纳米光镊系统的研制及微小力学量的测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从光镊问世至今已有二十年,它已从最初单纯的捕获操控微粒的装置,发展成了今天集高精度操控和微小力学参数测量于一体的实验系统,已经成为生物学,纳米科学和分散体系等涉及微小粒子的领域的一种理想研究手段。随着这些领域的发展,人们对光镊系统和相关实验方法与技术不断提出新的要求。本研究就是以满足这种日益增长的需求为目标来展开的,包括设计研制一套全新的多功能光镊实验平台——纳米光镊系统,探索更高精度更高效率的实验方法。论文特别着重于对关键的光镊测量技术的分析研究,建立了相匹配的测量系统,并对目前常用的测量方法所存在的问题进行了细致的讨论和探究,以期为完善和发展新的实验方法提供有用的基础。
     光镊实验系统是利用光镊技术进行实验研究的基础,我们的工作的第一步就是设计研制全新的光镊实验系统。基于对自身研究方向对实验系统的要求,确定了设计的基本考虑和目标。一是要有多个可独立操控的光镊,二是系统应有高的操控精度和测量精度,以适应微小粒子运动学、动力学过程和粒子间相互作用的研究。通过调研国际上已有实验装置的经验,我们选择了三光镊的方案,并针对不同操控维度的具体条件,设计了主动操控和被动操控两种操控模式。在满足纳米精度的操控要求下,选择了不同精度的操控驱动方案(压电驱动和步进电机驱动),来完成不同维度的操控,既可以实现几个光镊同时对样品进行纳米精度的操控,又可以保证对样品具有较大的操控范围,同时也降低了装置构建的费用。为了使系统兼有高的空间分辨率和时间分辨率,装置中配置了二套探测系统:CCD图像探测系统和四象限光电探测系统(QD),引进或提出了一些针对不同实验条件的实验方法,诸如CCD图像相关运算分析法和四象限探测器系统结合背散射光照明方法,并开发了相关的数据分析软件。论文还讨论了光阱刚度标定问题,分析比较了不同方法的精度和特点,在此基础上为系统配置了合用的标定方法。实际应用表明,所建立的纳米光镊系统的位置定位精度和探测精度已经达到了亚纳米量级,微小力的测量精度达到了亚皮牛量级,满足了微小粒子个体行为研究的需求。
     在微小粒子个体行为的研究中常需要测量粒子运动过程中的微小力学量,比如位移和力等物理量等。这时测量精度具有头等重要的意义。论文着重研究了微粒位置和微小力的测量方法,特别是微粒位置的精确测量问题,它不仅是运动学的基本物理量,也是光阱刚度标定的基础。论文围绕这一中心问题,重点研究了采集系统带宽和刚度标定实验中样品的纵向偏移这两个参数对实验测量带来的影响。
     由于样品在液体环境中所做布朗运动的频率很高,而任何采集系统的带宽都是有限的,都要比布朗运动的带宽低几个量级,因此使用这些采集系统都会损失一定的高频信号,对应在光镊系统中就会导致实验中所测量到的位移具有较大的误差。通过使用Monte-Carlo数值模拟方法,我们从时域的角度研究了不同的实验条件下,采集系统曝光时间的有限长度(或带宽不足)给位置测量和使用热运动分析法进行刚度标定带来的影响。从这一视角进行的分析是对传统的频域分析的补充。通过对数值模拟结果的分析,我们讨论了带来误差的原因,以及使用热运动分析法来标定刚度时所需要的带宽。
     影响光镊测力精度的重要因素是其刚度标定。在文献中很早就报道过这样的一个现象:当光阱中的粒子受到横向外力(通常为粘滞力)作用时,不仅在横向上会偏离光阱中心,而且在纵向上也会出现一个偏移。但是一直以来,很少有人对这个现象及可能给实验研究带来的影响进行系统的研究。我们首先从实验上测量了光阱捕获的粒子在横向外力下的纵向偏移量与横向偏移量之间的关系。实验结果表明:样品受到横向力作用时,新的平衡位置并不是与光阱中心处在同一水平面,其纵向位置随着横向位移增加而升高。我们进而使用几何光学模型分析光阱中微粒受到的光阱力的分布,由此计算了微粒的纵向平衡位置轨迹,计算结果与实验测量的结果一致。由于这个现象与使用流体力学法进行横向力测量的前提假设相矛盾,因此必然会给测量结果带来误差。然而,分析也表明,在使用流体力学法标定光阱横向刚度时,只要保证样品的横向位置不超过一定的值,其误差可以忽略;但对最大横向阱力的测量,流体力学法所测量到的实际上是逃逸阱力,这个值比实际的最大横向阱力要小很多。上述讨论表明,为了更精确的测量光阱力,必须发展新的刚度标定方法。
It has been over twenty years since optical tweezers are invented. At first, Optical tweezers are just a simple facility for trap and manipulate micro sized particles. But now, it has become a complex experiment setup consisting of the high precision manipulation and the measurement of small mechanical quantities. Optical tweezers can manipulate many kinds of particles with submicron to tens of microns diameter, including cells, organelles, and polymer beads. Such particles are usually the subject investigated in biology, nanophase materials, and disperse system fields. At present, optical tweezers technique can position and detect the trapped particles in sub nanometer magnitude, and it can precisely measure the small force between sub piconewton to hundreds of piconewtons. The displacements and small forces studied in biology and disperse system are just in such magnitudes. Additionally, because the specimen manipulation by optical tweezers is non-contact, there's mechanical damage on the specimen. All the characters of optical tweezers make it very suitable for being applied in biology and disperse system fields.
     Along with the development of biology studies, especially in the biological macromolecules researches, there are new requests to optical tweezers technique because it is a very important means in these fields. Our study is just to fulfill these increasing requests. In order to follow this situation, we have begun to upgrade the optical tweezers system in our lab and seeking for more precise and efficient experiment methods. This thesis is mainly about comprehensively upgrading the study ability of optical tweezers technique in our lab. We have designed a new multi-functional experimental setup: nanometer optical tweezers system, introduced or brought forward some experiment methods for different experiment conditions, analyzed the measurement accuracy of these methods, and studied the influence of two parameters, the bandwidth of the acquisition system and the axial deviation of specimen in the experiments, on the measurements of the mechanical quantities.
     Because optical tweezers setup is the base of the experiment researches using optical tweezers technique, the first step of our job is the design of a new optical tweezers setup. Through the surveys of the setups in other labs and the analysis of our own needs, our design emphasis is finally put on the combination of multi optical tweezers and the upgrade of the accuracies of the manipulation and measurement. In order to study the biological macromolecules and the interaction between the molecules, we have to manipulate several molecules at the same time. We finally choose the project of treble optical tweezers. In the setup, we use several piezoelectric and stepping motor devices. Based on these devices, we design two manipulation modes: initiative manipulation mode and passive manipulation mode. In the experiments, combining these two manipulation modes, we can manipulate three specimens with very high precision and rather big area at the same time.
     In the experiments, we usually need to measure some small mechanical quantities, for example, the displacements and the forces. Force measurement needs the stiffness of the optical tweezers first, and the stiffness calibration is generally based on the analysis of the specimen movements, so the displacement measurement is actually the foundation of all the mechanical quantities measurements. In our experiment setup, we use two projects to measure the specimen displacements in high precision. One is CCD system associated with correlation calculation of images; the other one is quadrant detector system associated with back scattering illumination. Each of these two projects has some merits and shortcomings, but they can reinforce each other. Combining these projects, the accuracy of the displacement measurement can reach sub nanometer, and the time resolution can reach sub milliseconds. Based on the high precision displacement measurement, we introduce four methods, thermal motion analysis method, drag force method, power spectrum method and periodic driving force method to calibrate the optical trap stiffness. We measure the accuracies of these methods by experiments and analyses, compare the errors of them, discuss the sources of the errors, and finally get the respective appropriate experiment condition of these four methods.
     The frequency of the Brownian motion of the specimen is quite high; however the bandwidth of any acquisition system is limited and much smaller than that of the Brownian motion. So when an acquisition system is used to measure the track of the Brownian motion, the high frequency signal of the motion will be dropped out. This causes the experimentally measured displacement has a large error. By using Monte-Carlo numerical modeling method, the influence of the insufficient bandwidth of the acquisition system on the displacement measurement and the stiffness calibration using the thermal motion analysis method is studied in the time domain. Through the analysis of the numerical modeling results, we discuss the source that brings on the error and the essential bandwidth when thermal motion method is used.
     It has been reported a few years ago that when the specimen endures a lateral force, it deviates from the optical trap center not only laterally but also axially. However, this phenomenon and the influence of it on the experiment measurements haven't been studied in detail. We first measure the relation between the axial deviation and the lateral deviation. The result shows that the equilibrium track of the specimen is not in the horizon plane that passes the trap center and the axial position lifts along with the increase of the lateral displacement. Then we calculate the equilibrium track of the specimen by using a ray optics model, the result is consistent with the experiment result. This phenomenon conflicts with the hypothetic premises of drag force method, so it surely brings on errors to lateral force measurement using drag force method. Through further analysis of force field of the optical trap, we can figure out the detailed effect of the axial deviation. When the drag force method is used to calibrate the lateral trap stiffness, the error brought by the axial deviation can be neglect as long as the lateral displacement of the specimen is less than a special value. However, when the drag force method is used to measure the max lateral trapping force, the measured force is actually the escape force, which is much less than the true max lateral trapping force.
引文
1. Amit D. Mehta, Matthias Rief, James A. Spudich, et al., Single-Molecule Biomechanics with Optical Methods. Science, 1999, 283:1689-1695.
    2.李银妹,《光镊原理、技术和应用》,中国科学技术大学出版社,1996。
    3. Finer, J. T., Simmons, R. M., Spudich, J. A.. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 1994, 368:113-119.
    4. H.T. Chen, Y.M.Li, L.R.Lou, H.W. Wang. High precision measurements in an optical tweezers for studying single biomolecule motion. Proceedings of SPLE, 2002, 4536:75-81.
    5. Robert M. Simmons, J. T. Finer, S. Chu et al., Quantitative Measurements of Force and Displacement Using an Optical Trap. Biophysical Journal, 1996, 70:1813-1822.
    6.尹良红,李银妹,楼立人,张达,陈洪涛。空心新型光阱的实验研究。中国激光,2003,30(3):211-215。
    7. Florin E.-L., Pralle A., Stelzer E.H.K., Horber J.K.H. Photonic force microscope calibration by thermal noise analysis. Appl. Phys. A, 1998, 66:S75-S78.
    8. C. Bustamante, S. Smith, J. Liphardt, D. Smith. Single-Molecule Studies of DNA Mechanics. Current Opinion in Structural Biology, 2000, 10:279-285.
    9. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and SM Block. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 1993,365:721-727.
    10. Veigel C., Colnccio L. M., et al. The motor protein myosin-I produces its working stroke in two steps. Nature, 1999, 396:530-533.
    11.周辉,李先锋,李银妹,楼立人等.光镊技术测量抗体/抗原大分子结合力新方法的建立。生物化学与生物物理学进展,2001,28(6)。
    12. Y. Arai, R.Yasnda, K. I. Akashi, et al. Tying a molecular knot with optical tweezers. Nature, 1999, 399:446-448.
    13. Sheng-hua Xu,Yin-mei Li,Li-ren Lou, Hong-tao Chen, Zhi-wei Sun, Steady patterns of microparticles formed by optical tweezers. J. Appl. Phys, 2002, 41:166-168.
    14.郭红莲,姚新程,李兆霖,张道中等.光镊系统中微小颗粒的位移和所受力的测量。中国科学(A),2002,32(2):97-102。
    15. Karl Otto Greulich, Micromanipulation by light in biology and medicine,1999.
    16. T. T. Perkins, S. R. Quake, D. E. Smith, S. Chu. Relaxation of a Single DNA Molecule Observed by Optical Microscopy. Science, 1994, 264:822-6.
    17. Frederick Gittes, Christoph F. Schmidt. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett., 1998, 23:7.
    18. Chi-Kuang Sun and Yin-Chieh Huang, Ping Chin Cheng, et al. Cell manipulation by use of diamond microparticles as handles of optical tweezers. J. Opt. Soc. Am., 2001, B: 18 1483.
    19. Lukas Novotny, Randy X. Bian, X. Sunney Xie. Theory of Nanometric Optical Tweezers. Phys. Rev. Lett., 1997, 79: 645.
    20. Jens-Christian Meiners, Stephen R. Quake. Femtonewton Force Spectroscopy of Single Extended DNA Molecules. Phys. Rev. Lett., 2000, 84: 5014.
    21. Nils Calander, Magnus Willander. Optical Trapping of Single Fluorescent Molecules at the Detection Spots of Nanoprobes. Phys. Rev. Lett., 2002, 89: 143603.
    22. C. Hoyer, S. Monajembashi, K. O. Greulich. Laser manipulation and UV induced single molecule reactions of individual DNA molecules. Journal of Biotechnology, 1996, 52: 65.
    23. Zong-Ping Luo, Kai-Nan An. Development and validation of nanometer manipulation and measurement system for biomechanical testing of single macro-molecule. Journal of Biomechanics, 1998, 31: 1075.
    24. A. Hoffmann, G. Meyer zu Horste, G. Pilarczyk, et al. Optical tweezers for confocal microscopy. Applied Physics B: Lasers and Optics, 2002, 71: 747.
    25. Mario Feingold. Single-molecule studies of DNA and DNA-protein interaction. Physica E, 2001, 9: 616
    26. Alex E. Knight, Claudia Veigel, Charles Chambers, et al. Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Progress in Biophysics & Molecular Biology. 2001, 77: 45.
    27. Tadashi Fujii, Yu-Long Sun, Kai-Nan An, et al. Mechanical properties of single hyaluronan molecules. Journal of Biomeehanics, 2002, 35: 527.
    28. Arthur E. Chiou, Wen Wang, Greg J. Sonek, et al. Interferometric optical tweezers. Opt. Comm. 1997, 133: 7.
    29. Paul C. Mogensen, Jesper Gluckstad. Dynamic array generation and pattern formation for optical tweezers. Opt. Comm., 2000, 175: 75
    30. Chun-Cheng Huang, Chia-Fong Wang, Dalip Singh Mehta, et al. Optical tweezers as sub-pico-newton force transducers. Opt. Comm. 2001, 195: 41.
    31. N. Malagnino, G. Pesce, A. Sasso, et al. Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Comm., 2002, 214: 15.
    32. Harald Felgner, Otto Muller, Manfred Schliwa. Calibration of light forces in optical tweezers. App. Opt., 1995, 34: 977.
    33. G. J. Sonek, R. H. Iturriaga. In situ microparticle analysis of marine phytoplankton cells with infrared laser-based optical tweezers. App. Opt., 1995, 34: 7731.
    34. Alexander Rohrbach, Ernst H. K, Stelzer. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. App. Opt. 2002, 41: 2494.
    35. Douglas E. Smith, Sander J. Tans, Steven B. Smith, et al. The bacteriophage 29 portal motor can package DNA against a large internal force. Nature, 2001, 413(6857): 748-752.
    36. Christian Tischer, Stephan Altmann, Samo Fisinger et al. Three-dimensional thermal noise imaging. Applied Physics Letters, 2001, 79(23): 3878-3880.
    37. G. V. Shivashankar, G. Stolovitzky, A. Libchaber. Backscattering from a tethered bead as a probe of DNA flexibility. Applied Physics Letters, 1998, 73(3): 291-293.
    38. G. V. Shivashankar, A. Libchaber. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer. Applied Physics Letters, 1997, 71(25): 3727-3729.
    39. Ernst-Ludwig Florin, J. K. Heinrich Horber, Ernst H. K. Stelzer. High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd: YAG laser. Applied Physics Letters, 1996, 69(4): 446-448.
    40. Klony Lieberman, Nily Ben-Ami, Aaron Lewis. A fully integrated near-field optical, far-field optical, and normal-force scanned probe microscope. Review of Scientific Instruments, 1996, 67(10): 3567-3572.
    41. Miklos S. Z. KeUermayer, Steven B. Smith, Henk L. Granzier, Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science, 1997, 276: 1112-1116.
    42. Miklos S. Z. Kellermayer, Steven B. Smith, Carlos Bustamante, Mechaniccal Fatigue in repetitively Stretched Single Molecules of Titin. Biophysical Journal, 2001, 80: 852-863.
    43. Yu-Long Sun, Zong-Ping Luo, Kai-Nan An, Stretching Short Biopolymers Using Optical Tweezers. Biochemical and Biophysical Research Communications, 2001, 286: 826-830.
    44. Tadashi Fujii, Yu-Long Sun, Kai-Nan An, Mechanical Properties of Single Hyaluronan Molecules. Journal of Biomechanics, 2002, 35: 527-531.
    45. G. V. Shivashankar, G. Stolovitzky, A. Libchaber, Backscattering from a Tethered Bead as a Probe of DNA Flexibility. Applied Physics Letters, 1998, 73: 291-293.
    46. A. Ashkin, J. M. Dziedzic, J. E. Bjorkhoim, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particle. Opt. Lett., 1986, 11:288.
    47. A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J.Sel.Top. Quantum Elec., 2000, 6:841-856.
    48, Yoshiharu Ishii, Toshio Yanagida, Single Molecule Detection in Life Science. Single Molecule, 2000, 1:s5-s16.
    49. K. Kitamura, M. Tokunaga, A. H. Iwane, A Single Myosin Head Moves Along an Actin Filament with Regular Steps of 5.3 Nanometers. Nature, 1999, 397:129.
    50. K. Visscher, M., L Schnitzer, S. M. Block, Single Kinesin Molecules Studied with a Molecular Force Clamp. Nature, 1999, 400:184.
    51. Y. Okada, N. Hirokawa, a Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science, 1999, 283:1152.
    52. K. Svoboda, C. F. Schmidt, S. M. Block, Direct Observation of Kinesin Stepping by Optical Trapping Interferometry, Nature, 1993, 365:721-727.
    53. Mark J. Schnitzer, Steven, M. Block, Kinesin Hydrolyses one ATP per 8-nm Step. Nature, 1997, 388:386.
    54. Mark J. Schnitzer, Keen Visscher, Steven, M. Block, Force Production by Single Kinesin Motors. Nature Cell Biology, 2000, 2:718.
    55. Ursula Gibson, Wolfgang Singer, Time Nieminen. Growth of Crystals in Optical Tweezers. Proceedings of SPIE, 593014: 1.
    56. A. Ashkin, J. M. Dziedzic. Optical levitation of liquid drops by radiation pressure. Science, 1975, 187:1073.
    57. Keir C. Neuman, Steven M. Block, Optical Trapping. Review of Scientific Instruments, 2004, 75:2787.
    58. David G. Grier, a Revolution in Optical Manipulation. Nature, 2003, 424:810.
    59. M. E. J. Friese, T. A. Nieminen, N. R. Hechenberg, Optical Alignment and Spinning of Laser-Trapped Microscopic Particles. Nature, 1998, 394:348
    60. Peter Galajda, Pal Ormos, Orientation of Flat Particles in Optical Tweezers by Linearly Polarized Light. Optics Express, 2003, 11:446.
    61. Bayoudh S, Nieminen T A, Heckenberg N R, et al., Orientation of biological cells using plane-polarized Gaussian beam optical tweezers [J]. J. Mod. Opt., 2003, 50(10): 1581~1590.
    62. Haowei Wang, Xiaohui Liu, Yinmei Li, Isolation of a Single Rice Chromosome by Optical Micromanipulation. J. Opt. A: Pure Appl. Opt, 2004, 6:89.
    63.王浩威,刘晓辉,李银妹等,应用光学位操作技术分选单条水稻染色体。生物物理学报,2004,20:50。
    64. Zhiwei Sun, Shenghua Xu, Guoliang Dal, a Microscopic Approach to Studying Colloidal Stability. Journal of Chemical Physics, 2003, 119:2399.
    65. Peter J. Pauzauskie, Aleksandra Dadenovic, Eliane Trepagnier, Optical Trapping and Integration of Semiconductor Nanowire Assemblies in Water. Nature Materials, 2006, 5:97.
    66. Eric R. Dufresne, David G. Grier, Optical Tweezer Arrays and Optical Substrates Created with Diffractive Optics. Review of Scientific Instruments, 1998, 69:1974.
    67. A.D. Ward, A. W. Parker, S. W. Botchway, Development of Raman Tweezers. Central Laser Facility Annual Report, 2001/2002, 198.
    1. G. V. Shivashankar, G. Stolovitzky, A. Libchaber, Backscattering from a Techered Bead as a Probe of DNA Flexibility. Applied Physics Letters, 1998, 73:291-293.
    2. Andy Sischka, Rainer Eckel, Katja Toensing, Compact Microscope-Based Optical Tweezers System for Molecular Manipulation. Review of Scientific Instruments, 2003, 74:4827.
    3. K Volke-Sepulveda, V Garces-Chavez, S Chavez-Cerda, Orbital Angular Momentum of a High-Order Bessel Light Beam. Journal, of Optics B: Quantum and Semiclassical Optics, 2002, 4:s82.
    4. Ivan R. Perch-Nielsen, Emma Eriksson, Mattias Goksor, Sorting Particles in a Microfluidic System using SLM-Reconfigurable Intensity Patterns. Proceedings of SPIE, 60881H-1.
    5. Robert M. Simmons, J. T. Finer, S. Chu et al., Quantitative Measurements of Force and Displacement Using an Optical Trap. Biophysical Journal 1996, 70:1813-1822.
    6. T.T. Perkins, Quake, D. E. Smith, Relaxation of a Single DNA Molecule Observed by Optical Microscopy. Science, 1994, 264:822.
    7. H.T. Chen, Z. Gong, Y.M. Li, L.R. Lou, D. Zhang, L.H. Yin, The comparison of trap stiffness between a solid mode optical trap and a do-nut mode optical trap. Proceedings of SPIE, 2002, 4927:333-339.
    8. H. T. Chen, Y.M.Li, L.R. Lou, Z.Gong, Single molecules detection system of optical tweezers. Proceedings of SPIE, 2002, 4923:98-105.
    1.李银妹,光镊原理、技术和应用。合肥:中国科学技术大学出版社,1996,8-18。
    2. Ashkin A, Dziedic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles. J. Opt Lett, 1986, 11(5):288-290.
    3. H.T. Chen, Y.M.Li, L.R.Lou, et al. High precision measurements in an optical tweezers for studying single biomolecule motion. C. Britton Chance. Photonics and Imaging in Biology and Medicine, Proceedings of SPIE, 2001, Vol.4536:75-81.
    4. H.L. Guo, X.C Yao, Z.L Li. et al. Measuring displacement and force applied on particles in optical tweezers. J. Science in China, 2002, 32(2):97-102.
    5. H.T. Chen, Y.M.Li, L.R.Lou, et al.Single molecules detection in optical tweezers. Xing Zhu. Nano-Optics and Nano-Structures, Proceedings of SPIE Vol. 4923:98-105.
    6. Robert M.Simmons, J.T.Finer, S.Chu etc. Quantitative Measurements of Force and Displacement Using an Optical Trap. J.Biophysical Journal,1996, 70:1813-1822.
    7. Karl Otto Greulich. Micromanipulation by light in biology and medicine: the laser microbeam and optical tweezers.Berlin: Birkhauser Verlag, 1999. 90-96.
    8. Florin E.-L., Pralle A., Stelzer E.H.K., et al. Photonic force microscope calibration by thermal noise analysis. J. Appl. Phys. A, 1998, 66:S75-S78.
    9. John Bechhoefer and Scott WilsonFaster, Cheaper, safer optical tweezers for the undergraduate laboratory. Am. J. Phys. 2002,70(4): 393-400.
    10. Z. Gong, H.T. Chen, S.H. Xu, et al. Influence of the bandwidth of an acquisition system on stiffness measurement of optical trap. Proceedings of SPIE, 2004, 5635.
    11. Zan Gong, Hongtao Chen, Shenghua Xu, Monte-Carlo simulation of optical trap stiffness measurement. Optics Communications, 2006, 263:229-234.
    12. G. V. Shivashankar, G. Stolovitzky, A. Libchaber, Backscattering from a Techered Bead as a Probe of DNA Flexibility. Applied Physics Letters, 1998, 73:291-293.
    13.陈洪涛,李银妹,楼立人,光镊技术中的纳米位移探测及其测量误差讨论,中国激光,2004,31。
    14. J. H. Bao, Y. M. LI, L. R. Lou, Information entropy method for measuring the axial displacement of a bead and its application to analyzing the trapping force of optical trap. Proceedings of SPIE, 2004, 5637:305.
    15.龚錾,陈洪涛,李银妹,四种光阱刚度测量法的实验研究与比较。中国科大学报,2005,35:601。
    1. Robert M.Simmons, J. T. Finer, S. Chu etc., Quantitative Measurements of Force and Displacement Using an Optical Trap.J. Biophysical Journal, 1996, 70:1813.
    2. Karl Otto Greulich. Micromanipulation by light in biology and medicine: the laser microbeam and optical tweezers, Basel, Birkhauser, 1999.
    3. A. Buosciolo, G. Pesce, A. Sasso, New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Optics Communications, 2004, 230:357.
    4. Keen Visscher, Steven P. Gross, Steven M. Block, Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing. IEEE J. OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2:1066.
    5. Kirstine Berg-Sφreusen, Henrik Flyvbjerg, Power Spectrum Analysis for Optical Tweezers, Review of Scientific Instruments, 2004, 75:594.
    6. Risken H., The Fokker-Planck Equation, Springer-Verlag, Berlin 1989.
    7. Shenhua Xu, Yinmei Li, Liren Lou etc., Computer simulation of the collision frequency of two particles in optical tweezers. Chinese Physics, 2005, 14:352.
    8. M.Capitanio, G. Romano, R. Ballerini etc., Calibration of optical tweezers with differential interference contrast signals. Review of Scientific Instruments, 2002, 73:1687.
    9. Mingjun You, the Fourier Optics, Weapon Industry Publishing House, Beijing 2000.
    10. Zan Gong, Hongtao Chen, Shenghua Xu, Yinmei Li, Liren Lou, Influence of the bandwidth of an acquisition system on the trap stiffness measurement. Proceedings of SPIE, 2004, 5635:262-265.
    11. Zan Gong, Hongtao Chen, Shenghua Xu, Yinmei Li, Liren Lou, Monte-Carlo simulation of optical trap stiffness measurement. Optics Communications, 2006, 263(2):229-234.
    1. Tadashi Fujii, Yu-Long Sun, Kai-Nan An, et al., Mechanical Properties of Single Hyaluronan Molecules. Journal of Biomechanics, 2002, 35:527.
    2. Steven B. Smith, Yujia Cui, Carlos Bustamante, Overstretching B-DNA:-The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules, Science, 1996, 271:795.
    3. Keir C. Neuman, Steven M. Block, Optical Trapping. Review of Scientific Instruments, 2004, 75:2787.
    4. Shen Weimin, Li Yinmei, Yue Jiachang, et al., Measuring the Adhesion of Biomacromolecules by Optical Tweezers. Chinese Applied Optics, 2004, 24:233.
    5. Karl Otto Greulich. Micromanipulation by light in biology and medicine: the laser microbeam and optical tweezers, Basel, Birkhauser, 1999.
    6. S. Reihani, Mohammad Charsooghi, Hamid Khalesifard, et al., Efficient In-depth Trapping with an Oil-immersion Objective Lens. Optics Letters, 2006, 31:766.
    7. S. Reihani, H. Khalesifard, R. Golestanian, et al., Measuring Lateral Efficiency of Optical Traps: The Effect of Tube Length, Optics Communications, 2006, 259:204.
    8. J.H. Bao, Y. M. Li, L. R. Lou, Information Entropy Method for measuring the axial displacement of a bead and its application to analyzing the trapping force of optical trap, Proceedings of SPIE, 2005,5637:305.
    9. A. Ashkin, Forces of a Single-beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophysical Journal, 1992, 61:569.
    10. Fabrice Merenda, Gerben Boer, Johann Rohner, etc., Escape Trajectories of Single-beam Optically Trapped Micro-particles in a Transverse Fluid Flow. Optics Express, 2006, 14:1685.
    11. H.T. Chen, Y. M. Li, L. R, Lou, Single Molecules Detection System of Optical Tweezers, Proceedings of SPIE, 2002, 4923:98.
    12. Binhua Lin, Jonathan Yu, Stuart A. Rice, Direct Measurements of Constrained Brownian Motion of an Isolated Sphere Between Two Walls. Physical Review E, 2000, 62:3909.
    13. Zan Gong, Hongtao Chen, Shenghua Xu, Monte-Carlo Simulation of Optical Trap Stiffness Measurement, Optics Communications, 2006, 263:229.
    14. Shenghua Xu, Yinmei Li, Liren Lou, Axial Optical Trapping Forces on Two Particles Trapped Simultaneously by Optical Tweezers, Applied Optics, 2005, 44:2667.
    15. J. P. Barton, D. R. Alexander, and S. A. Schaub, Theoretical Determination of Net Radiation_Force and Torque for a Spherical Particle Illuminated by a Focused Laser Beam, Journal of Applied Physics, 1989, 66:4594.
    16. Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Cambridge University Press, Cambridge, 2001.
    17. Erik Faillman, Ove Axner, Influence of a Glass-Water Interface on the On-Axis Trapping of Micrometer-Sized Spherical Objects by Optical Tweezers. Applied Optics, 2003, 42:3915.
    18. Zan Gong, Zhong Wang, Yinmei Li, Liren Lou and Shenghua Xu, Axial deviation of an optically trapped particle in trapping force calibration using the drag force method. Optics Communications, 273(1), 37-42, 2007.
    19.鲍建华,龚錾,陈洪涛,王忠,李银妹,楼立人,粒子的轴向位移对光阱力学参数标定的影响。中国激光,32(10),1421-1424,2005。
    20.王忠,李银妹,楼立人,王浩威,龚錾,双光阱法测量光阱横向力场分布。中国激光,33(2),195-198,2006。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700