拟南芥磷脂酶Dzeta2通过影响囊泡运输促进了植物对生长素的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷脂酶D是普遍存在于细菌、真菌、植物及动物中的一类磷脂水解酶,可以水解磷脂分子内特定的酯键从而生成磷脂酸PA和自由的头部基团分子。在植物中,PLD及其产物PA参与了逆境胁迫、激素响应、囊泡运输、细胞骨架蛋白重组等多个细胞过程。为了在植物中研究磷脂酶D的生理功能,我们在拟南芥中分离得到了AtPLDζ2的全长cDNA克隆,并对其生理功能进行了初步研究。
     不同组织的RT-PCR以及对启动子区域驱动的GUS转基因植株进行染色分析,揭示了AtPLDζ2在多个组织中特异表达,并且该基因可以被生长素诱导表达。AtPLDζ2的缺失突变体atpldζ2、及缺失表达的转基因植株具有主根变短的表型,同时还降低了对外源生长素的敏感性、以及生长素调节的重力向性响应和高温下生长素促进的下胚轴伸长。AtPLDζ2的过量表达的转基因植株具有与atpldζ2及AtPLDζ2缺失表达的转基因植株完全相反的表型。PLD特异抑制剂1-butanol处理或AtPLDζ2的缺失表达可以降低生长素介导的DR5-GUS在根尖的分布以及早期生长素响应基因对生长素的响应。1-butanol处理植株还可以导致根部伸长区表皮细胞的膨大和生长素介导的DR5-GUS异常分布,并抑制生长素诱导的DR5-GUS在主根的伸长区大量积累以及生长素促进的侧根形成。外源添加PA或AtPLDζ2的过量表达可以促进DR5-GUS在根部维管束的积累以及生长素早期响应基因对生长素的响应,进一步阐明了AtPLDζ2及其产物PA在植物对生长素的响应过程中起到正向的调控作用。通过囊泡特异的荧光染料FM4-64对植株染色证明AtPLDζ2及其产物PA在植物细胞内影响了囊泡运输。进一步的实验证明,AtPLDζ2及其产物PA通过影响囊泡运输进而影响了生长素输出蛋白PIN1和PIN2在细胞质膜与细胞质之间的快速循环,从而介导了植物对生长素的响应过程。
Phospholipase D (PLD),which hydrolyzes phospholipids to produce phosphatidic acid (PA) and a free head group, has been detected in bacteria, fungi, plants, and animals. In plant, PLD as well as its product PA play key roles in numerous cellular processes including stress responses, hormone effects, membrane vesicle trafficking and cytoskeleton rearrangements. To elucidate the physiological functions of PLD, an Arabidopsis thaliana cDNA encoding AtPLDζ2, was isolated and functional characterized.
     AtPLDζ2 was constitutively expressed in various tissues and induced by auxin, and phenotypic analysis on the AtPLDζ2 defected mutant, atpldζ2, and transgenic plants deficiency of AtPLDζ2 showed they were insensitive to auxin, and also have reduced root gravitropism and suppressed auxin-dependent hypocotyls elongation under high temperature (29oC); while the transgenic seedlings overexpressing AtPLDζ2 showed opposite responses, suggesting AtPLDζ2 positively mediates auxin signaling. Further studies using seedlings containing DR5-GUS construct and on the expression profiles of early auxin responsive genes indicated that AtPLDζ2, or PA, stimulated auxin responses. Observations on the internalization of membrane selective dyes FM4-64 showed the suppressed vesicle trafficking under deficiency of AtPLDζ2 or by treatment with PLD specific inhibitor 1-butanol, whereas which was obviously enhanced under PA or enhanced AtPLDζ2. 1-butanol has no effects on the localization of PIN1 and PIN2, but blocks the inhibition of BFA on PIN1 and PIN2 cycling. These results suggest that AtPLDζ2 and its product PA, stimulates auxin responses via accelerating vesicle trafficking.
引文
1. Abel San and Theologis A. (1996) Early genes and auxin action. Plant Physiol 111, 9-17.
    2. Alfandari, D., and Darribère, T. (1994). A simple PCR method for screening cDNA libraries. PCR Methods Appl. 4, 46–49.
    3. Alonso, J.M., Stepanova, A.N., Leisse, T.J., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 301, 653–657.
    4. Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L. (2004). A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J. 23, 572-81.
    5. Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
    6. Benjamins, R., Quint, A., Weijers, D., Hooykaas, P., and Offringa, R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development. 128, 4057-67.
    7. Bennett, M.J., Marchant, A., May, S.T., and Swarup, R. (1998). Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci. 353, 1511-5
    8. Bi, K., Roth, M.G., and Ktistakis, N.T. (1997). Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol. 7, 301-307.
    9. Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N.D., and Satiat-Jeunemaitre, B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc. 214, 159-173.
    10. Cai, S., and Exton, J. H. (2001) Determination of interaction sites of phospholipase D1 for RhoA. Biochem. J. 355, 779-785.
    11. Carland, F.M., and Nelson, T. (2004). Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell.16, 1263-75.
    12. Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G. and Bennett, M.J. (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165-171.
    13. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
    14. Cruz-Ramirez A, Lopez-Bucio J, Ramirez-Pimentel G, Zurita-Silva A, Sanchez-Calderon L, et al. (2004). The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. Plant Cell. 16, 2020-34.
    15. de Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, and Grant M. (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact. 15, 808-16.
    16. Dean Rouse, Pamela Mackay, Petra Stirnberg, Mark Estelle, Ottoline Leyser. (1998) Changes in Auxin Response from Mutations in an AUX/IAA Gene Science 279,1371-3.
    17. Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T. (2003) Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell. 15, 2666-79.
    18. Elge, S., Brearley, C., Xia, H.J., Kehr, J., Xue, H.W., and Mueller-Roeber, B. (2001). An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant J. 26, 561-71.
    19. Ellis MV, U S, and Katan M. (1995) Mutations within a highly conserved sequence present in the X region of phosphoinositide-specific phospholipase C-delta 1. Biochem J. 307, 69-75.
    20. Ercetin, M.E., and Gillaspy, G.E. (2004). Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol. 135, 938-46.
    21. Estelle, M. (1992).The plant hormone auxin: insight in sight. Bioessays. 14, 439-44.
    22. Evans, M.L., Moore, R., and Hasenstein, K.H. (1986). How roots respond to gravity. Sci Am. 255,112-9.
    23. Fan, L. Zheng, S., and Wang, X. (1997). Antisense suppression of PLD retards abscisic acid- and ethylene-promoted senescence in postharvest Arabidopsis leaves. Plant Cell. 9, 2183-2196.
    24. Frank W, Munnik T, Kerkmann K, Salamini F, and Bartels D. (2000). Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum.Plant Cell. 12, 111-24.
    25. Freeman EJ, Chisolm GM, and Tallant EA. (1995) Role of calcium and protein kinase C in the activation of phospholipase D by angiotensin II in vascular smooth muscle cells. Arch Biochem Biophys. 319, 84-92.
    26. Freyberg, Z., Siddhanta, A., and Shields, D. (2003). "Slip, sliding away": phospholipase D and the Golgi apparatus.Trends Cell Biol. 13, 540-6.
    27. Garbers, C., DeLong, A., Deruére, J., Bernasconi, P., and S?ll, D. (1996). A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15, 2115–2124.
    28. Gardiner, J., Collings, D.A., Harper, J.D., and Marc, J. (2003). The Effects of the Phospholipase D-Antagonist 1-Butanol on Seedling Development and Microtubule Organisation in Arabidopsis. Plant and Cell Physiology. 44, 687-696.
    29. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., and Jurgens, G. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell. 112, 219-30.
    30. Geldner, N., Friml, J., Stierhof, Y.D., Jurgens, G., and Palme, K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 413, 425-428.
    31. Gil, P., Dewey, E., Friml, J., Zhao, Y., Snowden, K.C., Putterill, J., Palme, K., Estelle, M., and Chory, J. (2001). BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 15, 1985-97.
    32. Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P., and Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis Proc. Natl. Acad. Sci. USA. 95, 7197-202.
    33. Grebe, M., Friml, J., Swarup, R., Ljung, K., Sandberg, G., Terlou, M., Palme, K., Bennett, M.J., and Scheres, B. (2002). Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol. 12, 329-34.
    34. Grebe, M., Xu, J., Mobius, W., Ueda, T., Nakano, A., Geuze, H.J., Rook, M.B., and Scheres, B. (2003). Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378–87.
    35. Hepler, P.K., Vidali, L., and Cheung, A.Y. (2001). Polarized cell growth in plants. Annu Rev Cell Dev Biol. 17, 159–187.
    36. Hirayama T, Ohto C, Mizoguchi T, and Shinozaki K. (1995) A gene encoding a phosphatidylinositol specific phospholipase C is induced by dehydration and salt stressin Arabidopsis thaliana. Proc Natl Acad Sci U S A. 92, 3903-7.
    37. Holk, Roland U. Paul and ré & Scherer, and Günther F.E. (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J. 16, 601–611.
    38. Huang S, Gao L, Blanchoin L, Staiger CJ. (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic Acid. Mol Biol Cell. 17, 1946-58.
    39. Huang, P., Altshuller, Y.M., Hou, J.C., Pessin, J.E., and Frohman, M.A. (2005). Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter containing vesicles is regulated by phospholipase D1. Mol Biol Cell. 16, 2614-23.
    40. Hunt, L., Otterhag, L., Lee, J. C., Lasheen, T., Hunt, J., Seki, M, Shinozaki, K., Sommarin, M., Gilmour, D. J., and Pical, C. & Gray, J. E. (2004) Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytologist 162, 643-654.
    41. Hunziker W, Whitney JA, Mellman I. (1992) Brefeldin A and the endocytic pathway. Possible implications for membrane traffic and sorting. FEBS Lett. 307, 93-6.
    42. Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, and Suh PG.(2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J. 389, 181-6.
    43. Jacob T, Ritchie S, Assmann SM, Gilroy S. (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity Proc Natl Acad Sci U S A. 96, 12192-7.
    44. Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter. 5, 387–405.
    45. Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana Plant J. 43,107-17.
    46. Katagiri T, Takahashi S, and Shinozaki K. (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 26, 595-605.
    47. Katekar, G.F., and Geissler, A.E. (1980) Auxin transport inhibitors: IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiol. 66, 1190-1195
    48. Kato, T., Morita, M.T., Fukaki, H., Yamauchi, Y., Uehara, M., Niihama, M., and Tasaka, M. (2002). SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, areinvolved in the shoot gravitropism of Arabidopsis. Plant Cell. 14, 33-46.
    49. Kelley GG, Reks SE, Ondrako JM, and Smrcka AV. (2001) Phospholipase Cε: a novel Ras effector. EMBO J. 20, 743-754.
    50. Klausner, R.D., Donaldson, J.G., and Lippincott-Schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 116, 1071-80.
    51. Kooijman, E.E., Chupin, V., de Kruijff, B., and Burger, K,N. (2003). Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic. 4, 162-74.
    52. Kopka J, Pical C, Gray JE, and Müller-R?ber B (1998) Molecular and Enzymatic Characterization of Three Phosphoinositide Specific Phospholipase C Isoforms from Potato. Plant Physiol. 116, 239-250.
    53. Kusner, D.J., Barton, J.A., Qin, C., Wang, X., and Iyer, S.S. (2003). Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch Biochem Biophys. 412, 231-41.
    54. Kwak, J.M., Moon, J.H., Murata, Y., Kuchitsu, K., Leonhardt, N., DeLong, A., and Schroeder, J.I. (2002). Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14, 2849–2861.
    55. Lachaal, M., Moronski, C., Liu, H., and Jung, C.Y. (1994). Brefeldin A inhibits insulin-induced glucose transport stimulation and GLUT4 recruitment in rat adipocytes. J Biol Chem. 269, 23689-93.
    56. Laxalt A.M., and Munnik T. (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol. 5,332-8.
    57. Lee H.Y, Bahn SC, Shin JS, Hwang I, Back K, Doelling JH, and Ryu SB. (2005) Multiple forms of secretory phospholipase A2 in plants. Prog Lipid Res. 44, 52-67.
    58. Lee, H.Y., Bahn, S.C., Kang, Y.M., Lee, K.H., Kim, H.J., Noh, E.K., Palta, J.P., Shin, J.S., and Ryu, S.B. (2003). Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell. 15, 1990-2002
    59. Leyser O. (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell. 121, 819-22.
    60. Li W, Li M, Zhang W, Welti R, and Wang X. (2004). The plasma membrane-bound phospholipase Dd enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnol 22, 427–33.
    61. Liscovitch M., Czarny M, Fiucci G, and Tang X. (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem J. 345, 401-15.
    62. Liu, W., Xu, Z.H., Luo, D., and Xue, H.W. (2003). Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J. 36, 189–202.
    63. Manifava, M., Thuring, J.W., Lim, Z.Y., Packman, L., Holmes, A.B., and Ktistakis, N.T. (2001). Differential Binding of Traffic-related Proteins to Phosphatidic Acid- or Phosphatidylinositol (4,5)- Bisphosphate-coupled Affinity Reagents. J Biol Chem. 276, 8987-94.
    64. Mario J.R. and Srinivas N.P. (2000) Structure, Function, and Control of Phosphoinositide Specific Phospholipase C. Physiol. Rev. 80, 1291-1335.
    65. Meijer HJ, and Munnik T. (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol. 54, 265-306.
    66. Misson, J., Raghothama, K.G., Jain, A., Jouhet, J., Block, M.A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., and Thibaud, M.C. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA. 102, 11934-9.
    67. Monteiro, D., Liu, Q., Lisboa, S., Scherer, G.E., Quader, H., and Malho, R. (2005). Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J. Exp. Bot. 56, 1665-1674.
    68. Morris, A.J., Engebrecht, J., and Frohman, M.A. (1996). Structure and regulation of phospholipase D. Trends Pharmacol. Sci. 17, 182-185.
    69. Motes, C.M., Pechter, P., Yoo, C.M., Wang, Y.S., Chapman, K.D., and Blancaflor, E.B. (2005). Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma. 226, 109-23.
    70. Muday, G.K. (2001). Auxins and tropisms. J Plant Growth Regul. 20, 226-43.
    71. Muday, G.K., and Murphy, A.S. (2002). An emerging model of auxin transport regulation. Plant Cell. 14, 293–299.
    72. Munnik, T. (2001). Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6, 227-233.
    73. Munnik, T., Arisz, S.A., De Vrije, T. and Musgrave, A. (1995). G protein activation stimulates phospholipase D signaling in plants. Plant Cell, 7, 2197–2210.
    74. Nacry, P., Canivenc, G., Muller, B., Azmi, A., Van, Onckelen. H., Rossignol, M.,and Doumas, P. (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 138, 2061-74.
    75. Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M.T., Sawa, S., Koshiba, T., Shimada, Y., and Yoshida, S. (2003). Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol. 133,1843-53.
    76. Nebenführ, A., Ritzenthaler, C., and Robinson, D.G. (2002). Brefeldin A: Deciphering an enigmatic inhibitor of secretion. Plant Physiol. 130, 1102–1108.
    77. Nie, Z., Stanley, K.T., Stauffer, S., Jacques, K.M., Hirsch, D.S., Takei, J., and Randazzo, P.A. (2002). AGAP1, an endosome-associated, phosphoinositide dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem. 277, 48965-75.
    78. Ohashi, Y., Oka, A., Rodrigues-Pousada, R., Possenti, M., Ruberti, I., Morelli, G., and Aoyama, T. (2003). Modulation of phospholipid signaling by GLABRA2 in root–hair pattern formation. Science. 300, 1427-1430.
    79. Otterhag L, Sommarin M, and Pical C. (2001) N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett. 497,165-70.
    80. Palmgren, MG and Sommarin, M. (1989) Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 90, 1009–1014.
    81. Pappan K, and Wang X. (1999). Plant phospholipase Dalpha is an acidic phospholipase active at near-physiological Ca(2+) concentrations. Arch Biochem Biophys. 368, 347-53.
    82. Pappan K, Zheng L, Krishnamoorthi R, and Wang X. (2004) Evidence for and characterization of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dbeta. J Biol Chem. 279, 47833-9.
    83. Park J, Gu Y, Lee Y, Yang Z, and Lee Y. (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134, 129–36
    84. Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J. and Jackson, C.L., (1999). Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285.
    85. Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V. (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta. 217,122-30
    86. Qin W, Pappan K, and Wang X. (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem. 272, 28267-73.
    87. Qin, C, and Wang, X. (2002). The Arabidopsis phospholipase D family: Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol. 128, 1057-1068.
    88. Rashotte, A.M., DeLong, A., and Muday, G.K. (2001). Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell. 13, 1683–1697.
    89. Ritchie S, Gilroy S. (1998) Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc Natl Acad Sci U S A. 95, 2697-702.
    90. Romanov, G.A., Kieber, J.J., and Schmulling, T. (2002). A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett. 515, 39-43.
    91. Roth, M.G., Bi, K., Ktistakis, N.T. and Yu, S. (1999). Phospholipase D as an effector for ADP-ribosylation factor in the regulation of vesicular traffic. Chem Phys Lipids. 98, 141-52.
    92. Rumenapp, U., Geiszt, M., Wahn, F., Schmidt, M., and Jakobs, K. H. (1995) Evidence for ADP-ribosylation-factor-mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor Eur. J. Biochem. 234, 240-4.
    93. Ryu SB, and Wang X. (1996) Activation of phospholipase D and the possible mechanism of activation in wound-induced lipid hydrolysis in castor bean leaves. Biochim Biophys Acta 1303, 243–50.
    94. Ryu SB. (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci. 9, 229-35.
    95. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 99, 463–472.
    96. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning; A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.
    97. Sanchez J.P, and Chua NH. (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals.Plant Cell 13, 1143-54.
    98. Sang Y, Cui D, and Wang X. (2001) Phospholipase D- and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126, 1449–58.
    99. Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C. (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc. 181, 162-77.
    100.Scherer G.F. (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol. Biol. 49, 357–372.
    101.Scherer, G.F., and Arnold, B. (1997) Inhibitors of animal phospholipase A2 enzymes are selective inhibitors of auxin-dependent growth. Implications for auxin-induced signal transduction. Planta 202, 462–469.
    102.Siddhanta, A., and Shields, D. (1998). Secretory Vesicle Budding from the Trans-Golgi Network Is Mediated by Phosphatidic Acid Levels. J. Biol. Chem. 273, 17995-17998.
    103.Siddhanta, A., Backer, J.M., and Shields, D. (2000). Inhibition of Phosphatidic Acid Synthesis Alters the Structure of the Golgi apparatus and Inhibits Secretion in Endocrine Cells. J. Biol. Chem. 275, 12023-12031.
    104.Stevenson-Paulik, J., Bastidas, R.J., Chiou, S.T., Frye, R.A., and York, J.D. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A. 102, 12612-7.
    105.Swann K, Larman MG, Saunders CM, and Lai FA. (2004) The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Reproduction. 127, 431-9.
    106.Sweeney, D.A., Siddhanta, A., and Shields, D. (2002). Fragmentation and Re-assembly of the Golgi Apparatus in Vitro A requirement for phosphatidic acid and phoshatidylinositol 4,5-bisphosphate synthesis. J. Biol. Chem. 277, 3030-39.
    107.Testerink C, Dekker HL, Lim ZY, Jones MK, Holmes AB, de Koster CG, et al. (2004) Isolation and identification of phosphatidic acid targets from plants. Plant J 39, 527–36.
    108.Testerink, C., and Munnik, T. (2005). Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci. 10, 368-375.
    109.Testerink, C., Dekker, H.L., Lim, Z., Johns, M.K., Holmes, A.B., Koster, C.G., Ktistakis, N.T. and Munnik, T. (2004) Isolation and identification of phosphatidicacid targets from plants. Plant J. 39, 527–536.
    110.Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, and Savoure A. (2004) Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana.J Biol Chem. 279, 14812-8.
    111.Tian, Q., Uhlir, N.J., Reed, and J.W. (2002). Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell. 14, 301-19.
    112.Tsakiridis, T., Vranic, M., and Klip, A. (1994). Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem. 269, 29934-42.
    113.Ueki J, Morioka S, Komari T, and Kumashiro T. (1995) Purification and characterization of phospholipase D (PLD) from rice (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.). Plant Cell Physiol. 36, 903-14.
    114.Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 9, 1963-1971.
    115.Wang C, Wang X. (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol. 127, 1102-12.
    116.Wang X., Devaiah SP., Zhang WH. and Welti R. (2006) Signaling functions of phosphatidic acid. Progress in Lipid Research, In Press.
    117.Wang, C., Zien, C. A., Afitlhile, M., Weilt, R., Hildebrand, D. F., and Wang, X. (2000). Involvement of Phospholipase D in Wound-Induced Accumulation of Jasmonic Acid in Arabidopsis. Plant Cell. 12, 2237-2246.
    118.Wang, X. (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139, 566-573.
    119.Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, et al. (2002). Profiling membrane lipids in plant stress responses: role of phospholipase Da in freezing-induced lipid changes in Arabidopsis. J Biol Chem. 277, 31994–2002
    120.Westergren, T., Dove, S.K., Sommarin, M., and Pical, C. (2001). AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P(2) and PtdIns(4,5)P(2) in vitro and is inhibited by phosphorylation. Biochem J. 359, 583-9.
    121.Xie Z, Ho WT, and Exton JH. (2000) Conserved amino acids at the C-terminus of rat phospholipase D1 are essential for enzymatic activity. Eur J Biochem. 267, 7138-46.
    122.Xu, J., and Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATIONFACTOR 1 functions in epidermal cell polarity. Plant Cell. 17, 525-36.
    123.Yi, H., Park, D., and Lee, Y. (1996) In vivo evidence for the involvement of phospholipase A and protein kinase in the signal transduction pathway for auxin-induced corn coleoptile elongation. Physiol. Plant. 96, 359–368.
    124.Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, and Wang X. (2003) Phospholipase Dd and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15, 2285–95.
    125.Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004). Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 101, 9508-9513.
    126.Zhao J, and Wang X. (2004) Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem. 279, 1794-800.
    127.Zheng L, Krishnamoorthi R, Zolkiewski M, and Wang X. (2000) Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase dalpha and beta. J Biol Chem. 275, 19700-6.
    128.Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 136, 2621-2632.
    129.Zouwail, S., Pettitt, T.R., Dove, S.K., Chibalina, M.V., Powner, D.J., Haynes, L., Wakelam, M.J., and Insall, R.H. (2005). Phospholipase D activity is essential for actin localization and actin-based motility in Dictyostelium. Biochem J. 389, 207-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700