织物成形模拟的有限元方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织物变形的模拟问题是从上个世纪80年代中期开始研究的问题,其中有限元方法模拟则开始于上个世纪90年代,距今只有10年左右的历史。国际上这方面的研究方兴未艾,国内研究比较有限,尤其是有限元方法模拟织物变形在国内尚未见到相关文献。迄今为止有限元方法是最有可能全面体现织物材料特性的方法,也是最有希望完全准确反映织物变形的方法,因此本文以织物悬垂的有限元模拟为对象,进行了研究,本文主要有以下几个方面的工作:
     (1) 对国内外织物变形研究的历史和现状进行了综合论述,并调查了壳元文献中对有限旋转的表达方法,给以分类。
     (2) 提出了一个用相对夹角表达有限旋转的壳元模型,并推导了详尽的算法。在织物的悬垂模拟中有限旋转起着重要作用。作者为此提出了一种有限旋转描述模型,该模型建立各个结点在初始构形上的局部坐标系,使用法线在局部坐标的相对夹角的变化来描述法线的变化。这样的有限旋转描述方法比经典的线性描述准确,比几何精确壳理论的Rodrigues参数表达法要简单。可以说是一种简单而准确的有限旋转表达方法,尤其是该算法的实现比几何精确壳理论要简单。该方法存在不能描述弯矩边界条件的缺点,但对于织物悬垂模拟来说足够可行,因为织物一般不能承受弯矩载荷。
     (3) 在上面的有限旋转模型的基础上,按照几何非线性有限元理论,作者详尽地推导了退化曲壳元的T.L.算式。在单元的选用上,通过比较作者选用了9结点的Heterosis单元,最后在计算中应用节减积分技术,由此建立了一套行之有效的有限元算法。
     (4) 把织物作为连续介质,探讨了其本构关系的建立问题。假定织物是线弹性的,且是均匀正交异性材料,建立了织物的正交异性本构关系,并讨论了其中的弹性模量的选取问题。指出应该选用织物的弯曲刚度推导出的弹性模量作为本构中的弹性模量,而不是实测的弹性模量。另外讨论了织物的泊松比对其悬垂变形的影响问题,指出正常范围内的泊松比对织物的悬垂变形影响不大。
     (5) 按照前述算法编制了有限元程序,模拟了织物的二维和三维悬垂,并给出了织物悬垂的动态过程的图形。这些结果可以应用于纺织界的悬垂预测和评价,也可用于计算机图形学的织物变形模拟,同样也可以用在航空制造的某些特殊工件的加工工序中(如使用碳纤维、玻璃纤维等加工一些工件的工序),随着织物在航空制造业中越来越广泛的使用,这种模拟技术在航空制造业的重要性也会越来越突出。
The cloth modeling technique is much concerned because of its
    extensively application to the textile and apparel industries, human
    animation, computer games, virtual reality and so on. Many methods are
    suggested for modeling cloth. Among them the finite element method (FEM)
    is the most prospective one, by means of which not only the appearance
    of cloth deformation can be obtained, but also the physical details can
    be attained, although its expression seems rather profound and
    complicated. The paper is aimed at the FEM technique in simulating cloth
    drape. The following are the major works in the paper.
    1. A review of cloth modeling is presented. The parametric
    descriptions of the finite rotation are classified based on the study of
    papers about shell elements.
    2. A new model is proposed that defines the finite rotation by two
    relative angles. The finite rotation plays a significant role in the
    fabric drape, so that the accuracy of its definition is essential. The
    new fini te rotat ion definition is more exact than the classic l inear one,
    and is simpler than Rodrigues parametric one in geometric exact shell
    theory. In addition, it is easy to implement the computation. The model
    is not competent in describing the boundary condition of the bending
    moment, but it is not a fatal drawback because fabric cannot generally
    stand the bending moment.
    3. According to the geometric nonlinear FE theory, a series of total
    Lagrangian formulations of degenerated shell element based on the above
    finite rotation definition are derived. 9-node heterosis element and a
    reduced integration technique are applied to the analysis process for
    eliminating the shear locking. Thus a full and efficient algorithm is
    proposed.
    4. A fabric continuum constitutive equation is proposed. It is
    assumed that the fabric is a matter of continuum, homogeneous,
    orthogonally anisotropic elastic, and hence the fabric constitutive
    equation is formulated. Second, a method of determining the two primary
    elastic modules in the constitutive equation from the two respective
    primary bending moments instead of the two tensile modules is proposed.
    The influence of Poisson's ratio on the drape shape is considered. The
    relevant analysis and calculation show that normal Poisson's ratio in
    the range of 0.0--0.5 does not show appreciable effect on fabric drape.
    5. A computer code is developed to implement the above FE analysis.
    By using the code, the fabric static drape examples in 2-D or 3-D and some
    
    
    dynamic processes of the fabric drape are presented in the paper. The
    results show that the FEM proposed in the paper is effective.
引文
织物变形文献
    1. J.Weil.The synthesis of cloth objects.Computer Graphics (Proc.SIGGRAPH),1986, 20(4),pp.49-54.
    2. C.Feynman. Modeling the appearance of cloth. Master's Thesis. Massachusetts Institute of Technology,Cambridge.1986.
    3. B.K. Hinds,J.McCartney. Interactive garment design.Visual Computer,1990, 6(1),pp.53-61.
    4. H.Okabe, H.Imaoka,T. Tomoha, H.Niwaya. Three dimensional apparel CAD system.Computer Graphics, 1992, 26(2), pp.105-110.
    5. Y.Yang, N.M.Thalmann, D.ThalMann. Three-dimensional garment design and animation.Comput. in Industry, 1992, 19(2), pp.185-191.
    6. P. Volino, N.M.Thalmann, J.Shen, D.Thalmann. An evolving system for simulating clothes on virtual actors.IEEE Computer Graphics & Applications, 1996, 16(4), pp.42-50.
    7. J.W. Eischen, S.Deng, T.G. Clapp. Finite-element modeling and control of flexible fabric parts.IEEE Computer Graphics & Applications,1996,16(4), pp.71-80.
    8. J.Lander. Devil in the blue-faceted dress: real-time cloth animation.Game Developer, 1999,6(5), pp. 17-21.
    9. S.Gray. In virtual fashion. IEEE Spectrum, 1998, 35(2), pp.18-25.
    10. N.Jojic, J.Gu, H.C.Shen, T.S.Huang. Computer modeling, analysis, and synthesis of dressed humans.IEEE Transactions on Circuits and Systems for Video Technology, 1999,9(2),pp.378-388.
    11. J.Nisselson. Computer graphics in fashion. Computer Graphics(Proc.SIGGRAPH),1987,21(4), pp.333-334.
    12. D.E.Breen. Can we go there from here?: current challenges in cloth modeling, design, and animation.Computer Graphics(Proc. SIGGRAPH),1997,31(4), pp.437-439.
    13. T.Agui,Y. Nagao,M.Nakajma. An expression method of cylidrical cloth objects. Trans. Soc. of a eletronics, information and communications, 1990, 73(7), pp.1095-1097.
    14. B.K. Hinds, J.McCartney. Computer aided design of garments using digitized3D surfaces.J.Eng. Manufacture: PartB,1992,206, pp.199-206.
    15. B.K.Hinds,J.McCartney,G.Woods.Parttern developments for 3D surfaces.Computer-Aided Design, 1991, 23(8), pp.583-592.
    16. H.N.Ng, R.L.Grimsdale. GEOFF—A geometrical editor for fold formation. Lecture Notes in Computer Science Vol. 1024, R.Chin, springer-verlag,Berlin, 1995, pp.124-331.
    17. T.L.Kunii, H.Gotoda. Singularity theoretical modeling and animation of garment wrinkle formation process. Visual Computer, 1990, 6(6), pp.326-336.
    18. T.L.Kunii, H.Gotoda. Modeling and animation of garment wrinkle formation process. Proc.Computer Animation,Springer-Verlag Berlin, 1990, pp.131-147.
    19. F.Taillefer. Mixed modeling. Proc. Compugraphics, 1991, pp.467-478.
    20. N.Tsopelas. Animating the crumpling behavior of garments. Proc. 2nd Europgraphics Workshop on Animation and Simulation, Blackwell, Uk., 1991, pp. 11-24.
    21. S.G.Dhande. Geometric modeling of draped fabric surface. Proc.IFIP Int'l conf.on computer graphics, North Holland, Amsterdam, 1993, pp. 349-356
    
    
    22. H.N.Ng, R.L.Grimsdale, W.G.Allen. A system for modeling and visualization of cloth materials.Computer & Graphics,1995,19(3),pp.423-430.
    23. D.E.Breen, D.H.House, P.H.Getto. A physical-based particle model of woven cloth.Visual Computer,1992,8(5/6),pp.264-277.
    24. D.E.Breen, D.H.House, M.J.Wozny. Predicting the drape of woven cloth using interacting particles.Proc. SIGGRAPH, New York:ACM Press,1994,365-372
    25. B.Eberhardt,A.Weber,W. Strasser. A fast,flexible,particle-system model for cloth draping.IEEE Computer Graphics & Applications,1996,16(4),pp.52-59
    26. B.Eberhardt, A.Weber. A particle system approach to knitted textiles.Computer & Graphics,1999,23(8),pp.599-606
    27. X.Provot. Deformation constraints in a mass-spring model to describe rigid cloth behavior.Proc.of Graphics Interface,Quebec:Canadian Information Processing Society,1995,147-154
    28. U.Güdükbay,B.(?)zgüc, Y. ToKad.A spring force formulation for elastically deformable models.Computer & Graphics,1997, 21(3), pp.335-346
    29.樊劲,周济,王启付,袁铭辉.基于弹簧质点模型的二维/三维映射算法.软件学报,1999,10(2),PP.140-148
    30.樊劲.基于物理的造型方法及其在服装CAD中应用的研究[博士学位论文].武汉:华中理工大学,1998
    31. D.Terzopoulos,J.Platt,A.Barr,K..Fleischer.Elastically deformable models.Computer Graphics(Proc SIGGRAPH), 1987,21(4),pp. 205-214
    32. D.Terzopoulos, K.Fleischer. Deformable models.Visual Computer,1988,4(6),pp.306-331
    33. N.M.Thalmann,Y.Yang.Techniques for cloth animation.In N.M.Thalmann,D.Thalmann.ed.New trends in animation and visualization and visualization. UK:John wiley & sons,1991,243-256
    34. B.Lafleur,N.M.Thalmann,D.Thalmann. Cloth animation with self-collision detection, in T.L.Kunii,ed. Modeling in computer graphics.Berlin:Springer-Verlag,1991,179-187
    35. V.V. Kamat.A survey of techniques for simulation of dynamic collision detection and response. Computer & Graphics,1993,17(4), pp.379-383.
    36. M.Carignan, Y.Yang, N.M.Thalmann,D.Thalmann. Dressing animated synthetic actors with complex deformable clothes.Computer Graphics,1992,26(2),pp.99-104
    37. P.Volino,M.Courchesne, N.M.Thalmann.Versatile and efficient techniques for simulating cloth and other deformable objects.Proc SIGGRAPH,New York:ACM Press,1995,137-144
    38. D.Baraff, A.Witkin. Large steps in cloth simulation,Proc.SIGGRAPH,New York:ACM Press,1998,43-54
    39. M.Aono M. A wrinkle propagation model for cloth.Proc.CG Int'l,Berlin:Springer-Verlag,1990,95-115
    40. L.Ling, M.Demodaram,R.K.L.Gay.Aerodynamic force models for animating cloth motion in air flow.Visual Computer,1996,12(2),pp.84-104
    41. L.Ling. Animation of stochastic motion of 3-D cloth objects.Computer & Graphics,1997,21(6),pp.769-776
    42. D.W. Lloyd.Mechanics of flexible fibre assemblies.John W.S.Hearle,ed..Sijthoff and Noordhoff,Netherlands,1980,311-341.
    
    
    43. J.R.Collier,B.J.Collier. G.O'Toole,et al. Drape prediction by means of finite-element analysis.Journal of the Textile Institute,1991,82(1),pp.96-107.
    44. L.Gan, N.G.Ly, G.P.Steven.A study of fabric deformation using nonlinear finite element.Textile Research J.,1995,65(11),pp.660-668
    45. B.Chen,M.Govindaraj.A physically based model of fabric drape using flexible shell theory.Textile Research J., 1995, 65(6), pp.324-330
    46. J.Ascough, H.E.Bez,A.M.Bricis. A simple beam element,large displacement model for the finite element simulation of cloth drape.J.Text.Inst.1996,87(1),pp.152-165
    47. Y.F.Zhao,T.N.Wong,S.T.Tan,W.J.Chen. A model for simulating flexible surface of cloth objects.Computer & Structures,1997,63(1), pp.133-147
    48. S.T.Tan,T.N.Wong, Y.F.Zhao, W.J.Chen. A constrained finite element method for modeling cloth deformation.Visual Computer,1999,15(2), pp.90-99
    49. J.G.Teng, S.F.Chen, J.L.Hu. A finite-volume method for deformation analysis of woven fabrics.Int.J.Numer.Meth.Eng..1999,46,pp.2016-2098.
    50. J.W.S.Hearle. Textiles for composites-virtual reality and fabric mechanics,part 1.Textile Horizon.1995, 15(2), pp.12-15.
    51. J.W.S.Hearle. Textiles for composites-virtual reality and fabric mechanics,part 2.Textile Horizon.1995, 15(4), pp.10-14.
    52. S.Ahmad, B.M.Irons and O.C.Zienkiewicz. Analusis of thick and thin shell structures by curved elements. Int.J.Numer. Meth. in Eng.,1970,2,pp. 419-451.
    53. Henry T.Y. Yang, S.Saigal,A.Masud,R.K. Kapania. Asurvey of recent shell finite element.Int.J.Numer.Meth.Eng..2000, 47, pp.101-127
    54. Karan S.Surana. Geometrically nonlinear formulation for the curved shell elements.Int. J.Numer.Meth.in Eng..1983,19,pp.581-615
    55. J.L.Ericksen, C.Truesdell.Exact theory of stress and strain in rods and shells.Arch.Rat.Mech.Anal.. 1957,1, pp. 295-323
    56. J.H.Argyris. A excursion into large rotations. Comput. Meth.Appl.Mech. Eng. 1982, 32,pp.85-155
    57. J.H.Argyris, Sp. Symeonides. Nonlinear finite element analysis of elastic system under nonconservative loading-Natural formulation,Part I. Quasistatic problems.Comput.Meth.Appl. Mech. Eng. 1981, 26, pp.75-123
    58. T.J.R. Hughes, and J. Winget. Finite rotation effects in Numer. integration of rate constitutive equations arising in large deformation analysis. Int. J. Numer. Meth. Eng.. 1980,15,pp. 1862-1867.
    59. T.J.R. Hughes, W.K. Liu. Nonlinear finite element analysis of shells,Part I,pp.three-dimensional shells, Comput. Meth.Appl.Mech.Eng..1981,26,pp.331-362.
    60. K.J.Bathe, E.Dvorkin. Our discrete-Kichhoff and isoparametric shell elements for non-linear analysis-An assessment.Comp.Struct.1983,16,pp.89-98.
    61. K.J.Bathe, and E. N. Dvorkin. A continuum mechanics-based four-node shell element for general non-linear analysis. Int.J. of Computer Aided Eng.Software.1984.1,pp.33-57
    
    
    62. W.Pietrazskiewicz,J.Badur.Finite rotations in the description of continuum deformation.Int.J. Eng. Sci..1983,21,pp. 1097-1115.
    63. W.Pietraszkiewicz. Geometrically non-linear theories of thin elastic shells. Adv. Mech.1989,12, pp.51-130.
    64. Y.Basar, Y. Ding. Finite rotation elements for the non-linear analysis of thin shell structures.Int.J. Solids Struct. 1990,26,pp.83-87.
    65. Y.Basar, Y. Ding. Finite rotation shell elements for the analysis of finite rotation shell problems.Int. J. Numer. Meth. Eng.. 1992, 34, pp. 165-169.
    66. B.Nour-omid, C.C. Rankin. Finite rotation analysis and consistent linearization using projectors.Comput.Meth.Appl.Mech.Eng. 1991,93, pp.353-384.
    67. C.Sansour,H. Bufler. An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int. J. Numer. Method Eng.1992,34,pp.73-115.
    68. C.Sansour,H. Bednarczyk.The cosserat surface as a shell model, theory an finite-element formulation.Comput.Meth.Appl.Mech.Eng.1995,120,pp.1-32.
    69. C.Sansour,J. Bocko. On hybrid stess,hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling defrees of ftrrdom.Int.J.Numer. Method Eng.1998,43,pp.175-192.
    70. J.Chrosciclewski,J.makowski,H.Stumpf. Genuinely resultant shell finite elements according for geometric and material nonlinearity. Int. J.Numer. Meth. in Eng.,1992,35, pp.63-94.
    71. Simo, J.C..The(symmetric) hessian for geometrically nonlinear models in solid mechanics:intrinsic definition and geometric interpretation. Computer Meth.in Applied Mechanics and Eng..1992,96(2),pp.189-200.
    72. Simo, J.C.,and F. Armero. Geometrically nonlinear enhanced strain mixed Meth.and the method of incompatible modes," Int. J. Numer. Meth. in Eng..1992,33, pp.1413-1449.
    73. Simo, J.C., D.D. Fox.On a stress resultant geometrically exact shell model.Part I:Formulation and optimal parametrization, Comput. Meth. Appl. Mech.Eng. 1989.,79,pp.267-304.
    74. Simo, J.C., D.D. Fox, and M. S. Rifai. On a stress resultant geometrically exact shell model.part iii: computational aspects of the nonlinear theory. Computer Meth. in Applied Mechanics and Eng.. 1989.,80, pp.21-70
    75. Simo, J.C., and M. S. Rifai. A class of assumed strain Meth. and the method of incompatible modes. Int.J. Numer.Meth. in Eng.. 1990, 29,pp.1595-1638.
    76. K.Lee, Analysis of large displacements and large rotations of three-dimensional beams by using small strains and unit vectors, Commun. Numer. Meth. Eng. 1997,13(12),pp.987-997.
    77. S.J. Lee,W.Kanok-Nukulchai.A nine-node assumed strain finite element for large-deformation analysis of laminated shells. Int. J. Numer.Meth.Eng.1998,42(5),pp.777-798.
    78. C.C.Celigoj. A strain-and-displacement-based variational method applied to geometrically non-linear shells.Int. J.Num. Meth.Eng. 1996,39,pp. 2231-2248.
    79. Zhong Qin,Zhida Chen.Large deformation analysis of shells with finite element Meth.based on the S-R decompositon theorem. Computer Structure.1988,30(4),pp.957-961.
    80.詹福良,李明瑞.曲壳有限变形研究之一:理论及有限元列式.中国农业大学学报1998,3(6),pp.28~33
    
    
    81.詹福良,李明瑞.曲壳有限变形研究之二:有限转动理论和数值算例.中国农业大学学报1998,3(6),pp.34-40
    82. M. Li. The finite deformation of beam, plate and shell structures. Part Ⅱ. The kinematic model and the Green-Lagrangian strains. Comput. Meth. Appl. Mech. Eng. 1998,156, pp. 247-257.
    83. M. Li. The finite deformation of beam, plate and shell structures. Part Ⅳ. The FE formulation of Mindlin Plate and shell based on Green-Lagrangian strain. Comput. Meth. Appl.Mech. Eng.2000,182, pp.187-203.
    84. M. Li, F.Zhan. The finite deformation theory for beam, plate and shell. Part Ⅴ. The shell element with drilling degree of freedom based on Biot strain. Comput. Meth. Appl. Mech.Eng.. 2000,189, pp.743-759.
    85. P.Betsch, E. Stein. A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations. J. Nonln. Sci. 1996,6, pp.169-199.
    86. F.V. Keulen, Booij,J..Refined consistent formulation of a cruved triangular finite rotation shell element. Int. J. Numer. Method Eng.1996,39, pp.2803-2820.
    87. M.A.Crisfield, G.F. Moita. A unified co-rotational framework for solids,shells and beams.Int. J.Solids Struct.. 1996, 33, pp.2969-2992.
    88. M.Bischoff, E. Ramm. Shear deformable shell elements for large strains and rotations. Int. J.Numer.Meth. Eng.1997,40(23),pp.4427-4449.
    89. B.Brank. On large deformations of thin elasto-plastic shells:implementation of a finite rotation model for quadrilateral shell element. Int. J. Numer.Meth. Eng.1997,40(4), pp.689-726.
    90. L.N.B. Gummadi, A.N. Palazotto. Nonlinear analysis of beams and arches undergoing large rotations.J. Eng. Mech., ASCE. 1997,123(4), pp. 394-398.
    91. L.N.B. Gummadi, A.N. Palazotto. Large strain analysis of beams and arches undergoing large rotations. Int. J. Non-Linear Mech.1998,33(4), pp.615-645.
    92. L.N.B. Gummadi, A.N. Palazotto. Finite element analysis of arches undergoing large rotations -I: Theoretical comparison,Finite Elements Anal. Design. 1997,24(4), pp. 213-235.
    93. Ibrahimbegovic, A.. Stress resultants and geometrically exact shell theory for finite rotations and its finite element implementation. Appl. Mech. Rev. 1997,50(4),pp.1015-1056.
    94. Sze KY,Sim YS,Soh AK.A hybrid stress quadrilateral shell element with full rotational D.O.F.S. Int. J. Num. Meth. Eng.. 1997,40, pp.1785-1800.
    95. Parisch H. A continuum-based shell theory for nonlinear applications. Int. J. Numer.Meth.Eng.1993;38, pp.1855-1883.
    96. I. Arregui, P. Destuynder, M. Salaun, An Eulerian approach for large displacements of thin shells including geometrical nonlinearities. Comput. Meth. Appl. Mech. Eng. 1997, 140,pp.361-381.
    97. W. Chen, S. Zh.Refined hybrid degenerated shell element for geometrically non-linear analysis,Int.J.Numer.Meth.Eng.1998,41(7), pp.1195-1213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700