深空探测器自主姿态制导算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代深空任务为提高自主性,在传统自主姿态确定与控制之外,提出了姿态制导(Attitude Guidance)的概念,并逐渐在近十年的深空探测器中得到了普遍应用。
     本学位论文结合“十五”863计划项目——“深空探测自主技术与仿真演示系统”,研究如何将探测器任务行为决定的姿态系统高级任务指令,转化为控制器的参考姿态运动输入的实现问题,即自主姿态制导算法。重点研究了由定向任务事件驱动的姿态运动的结构化计算方法,以及进一步地在内外部约束条件的作用下给出可行的参考姿态运动的问题,并实现了深空探测自主姿态制导与控制在多系统联合下的数学仿真和独立半物理仿真。
     论文的主要研究内容包括:
     从事件驱动的思想出发,建立了基于目标矢量的姿态定向结构化算法。针对深空探测中定向任务多、目标运动复杂等特点,构造了一种用于深空姿态制导的相关矢量层次结构,以及适用于星上实施的矢量传播算法。在此基础上,对各种三轴姿态模式的参考姿态运动的计算通用性问题,依据星上导航信息和星历服务,给出了参考姿态运动各阶参数的矢量解析算法。为进一步降低算法耗费,定义了计算周期的多个层次,最终给出实时参考姿态指令,用以实现参考轨迹的姿态跟踪控制。
     描述了一种空间化的姿态约束表达方法,并针对稳定定向模式面临的约束问题提出了姿态定向的模式重构算法。研究和总结了深空探测所面临的空间几何约束、以及探测器自身的姿态运动学和动力学约束,并将约束抽象化为几类空间化的表达形式。对于深空探测姿态稳定定向模式中的辅助定向约束和运动学奇点问题,在不破坏主要定向任务的前提下,利用姿态空间规划和刚体矢量运动包线等方法,实现姿态定向模式的调整,并选取几种具有代表性的定向模式做了具体计算及运动学分析。
     研究了基于状态空间搜索的复杂约束姿态机动预先规划方法。针对时变空间环境中受多种约束的姿态机动问题,尤其对于深空环境下更加突出的外部空间几何约束问题,从全局规划、容纳动态约束、提高计算效率、优化可行解着手,研究了姿态机动的自主全局规划。在Rodrigues参数空间中描述姿态路径和约束边界,使之转化为三维空间中的点机器人运动规划问题;考虑姿态动力学约束,设计了一种简化的Euler轴转动姿态运动生成律;采用RRT算法,通过随机搜索路径节点,得到可行姿态路径。运用空间路径优化,根据评价机动代价来优化机动过程。
     最后,结合“深空探测自主技术与仿真演示系统”,设计了一种深空探测器自主姿态系统方案,搭建了基于MATLAB/Simulink的自主姿态数学仿真演示子系统,实现了深空探测飞行过程的多系统联合仿真及三维可视化演示。利用基于MATLAB/Simulink/dSPACE的半物理实时仿真平台,通过系统分模式控制仿真,验证了姿态参考指令计算方法的实时性。
To increase the mission autonomy, the concept of Attitude Guidance was brought up for modern deep-space probe, in addition to the traditional autono-mous attitude determination and control. This concept was universally utilized in recent year’s deep-space probes.
     With the supports of the Tenth Five-Year 863 Program‘Autonomy Technol-ogy of Deep Space Exploration and Its Simulation and Demonstration System’, this dissertation studied the problem that how to transform the high-level task command of attitude system, which is determined by the probe’s mission behav-ior, to the reference attitude motion input for controller, i.e. the problem of autonomous attitude guidance. This dissertation laid emphasis on the structurized calculation method for attitude motion driven by the pointing task events, and the problems that how to give a feasible reference attitude motion under internal and external constraints. The mathematical simulation with multiple system network-ing, and standalone semi-physical simulation of autonomous attitude guidance and control of the deep-space probe, was also realized.
     The main contents of this dissertation are as follows.
     A structurized attitude pointing algorithm based on target vectors, was con-structed in an event-driven manner. To handle the multiple pointing tasks and so-phisticated target motion during deep-space exploration, a related vectors hierar-chy for deep-space attitude guidance, and a vector propagation algorithm that is adapt to onboard utilization were built. At these basis, to solve the calculation versatility problem for reference attitude motion of various three-axis attitude definition, an analytic vector algorithm for each order reference parameters was given according to onboard navigation information and ephemeris services. To further reduce calculation cost, multiple computing cycles were defined. The output reference attitude command was used to realize the attitude tracking con-trol of reference attitude trajectory.
     A spatially attitude constraints monitor method was described, and an atti-tude pointing mode reconfiguration algorithm was proposed to solve the con-straints problem with stabilization pointing mode. Celestial geometric constraints, attitude kinematics, and dynamics constraints during deep-space exploration were studied and summarized. The constraints were then abstracted into several classes of spatial representation form. To solve the problem of auxiliary pointing constraint or kinematic singularity, the method of attitude space planning and hodograph envelope of rigid-body vector were used. This achieved the justifica-tion of attitude pointing mode along with the satisfaction with primary pointing task. Several representative pointing modes were selected to make specific calcu-lation and kinematics analysis.
     Pre-planning method based on state-space search for attitude maneuver un-der complex constraints was studied. To the attitude maneuver suffering from multiple constraints in time-varying space environment, especially to the exter-nally celestial geometric constraints that are more prominent in deep-space envi-ronment, the autonomous global planning of attitude maneuver was engaged from these aspects: global planning, dynamic constraints accommodation, in-crease of computational efficiency, and optimization of the feasible solution. De-scribe attitude path and constraints boundary in Rodrigues parameters space. The problem is then transformed to a motion planning problem of point robot. A sim-plified attitude guidance law for Euler-rotation planning was designed. And the feasible path was obtained by using RRT algorithm to perform random search of path node. Finally, the path was optimized in the parameters space according to evaluate the cost of maneuver.
     Lastly, combining with‘Autonomy Technology of Deep Space Exploration and Its Simulation and Demonstration System’, designed an autonomous attitude control system scheme for deep-space probe, and constructed the autonomous attitude mathematical simulation subsystem based on MATLAB/Simulink, real-ized multisystem united simulation and 3-dimensional visualizing demonstration for flight process of deep-space exploration. By the semi-physical real-time con-trol simulation platform based on MATLAB/Simulink/dSPACE, the real-time performance of the proposed calculating method of reference attitude command is confirmed by merotype attitude control simulation.
引文
1 W. Huntressa, D. Stetsonb, and R. Farquhar, et al. The Next Steps in Explor-ing Deep Space - A Cosmic Study by the IAA. Acta Astronautica. 2006, 58(6-7):304~377
    2 国防科学技术工业委员会. “十一五”空间科学发展规划. 2007:6~8,11
    3 M. D. Rayman. The Deep Space 1 Extended Mission: Challenges in Preparing for an Encounter with Comet Borrelly. Acta Astronautica. 2002, 51(1-9):507~516
    4 S. A. Sandford, J. Aléon, and C. M. O'D. Alexander. Organics Captured from Comet 81P/Wild 2 by the STARDUST Spacecraft. Science. 2006, 314(5806):1720~1724
    5 H. Yano, T. Kubota, H. Miyamoto, T. Okada, and D. Scheeres, etc. Touch-down of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science. 2006, 312(5778):1350~1353
    6 E. Montagnon, P. Ferri. Rosetta on Its Way to the Outer Solar System. Acta Astronautica, 2006, 59(1-5):301~309
    7 R. A. Kerr. Deep Impact Makes a Lasting Impression on Comet Tempel 1. Science. 2005, 309(5732):226~227
    8 Y. P. Guo, R. W. Farquhar. New Horizons Pluto–Kuiper Belt Mission: Design and Simulation of the Pluto–Charon Encounter. Acta Astronautica. 2005, 56(3):421~429
    9 J. J. Fortney. Looking into the Giant Planets. Science. 2004, 305(56895689): 1414~1415
    10 P. R. Mahaffy. Intensive Titan Exploration Begins. Science. 2005, 308 (57245724):969~970
    11 R. L. McNutt, S. C. Solomon, R. E. Gold and J. C. Leary. The MESSENGER Mission to Mercury: Development History and Early Mission Status. Advances in Space Research. 2006, 38(4):564~571
    12 T. Kia, A. S. Aljabri, Software Architecture for a Highly Autonomous Spacecraft Control System. AIAA/USU Small Satellite Conference, Logan, Utah, USA: 1994:1~3
    13 A. S. Aljabri, T. Kia, and J. Y. Lai, Highly-Autonomous Event-Driven Spacecraft Control. Acta Astronautica. 1995, 35:555~565
    14 G. A. Heyler, J. C. Ray, and A. Harch, et al, Modeling and Performance of NEAR’s G&C System during the Eros Orbital Phase and Controlled Descent. Advances in the Astronautical Sciences. 2002, 109:1039~1056
    15 R. J. Doyle. Autonomy Needs and Trends in Deep Space Exploration. RTO AVT Course on “Intelligent Systems for Aeronautics”, Rhode-Saint-Genèse, Belgium, 2002. NATO Research & Technology Organisation, RTO-EN-022, 2003: 4-1~4-12
    16 J. K. Miller, A. S. Konopliv and P. G. Antreasian, et al. Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros. Icarus. 2002,155:3~17
    17 J. K. Miller, P. G. Antreasian and R. W. Gaskell, et al, Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navi-gation. Advances in the Astronautical Sciences. 2000, 103:2551~2568
    18 D. K. Yeomans, P. G. Antreasian and A. Cheng, et al. Estimating the mass of Asteroid 433 Eros during the NEAR spacecraft flyby. Science. 1999, 285(5427):560~561
    19 B. S. Catherine, B. J. Jeremy and D. A. John, Small Body Mass Determina-tion from a Flyby. Advances in the Astronautical Sciences. 1991, 75:885~896
    20 S. Nakamura, T. Kubora, T. Hashimoto, and K. Ninomiya. Estimation of Unknown Motion of a Celestial Body Based on Optical Information. Orbital Dynamics Laboratory, The Institute of Space and Astronautical Science (Kawaguchi, Japan), 1996:54~59
    21 J. L. Riverin, A. K. Misra, Attitude Dynamics of Satellites Orbiting Small Bodies, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Mon-terey, CA, USA, 2002:1~10. AIAA-2002-4520
    22 D. J. Scheeres, F. Marzari, L. Tomasella, and V. Vanzani, ROSETTA Mission: Satellite Orbits around a Cometary Nucleus. Planetary and Space Science, 1998, 46(6/7):649~671
    23 E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman Filtering for Space-craft Attitude Estimation. Journal of Guidance, Control, and Dynamics. 1982,5(5):417~429
    24 G. Creamer, P. Delahunt, and S. Gates, et al, Attitude Determination and Control of Clementine During Lunar Mapping. Journal of Guidance, Control, and Dynamics. 1996, 19(3):505~511
    25 T. E. Strikwerda, J. C. Ray, and D. R. Haley. The NEAR Guidance and Con-trol System. Johns Hopkins APL Technical Digest. 1998, 19(2):205~212
    26 Gene A Heyler, Ann P Harch. Making NEAR Work: Cooperative Modeling and Simulation with an Advanced Guidance and Control System. Johns Hopkins APL Technical Digest. 2002, 23(1):46~57
    27 P. Villefranche, J. Evans, and F. Faye. Rosetta: The ESA Comet Rendezvous Mission, Acta Astronautica. 1999, 40(12):871~877
    28 G. A. Macala. Design of the Reaction Wheel Attitude Control System for the Cassini Spacecraft. Advances in the Astronautical Sciences. 2002, 112:303~315
    29 E. C. Wong, W. G. Breckenridg. An Attitude Control Design for the Cassini Spacecraft. AIAA Guidance, Navigation and Control Conference, Baltimore, MD, USA, 1995, 931~945. AIAA-1995-3274
    30 B. Wie, H. Weiss, and A. Arapostathis. Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations. J. Guidance. 1989, 12(3):375~380
    31 B. Wie, J. Lu. Feedback Control Logic for Spacecraft Eigenaxis Rotations under Slew Rate and Control Constraints. Journal of Guidance, Control, and Dynamics. 1995, 18(6):1372~1379
    32 F. Y. Hadaegh, E. Mettler, and C. Lin. Autonomous Spacecraft Guidance and Control. AIAA Guidance Navigation and Control Conference, San Diego, CA, USA. 1996:1~11. AIAA-1996-3924
    33 E. Mettler, R. Chiang, and P. Waddell, et al. Advanced Micro-GN&C Tech-nology for Low-Cost Planetary Missions. Jet Propulsion Laboratory. 1997:1~3
    34 M. D. Rayman, P. Varghese. The Deep Space 1 Extended Mission. Acta As-tronautica. 2001, 48(5-12):693~705
    35 A. G. Santo, S. C. Lee, and R. E. Gold. NEAR Spacecraft and Instrumenta-tion. J. Astronomical Sciences. 1995, 43(4):373~397
    36 J. Taylor, P. Ko. Achieving and Maintaining Deep Space 1 Spacecraft High-Gain Antenna Pointing Control by Data Monitoring and Immediate Correc-tive Commanding. The Telecommunications and Mission Operations Pro-gress Report, TMO PR 42-144, 2000:1~23
    37 宗红,李铁寿,王大轶. 月球卫星 GNC 系统方案设想. 航天控制. 2005, 23(1):2~6
    38 S. Bhaskaran, J. E. Riedel, and S. P. Synnott, Autonomous Target Tracking of Small Bodies During Flybys. Advances in the Astronautical Sciences. 2005, 119:2079~2096
    39 S. Bhaskaran, J. E. Ftiedel, and S. P. Synnott. Autonomous Nucleus Tracking for Comet/Asteroid Encounters: The STARDUST Example. Advances in the Astronautical Sciences. 1998, 97:451~468
    40 S. S. Lisman, D. H. Chang, and F. Y. Hadaegh. Autonomous Guidance and Control for the New Millennium DS-1 Spacecraft. AIAA Guidance, Naviga-tion and Control Conference, San Diego, CA, USA: 1996:1~9. AIAA-1996-3817
    41 J. C. Hackney, D. E. Bernard, and R. D. Rasmussen. The Cassini Spacecraft: Object Oriented Flight Control Software. Advances in the Astronautical Sci-ences. 1993, 81:211~236
    42 李智斌,李果. 航天器自主控制与智能信息处理技术. 航天控制. 2004, 22(5):20~25
    43 L. Muller. Miniaturization Methodology Applied to Deep Space Micro-spacecraft. Master Degree Dissertation of the Massachusetts Institute of Technology. 1994:64~73
    44 D. R. Haley, T. E. Strikwerda, and J. C. Ray, etc. Performance of the MSX Guidance and Control System. Advances in the Astronautical Sciences. 1997, 94:311–330
    45 R. D. Rasmussen, G. Singh, and D. B. Rathbun, et al. Behavioral Model Pointing on Cassini Using Target Vectors. Advances in the Astronautical Sciences. 1995, 88:91~110
    46 P. Perez-Illana. ROSETTA: Analysis of Opportunities for in-Flight Verifica-tion of the Asteroid Fly-by Mode. Jet Propulsion Laboratory, 2001:1~33
    47 M. Delpech, J. B. Dubois, and J. E. Riedel, et al. Description of the Rendez-vous Experiment Designed for 2007 Mars PREMIER Mission. 17th Interna-tional Symposium on Space Flight Dynamics. Moscow. ESA, NASA, INPE, KIAM, CNES, 2003:16~20
    48 J. Jaubert, E. Julien, and G. Lassalle-Balier, etc. Attitude Guidance Tech-niques Developed at CNES for Earth Observation and Scientific Missions. Advances in the Astronautical Sciences. 2005, 121:87~105
    49 R. L. Matthew. Spacecraft Attitude Tracking Control. Master Degree Disser-tation of Virginia Polytechnic Institute and State University. 1999:33~51
    50 G. A. Heyler, A. P. Harch. Guidance and Control Aspects of the Mathilde Fast Flyby. Advances in the Astronautical Sciences. 1998, 98:573~591
    51 A. Feldman and A. Y. Lee. In-Flight Estimations of Cassini Spacecraft Iner-tia Tensor and Thruster Magnitude. Advances in the Astronautical Sciences. 2006, 124:35~55
    52 A. Y. Lee. On the Mathematical Treatment of Engineering Problems: Exam-ples from the Cassini Spacecraft Attitude Control System Design. 39th Workshop at the International School of Mathematics, G. Stampacchia Inter-national School of Mathematics, 2003:1~28
    53 A. Y. Lee, G. Hanover. Cassini Spacecraft Attitude Control System Flight Performance. AIAA Guidance, Navigation, and Control Conference and Ex-hibit. San Francisco, California, USA. 2005:1~83. AIAA 2005-6269
    54 G. Singh, G. Macala, and E. C. Wong, et al. A Constraint Monitor Algorithm for the Cassini Spacecraft. AIAA Guidance, Navigation, and Control Con-ference. New Orleans, LA, USA, 1997:272~282. AIAA-1997-3526
    55 S. S. Lisman, D. H. Chang, and G. Singh, et al. Autonomous Guidance and Control of a Solar Electric Propulsion Spacecraft. AIAA Guidance, Naviga-tion, and Control Conference. New Orleans, LA, USA. 1997:628~638. AIAA-1997-3818
    56 T. Burk. Attitude Control Performance During Cassini Trajectory Correction Maneuvers. AIAA Guidance, Navigation, and Control Conference and Exhi-bition, San Francisco, California, USA. 2005:1~23. AIAA-2005-6270
    57 R. S. Bhat, P. W. Stumpf, and R. B. Frauenholz. Deep Impact Ground Navi-gation Maneuver Design and Performance. Advances in the Astronautical Sciences. 2006, 124:1203~1229
    58 M. V. Vaughan, D. R. Haley, H. S. Shapiro, and D. J. O’Shaughnessy. Mo-mentum Management for the MESSENGER Mission. Advances in the As-tronautical Sciences. 2002, 109:1139~1157
    59 Y. Kim, M. Mesbahi. Quadratically Constrained Attitude Control via Semidefinite Programming. IEEE Transactions on Automatic Control, 2004, 49(5):731~735
    60 Y. Kim, M. Mesbahi, G. Singh and F. Y. Hadaegh. On the Constrained Atti-tude Control Problem. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004:1~23. AIAA-2004-5129
    61 Y. Kim. Topics in Constrained Optimal Control: Spacecraft Formation Fly-ing, Constrained Attitude Control, and Rank Minimization Problems. Ph.D. dissertation of University of Washington. 2004:52~75
    62 G. Creamer, P. DeLaHunt, and S. Gates, et al. Attitude Determination and Control of Clementine during Lunar Mapping: Description and on-Orbit Per-formance. AIAA Guidance, Navigation and Control Conference. Baltimore, MD, USA. 1995:920~930. AIAA-1995-3273
    63 C. R. McInnes. Large Angle Slew Manoeuvres with Autonomous Sun Vector Avoidance. Journal of Guidance, Control and Dynamics. 1994, 17(4): 875~877
    64 C. R. McInnes. Potential Function Methods for Autonomous Spacecraft Guidance and Control. Advances in the Astronautical Sciences. 1996, 90:2093~2109
    65 G. Radice, C. R. McInnes. Constrained on-Board Attitude Control Using Gas Jet Thrusters. The Aeronautical Journal, 1999, 103(1030):549~556
    66 G. Mengali, A. A. Quarta. Spacecraft Control with Constrained Fast Reorien-tation and Accurate Pointing. The Aeronautical Journal, 2004, 108(1080):85~91
    67 J. P. Frakes, D. A. Henretty, and T. W. Flatley, et al. SAMPEX Science Pointing with Velocity Avoidance. Advances in the Astronautical Sciences. 1992, 79:949~966
    68 H. B. Hablaui. Attitude Commands Avoiding Bright Objects and Maintain-ing Communication with Ground Station. Journal of Guidance, Control, and Dynamics. 1999, 22(6):759~767
    69 R. P. Kornfeld. On-Board Autonomous Attitude Maneuver Planning forPlanetary Spacecraft Using Genetic Algorithms. AIAA Guidance, Naviga-tion, and Control Conference and Exhibit. Austin, Texas, USA, 2003:1~13. AIAA-2003-5784
    70 E. Frazzoli, M. A. Dahleh, and E. Feron, et al. A Randomized Attitude Slew Planning Algorithm for Autonomous Spacecraft. AAIA Guidance, Naviga-tion, and Control Conference and Exhibit. Montreal, Quebec, Canada, 2001:1~8
    71 E. Frazzoli, M. A. Dahleh, and E. Feron. Real-Time Motion Planning for Agile Autonomous Vehicles. Journal of Guidance, Control, and Dynamics, 2002, 25(1):116~129
    72 K. Spindler. New Methods in on-Board Attitude Control. Advances in the Astronautical Sciences. 1998, 100:111~124
    73 A. M. Sorensen. ISO Attitude Maneuver Strategies. Advances in the Astro-nautical Sciences, 1993, 84(2):975~987
    74 T. Kia, J. Mellstrom, and A. Klumpp, et al. TOPEX/POSIEDON Autono-mous Maneuver Experiment (TAME) in-Flight Execution. Advances in the Astronautical Sciences. 1998, 98:3~19
    75 P. Vaze, T. Kia, A. Klumpp, and J. Mellstrom. Design and Operation of TOPEX/POSEIDON Autonomous Maneuver Experiment (TAME). IEEE, Aerospace Conference, Snowmass, Colorado, USA. 1999, 5:383~398
    76 D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen. A Survey of Spacecraft Forma-tion Flying Guidance and Control (PartⅠ): Guidance. Proceedings of the American Control Conference, Denver, Colorado, USA. 2003:1733~1739
    77 D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen. A Survey of Spacecraft Forma-tion Flying Guidance and Control (PartⅡ): Control. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, USA. 2004:2976~2985
    78 I. Garcia, J. P. How. Improving the Efficiency of Rapidly-Exploring Random Trees Using a Potential Function Planner. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005:7965~7970
    79 I. M. Garc′?a. Nonlinear Trajectory Optimization with Path Constraints Ap-plied to Spacecraft Reconfiguration Maneuvers. Master dissertation of Mas-sachusetts Institute of Technology. 2005:27~104
    80 C. Peng, E. Frazzoli, and S.M. LaValle. Improving the performance of Sam-pling-Based Planners by Using a Symmetry-Exploiting Gap Reduction Algo-rithm. IEEE International Conference on Robotics and Automation, Illinois Univ., Urbana, IL, USA, 2004, 5:4362~4368
    81 M. Freed, P. Bonasso, and M. Ingham, et al. Trusted Autonomy for Space Flight Systems. AIAA 1st Space Exploration Conference, Orlando, USA. 2005:1~14. AIAA-2005-2521
    82 李智斌. 航天器智能自主控制技术发展现状与展望. 航天控制. 2002, (4):1~8
    83 吴宏鑫. 航天控制的发展方向—航天器智能自主控制. 控制工程. 2001, (5-6):40~46
    84 廖明宏,耿云海,吴翔虎,程光明. 小卫星姿控与星务管理的一体化设计. 中国空间科学技术. 2001, 21(2):31~36
    85 代树武,孙辉先. 卫星运行中的自主控制技术. 空间科学学报. 2002, 22(2):147~153
    86 黄翔宇. 探测器自主导航方法及在小天体探测中的应用研究. 哈尔滨工业大学博士学位论文. 2005:17~18, 25~27
    87 T. Misu, T. Hashimoto, and K. Ninomiya. Optical Guidance for Autonomous Landing of Spacecraft. IEEE Transactions on Aerospace and Electronics Systems. 1999, 35(2):459~473
    88 汤锡生,陈贻迎,朱民才. 载人飞船轨道确定和返回控制. 国防工业出版社, 2002:401~437
    89 D. J. O’Shaughnessy, R. M. Vaughan. MESSENGER Spacecraft Pointing Options. Advances in the Astronautical Sciences. 2003, 114:747~766
    90 P. K. Seidelmann, V.K. Abalakin, and M. Bursa, et al. Report of the IAU/IAG Working Group On Cartographic Coordinates and Rotational Ele-ments of the Planets and Satellites: 2000. Celestial Mechanics and Dynami-cal Astronomy. 2002, 82:83~110
    91 N. Capitaine. Definition of the Celestial Ephemeris Pole and the Celestial Ephemeris Origin. K. J. Johnston, D. D. McCarthy, B. J. Luzum, and G. H. Kaplan. Towards Models and Constants for Sub-Microarcsecond Astrometry. Proceedings of IAU Colloquium 180, U.S. Naval Observatory, Washington,DC, USA, 2000:153~163
    92 刘林. 航天器轨道理论. 国防工业出版社. 2000:53~55
    93 W. H. Goodyear. Completely General Closed-Form Solution for Coordinates and Partial Derivatives of the Two-Body Problem. The Astronomical Journal. 1965, 70(3):189~192
    94 M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1972:Chapter 22
    95 魏二虎,柴华. GPS 精密星历插值方法的比较研究. 全球定位系统. 2006, (5):13~20
    96 I, Roundhill. D. Roth. Satellite Ephemerides Update Schedule for the Cas-sini Mission. Advances in the Astronautical Sciences. 2003, 114:1391~1406
    97 T. R. Kane, P. W. Likins, and D. A. Levinson. Spacecraft Dynamics. McGraw-Hill Book Company. 1983. 黄克累,张安厚译. 航天飞行器动力学. 科学出版社,1988:81~82
    98 B. Wie, D. Bailey, and C. Heiberg. Rapid Multitarget Acquisition and Point-ing Control of Agile Spacecraft. Journal of Guidance, Control, and Dynam-ics. 2002, 25(1):96~104
    99 B. G. Paczkowski, T. L. Ray. Cassini Science Planning Process. SpaceOps 2004 Conference. Montreal, Canada, 2004:1~10
    100 周江华,苗育红,王明海. 姿态运动的 Rodrigues 参数描述. 宇航学报. 2004, 25(5):515~519
    101 K. Y. Pimenov, R. Z. Sagdeev, and K. Karavasilis. Attitude Control of a 3-Axis Stabilized Spacecraft with Solar Electric Propulsion during Orbital Maneuvers. Advances in the Astronautical Sciences. 2002, 108:1035~1045
    102 A Cayley. On the Motion of Rotation of a Solid Body. Cambridge Mathe-matics Journal, 1843, 3:224~232
    103 C. Lacuisse. Asteroid Fly-by Mode: Definition and Justification. RO-MMT-TN-2040, Issue 1, Matra Marconi Space (MMS). 1999
    104 K. D. Bilimoria, B. Wie. Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft. Journal of Guidance, Control, And Dynamics. 1993, 16(3): 446~452
    105 S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. TR 98-11, Computer Science. Dept., Iowa State Univ. 1998:1~4
    106 J. J. Kuffner Jr, S. M. LaValle. RRT-Connect: An Efficient Approach to Single-Query Path Planning. IEEE International Conference on Robotics & Automation, San Francisco, CA, USA. 2000:995~1001
    107 E. Skulsky, P. Koeing. Attitude Visualization of the Cassini Spacecraft Us-ing Dview. Jet Propulsion Laboratory. 1997:1~8
    108 B. A. Streiffert, C. A. Polanskey, T. O.'Reilly, J. Colwell. Science Opportu-nity Analyzer - A Multi-Mission Approach to Science Planning. IEEE Aerospace Conference, 2003, 8:3615~3627
    109 C. A. Polanskey, B. Streiffert, T. O'Reilly, J. Colwell. Advances in Science Planning Tools with the Science Opportunity Analyzer. SpaceOps 2002 Conference, Huston, Texas, USA, 2002:1~10
    110 李洪儒,高文辉,冯振声. 大型飞行器的面向对象仿真研究. 测控技术. 1999, 18(6):15~17
    111 李嘉林,董杰. 面向对象的战斗机飞行仿真建模初探. 系统仿真学报. 2003, 15(5):634~636
    112 商重阳,刘艳,高正红. 基于面向对象技术的飞行控制系统仿真框架. 系统仿真学报. 2006, 18(2):472~474
    113 许阳,梁彦,杨峰,潘泉. 面向对象方法的一类飞行器模拟器设计与实现. 火力与指挥控制. 2007, 32(5):24~26
    114 F. Landis Markley. Attitude Determination Using Two Vector Measure-ments. J. P. Lynch eds. NASA/GSFC Flight Mechanics Symposium. Greenbelt, Maryland, USA. 1999: 39~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700