(自然科学版),2007,37(5):815-818.
    [185]林鲁生.冯夏庭,白世伟,等.人工神经网络在边坡滑移预测中的应用[J].岩土力学,2002.23(4):508-510.
    [186]汪华斌.徐瑞.BP神经网络在鱼洞河滑坡稳定性评价中的应用[J].长江科学院院报,2002,19(4):62-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700