肠球菌性羔羊脑炎的发现及其病原特性和诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠球菌是动物和人类正常菌群的重要组成部分,多作为有益菌进行研究。然而有研究表明,在需氧革兰阳性球菌中,它是仅次于葡萄球菌的重要院内感染致病菌。美国医院感染监视系统(NISS)已将其列为引起医院感染的第二大病原菌。最近几年新疆生产建设兵团部分规模化羊场连续在同一季节发生一种以20-40日龄羔羊神经症状和败血症为主要症状和病变特征的传染性疾病,羔羊的病死率高达20%左右,经病原分离鉴定和回归试验确诊为肠球菌所致羔羊脑炎,这是羔羊的一种新的疾病,本文围绕该病的病原特性和诊断方法开展了系列研究,以期为阐明肠球菌对羔羊的致病机理和有效防治该病提供科学数据,结果如下:
     1.肠球菌性羔羊脑炎的发现及其病原分离鉴定:自2002年新疆生产建设兵团部分规模化羊场连续几年在冬季产羔季节发生了一种病程很短,无品种差异,主要感染羔羊、可引起死亡的、以败血症和神经症状为主要特征的传染病。先后从不同羊场发生脑炎症状的羔羊体内分离到11株细菌,经形态学、培养特性、生化反应、血清学以及动物试验确定是由肠球菌属的某些种引起。
     2.检测羔羊肠球菌性脑炎间接ELISA方法建立和初步应用:利用超声波裂解制备致羔羊脑炎粪肠球菌裂解物作为抗原包被酶标板,应用棋盘滴定法,通过条件筛选成功建立了致羔羊肠球菌抗体测定的间接ELISA方法。应用该方法检测羔羊肠球菌阳性血清,其灵敏度是微量凝集反应的25-100倍。利用建立的方法检测来自未免疫羊场的50份成年羊血清和30份羔羊血清,结果显示有2份成年羊血清呈阳性。
     3.检测羔羊肠球菌性脑炎PCR方法建立和初步应用:以致羔羊脑炎粪肠球菌基因组为模板,以相对保守的肠球菌的tuf基因为基础设计一对引物,通过条件筛选成功的建立了用于致羔羊脑炎肠球菌快速诊断的PCR方法,其灵敏度在10fg。应用该方法检测自然感染羔羊和人工感染发病死亡羔羊以及人工感染发病死亡小鼠主要器官组织,即在心、肝、脾、肾、脑、脑脊液等组织中均检测到了肠球菌DNA,其中2只人工感染死亡羔羊还在肺门淋巴结和肠系膜淋巴结中检测到肠球菌DNA。
     4.免疫组化检测羔羊粪肠球菌性脑炎及其抗原定位的研究:以导致羔羊脑炎的粪肠球菌为研究对象,人工感染小鼠,通过条件优化,建立了肠球菌性羔羊脑炎检测的间接免疫组化方法。用该方法定期检测粪肠球菌在试验小鼠体内的分布,结果显示:4h时可在小鼠的肝脏中检测到粪肠球菌的阳性颗粒;14h时在肾脏和心脏中检测到阳性颗粒;18h可在食道中检测到粪肠球菌阳性颗粒;20h在脑中检测到阳性颗粒;22h在肺脏和气管中检测到粪肠球菌阳性颗粒;24h可在除脾脏外所有受检组织即脑、肝、心脏、肾、气管、肺、食道及小肠中观察到粪肠球菌的阳性颗粒。
     5.致羔羊脑炎肠球菌毒力因子的分子流行病学调查:对11株致羔羊脑炎肠球菌ace、efa、cylA、gelE、asal和asa373、esp、EF0591和EF3314等9种毒力因子基因的PCR检测结果表明,5/11株肠球菌检测到esp、cylA、asal、ace、efa、EF0591和EF3314等7种毒力因子基因。1/11株检测到esp、gelE、asal、ace、efa和EF3314等6种毒力因子基因,1/11株检测到cylA、asal、ace、efa、EF0591和EF3314等6种毒力因子基因,1/11株检测到esp、cylA、asal、ace、EF0591和EF3314。1/11株菌仅携带esp基因。2/11株菌未检测上述9种毒力因子基因任何一种。与人类医学其它来源肠球菌毒力因子携带情况不同。
     6.致羔羊脑炎粪肠球菌8种毒力因子基因片段克隆和序列特征研究:将致羔羊脑炎粪肠球菌检测到的的8个毒力因子8ce、efa、cylA、gelE、asal、esp、EF3314和EF0591基因部分片段克隆到pMD19-T载体上,应用PCR及酶切方法检测出阳性克隆并进行序列测定。通过BLAST软件对致羔羊脑炎粪肠球菌各毒力基因扩增片段的测定序列与GeneBank公布的医学临床分离株相应序列进行同源性分析比较,结果显示两种来源8种毒力因子基因目的片段序列的同源性分别为99.3%、99.56%、99.3%、97.85%、96.64%、99.9%、99.29%和98.11%。
     7.致羔羊脑炎肠球菌与临床健康羔羊分离的肠球菌生物学特性的比较研究:通过研究发现羔羊两种来源肠球菌的培养特性和生化特性基本一致;对某些抗生素有不同程度的耐药性;致病株有更多的毒力因子组合;对两者共有的毒力因子基因片段进行克隆与序列分析,并同时与GeneBank来自医学临床分离株相应毒力因子基因片段比对分析,其同源性很高,均在95%以上。正常菌群株不能引起小鼠的死亡,而致病株可导致小鼠的死亡。
     8.致羔羊脑炎粪肠球菌在人工感染小鼠疾病模型体内分布规律及病理学研究:经不同途径用致羔羊脑炎粪肠球菌分离株感染小鼠,最佳途径是腹腔注射,皮下注射次之,鼻腔吸入不引起感染。对小鼠的LD_(50)为9.3×10~(10)CFU。定期剖杀腹腔接种致羔羊脑炎粪肠球菌的小白鼠,用2种不同的方法检测在细菌主要脏器中的分布。结果发现感染2h后用PCR方法即可从脑、肝和心血检测到粪肠球菌DNA。6h后不仅能检测到肠球菌DNA,而且从上述组织中分离到肠球菌。感染4-6h后各组织脏器开始出现病理组织学变化,超微结构变化出现于4h。因此致羔羊脑炎粪肠球菌在人工感染小鼠体内分布广泛,引起的病理变化也是全身性的。
Enterococcus are usually studied as useful microorganism bcause of commensals of the intestinal tract of humans and animals but have emerged in recent decades as a major cause of nosocomial infections Enterococcus infections represent the second most common cause of bacteraemia and endocarditis after Staphylococcus in US hospitals from NISS Survey. Recently, there is a infectious diseases of 20-40 day old lamb which main characteristics are neurological symptoms and the septicemia in large-scale farms for the sheep of Xinjiang Production and Construction Corps in the same season. Lamb mortality is about 20%. It is identified as lamb encephalitis induced by Enterococusi through the isolation of bacteria and regression test. It is a new infectious diseases of lamb. A series of research n pathogen characteristics and diagnostic method are done in order to provide scientific data for pathogenic mechanism and control of the disease effectively about Enterococcus.
     1 The Finding of Lamb Encephalitis Infected by Enterococcus Isolated and Identified 11 Enterococcus isolated from lamb encephalitis in partial breeding farm of Xinjiang Production and Construction Corps are identified by a series of tests. They belong to serum type D,G and unidentifiable type by Latex. They can led to mouse and partial guinea pigs or rabbits dead. The 11 bacterum have resistance for streptomycin,gentamicin, erythromycin and partial resistance to norfloxacin, penicillin, tetracycline, but sensitivity to nitrofurantoin, rifampin, chloramphenicol and vancomycin.
     2 Development of ELISA to Detecte the Antibody for Enterococcus Inducing Lamb Encephalitis and Preliminary Application A ELISA are developed by phalanx titration with coating antigen of Enterococcus faecalis cracked by ultrasonic. It is more 25-100 times sensitive than micro-agglutination test through some positive serum for Enterococcus, and It has the more specific characteristic, easy or quick to operate. 2 serum in 50 adult sheep serum are positive in adult sheep serum detected.
     3 Development of PCR to Detect Antigen for Enterococcus Inducing Iamb Encephalitis and Preliminary Application A PCR are developed base of Conservative gene tuf gene to detect Enterococcus. The optimal reaction conditions is that nuclease refolding temperature is 55℃, Mg~(2+) Concentration is 2.5um and reaction mode is 95℃5min, 94℃30s, 55℃30s, 72℃30s, 35 cycle, 72℃10 min. The sensitivity of this mathod is 10fg. The other 10 Enterococcus, the tissue from lamb and mouse infected by Enterococcus faecalis can be amplified special electrophoresis bands about 112bp and no any bands can be amplified in S.equi s, bsp.equi, Streptococcus G,Streptococcus A,S.aureus, L.monocytogenes,M.ovipneumoniae, Br.ovis and Enterococcus faecalis inducing lamb encephalitis.
     4 A Study on the Detection of Enterococcus faecalis Inducing Lamb Encephalitis and Antigen Location by Immunoenzymatic Histochemistry An indirect Immunoenzymatic Histochemistry is developed to detect the distribution of Enterococcus faecalis in mouse artificial infected. The result indicated that positive particles of Enterococcus faecaIis can be detected in liver in 4h, in kidney and heart at 14h, in esophagus at 18h, in encephalon and in all tissues except for spleen of mouse infeted at 24h.
     5 The research of Molecular epidemiology for Enterococcus inducing lamb encephalitis 9 virulence factor genes(ace,efaA,cylA, gelE, asaland asa373,esp,EF0591 and EF3314)in 11 Enterococcus inducing lamb encephalitis are detected. The results indicated that there is 7viru-lence factor genes in 5 bacteria (5/11),6 virulence factor genes in 3 bacteria (3/11), 1viru-lence factor gene in 1 bacteria (1/11),no virulence factor genes 2 bacteria (2/11).
     6 Gene Cloning and Sequence Analysis of Virulence Factor Genes in Enterococeus facealis Inducing Lamb Encephalitis 8 virulence factor genes (ace, efa,cylA,gelE, asa1, esp, EF0591, EF3314) segments amplyfied are cloned in pMD19-T and the positive clone are going to determin the nucleotide Sequence, the results indicated that the homology is 99.3%、99.56%、99.3%、97.85%、96.64%、99.9%、99.29% and 98.11% between the Enterococcus faecalis from lamb encephalitis and corresponding sequence from GeneBank.
     7 A Comparative Study of Biological Characteristics of Enterococci from Different Sources of Lamb The study on cultural characteristics, biochemical characteristics, hemo- lytic properties, drug sensitivity and the types, distribution of virulence factor gene of Enterococcus inducing lamb encephalitis and normal flora indecate that basic biochemical chara- cteristics of enterococci from two different sources of lamb are consistent. Pathogens have resistance for Streptomycin, gentamicin and erythromycin, one bacterial from normal flora have resistance for tetracycline, erythromycin, streptomycin, esp、cylA、asal、ace、efa、EF0591 and EF3314 can be detected in 5/11 from Enterococcus inducing lamb encephalitis. gelE and EF3314 can be detected in 3/30 from normal flora and gelE、EF3314 and asal can be detected in 1/30 from normal flora. The homology of 3 gene sequence is more than 95% between GeneBank and bacteria from normal flora, the corresponding sequence is more than 96% with patho-genic strains, pathogens can cause the death of mice, whereas the Enterococci from normal flora can not cause the death of mice.
     8 A study on distribution and pathological changes in artificial infectious mice disease model forEnterococcus faecalis inducing Lamb encephalitis A study on 135 mouse infec ted by Enterococcus faecalis inducing Lamb encephalitis with different ways indicates that intraperitoneal injection is the best way, subcutaneous implant is second way and nasal inhal-ation can not cause infectious. LD_(50) of the bacteria is9.3×10~(10)CFU. Enterococcus faecalis DNA can be detected in encephalon, liver and blood spleen in artificial infectious mouse at 2h. Enterococcus faecalis and its DNA can be detected in the tissues at 6h. Signifiant histopatho-logical changes are observed during 4-6h and the changes of ultrastructural organization are observed at 4h.
引文
[1] 刘秀云,郭玉芬,江载芳.肠球菌感染、耐药状况的研究进展[J].中华儿科杂志,2004,38(4):253-255.
    [2] 李仲兴.应用的三代头孢菌素与医院内肠球菌感染[J].国外医学医院管理分册,1990,3:125-127
    [3] Holt J G. Bergeys Manual of deteriminative Bacteriology[M]. 9th ed. Baltmore/London, Wilkins, 1994.
    [4] 蔡文成.实用临床微生物诊断学[M].第一版.上海:东南大学出版社,1998.305-307.
    [5] Monstein H J, Mikael Quednau, Annika Samuelsson, et al. Division of the genus Enterococcus into species groups using PCR-based molecular typing methods[J]. Microbiology, 1998, 144(5): 1171-1173.
    [6] 李金钟.肠球菌分类与鉴定新进展[J].临床检验杂志,2006,(24),3:228-230.
    [7] 潘跃顺,赵克义.肠球菌的试验室诊断技术近况[J].预防医学文献信息,2001,7(1):10.
    [8] 府伟灵.一种快速鉴定肠球菌的试验[J].医学检验杂志,1989,4(1):9
    [9] 张联璧.鉴定肠球菌属的新试验[J].临床检验杂志,2002,20(特刊):67-72
    [10] Betzl D, Ludwig W, Schleifer K H. Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes[J]. Appl Environ Microbiol, 1990, 56: 2927-2929.
    [11] Cheng S, McCleskey F K, Gress M J, et al. A PCR assay for identification of Enterococcus faecium[J]. J Clin Microbiol, 1997, 35: 1248-1250.
    [12] Daly J A, Clifton N L, Seskin K C, et al. Use of rapid, nonradioactive DNA probes in culture confirmation tests to detect Streptococcus agalactiae, Haemophilus influenzae, and Enterococcus spp. from pediatric patients with significant infections[J]. J Clin Microbiol, 1991, 29: 80-82.
    [13] Donabedian S, Chow J W, Shlaes D M, et al. DNA hybridization and contour-clamped homogeneous electric field electrophoresis for identification of enterococci to the species level[J]. J Clin Microbiol, 1995, 33: 141-145.
    [14] Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistancegenotypes and identification to the species level of clinically relevant entericocci by PCR[J]. J Clin Microbiol, 1995, 33: 24-27.
    [15] Francis K P, Stewart G S. Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers[J]. J Ind Microbiol Biotechnol, 1997, 19: 286-293.
    [16] Goh S H, Potter S, Wood J O, et al. HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci[J]. J Clin Microbiol,1996,34:818-823.
    [17] Goh S H, SantucciZ, Kloos W E, et al. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization[J]. J. Clin Microbiol,1997,35:3116-3121.
    [18] Hospital Infection Control Practices Advisory Committee. Recommendation for preventing the spread of vancomycin resistance[J]. Infect Control Hosp Epidemiol, 1995,16:105-113.
    [19] Monstein H J, Quednau M, Samuelsson A, et al. Division of the genus Enterococcus into species groups using PCR-based molecular typing methods[J].Microbiology, 1998, 144:1171-1179.
    [20] Satake S, Clark N, Rimland D,et al. Detection of vancomycin-resistant enterococci in fecal samples by PCR[J]. J Clin Microbiol,1997,35:2325-2330. [21] Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptideresistance genotypes and identification to the species level of clinically relevant enterococci by PCR[J]. J Clin Microbiol, 1995, 33:24-27.
    [22] Berg S,Luneberg E, Frosch M. Development of an amplification and hybrid-dization assay for the specific and sensitive detection of Mycoplasma fermentans DNA[J]. Mol Cell Probes,1996,10:7-14.
    [23] Bergeron M G, Ouellette M. Preventing antibiotic resistance through rapidgenotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory[J]. J Clin Microbiol, 1998,36:2169-2172.
    [24] Betzl D, Ludwig W, Schleifer K H. Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes[J]. Appl Environ Microbiol,1990,56:2927-2929.
    [25] Donabedlan S,chowJ W, Shlaes D M,et al.DNA hybridization and Contour-clamped homogeneouselettric field electrophoresis for identification of Enterococci to the species level[J].Clin Microbiology,1995,33(1): 141-145.
    [26] Danbing Ke,Francois J Picard,Francis Martineau.et al.Development of a PCR assay for rapid detection of enterococci [J]. Journal of clinical microbiology, 1999, 10:3479-3503.
    [27] Frahm E, Obst U. Application of the fluorogenic probe technique(TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples[J]. J Microbiol Methods,2003,52:123-131.
    [28] Molander A, Lundquist P , Papapanou P N .A protocol for polymerase chain reaction detection of Enterococcus faecalis and Enterococcus faecium from the root canal[J]. Int EndodJ,2002,35(1):1-6.
    [29] Foschi F, Cavrini F, Montebugnoli L. Detection of bacteria in endodontic samples by polymerase chain reaction assays and association with defined clinical signs in Italian patients[J]. Oral Microbiol Immunol, 2005, 20(5): 289-95.
    [30] Arias C A, Robredo B, Singh K V, et al. Rapid identification of Enterococcus hirae and Enterococcus durans by PCR and detection of a homologue of the E. hirae mur-Gene in E. durans[J]. J Clin Microbiol, 2006, 44(4): 1567-70.
    [31] Maria Delmarlleo, Sabrina Oirobon, Maria Tafi, et al. mRNA Detection by Reverse Transcription-PCR for Monitoring Viability over Time in an Enterococcus faecalis Viable but Nonculturable Population Maintained in a Laboratory Microcosm[J]. Appl Environ Microbiol, 2000, 66(10): 4564-4567.
    [32] Matthias Labrenz, Ingrid Brettar, Richard Christen. Development and Application of a Real-Time PCR Approach for Quantification of Uncultured Bacteria In the Central Baltic Sea[J]. Appl Environ Microbiol, 2004, 70(8): 4971-4979.
    [33] 朱庆义.现代分子生物学技术在病原微生物快速诊断中的应用[J].中华检验医学杂志,2003,26:737-740.
    [34] 李君文,晁福寰.一种新的细菌学检验与鉴定方法PCR扩增16S~23Sr RNA区间多态性分析[J].中国卫生检验杂志,1998,8(4):252-257
    [35] Waar K, Degener J E, van Luyn M J. Fluorescent in situ hybridizationwith specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faeciurn in clinical samples[J]. J Med Microbiol, 2005, 54(10): 937-44.
    [36] Kalogianni D P, Goura S, Aletras A J, et al Dry reagent dipstick test combined with 23S rRNA PCR for molecular diagnosis of bacterial infection in arthroplasty[J]. Anal Biochem, 2007, 15; 361(2): 169-75.
    [37] Lewis G D, Anderson S A, Turner S J. Detection of enterococci in freshwater and seawater(16S and 23S rRNA Enterococcus oligonucleotide probes)[J]. Methods Mol Biol, 2002, 179: 159-69.
    [38] 邢德峰,任南琪,李建政.荧光原位杂交在环境微生物学中的应用及进展[J].环境科学研究,2003,16(3):401-405,
    [39] 陶洪群,李向阳,杨雷.PCR-SSCP技术检测细菌16SrRNA基因以快速鉴定葡萄球菌[J].温州医学院学报,2004,34(4):309-340
    [40] Lehner A, Loy A, Behr T. et al. Oligonucleotide microarray foridentification of Enterococcus species[J]. FEMS Microbiol Lett, 2005, 246(1): 133-42.
    [41] 焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S~23S rRNA间区[J].微生物学通报,2001,28(1):85~89.
    [42] Gurtler V. The role of recombination and mutation in 16S~23S rDNA spacer rearrangements[J]. Gene, 1999, 238: 241~252.
    [43] Paivi Forsman, Anu Tilsala-Timisjarvi, Tapani Alatossava. Identificationof staphylococoal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions[J]. Microbiology, 1997, 143: 3491~3500.
    [44] Tung S K, Teng L J, Vaneechoutte M, et al. Array-based identification of species of the genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus[[J]. J Clin Microbiol, 2006: 44(12): 4414-24.
    [45] 尚世强,傅君芬,洪文澜.葡萄球菌属16S-23S rRNA基因区间的图谱研究[J].中华检验医学杂志,2001,24:308.
    [46] Gurtler V, Stanisich V A. New approaches to typing and identification of bacteria using 16S-23S rDNA spacer region[J]. Microbiol, 1996, 142: 3-6.
    [47] Ludwig W, Rossello R, Aznar R, et al. Comparative sequence analysis of 23S rRNA from proteobacteria[J]. Syst Appl Microbiol, 1995(18): 164-188.
    [48] Roller C, Ludwig W, Schleifer K H. Gram-positive bacteria with a high DNA G+ C content are characterized by a common insertion within their 23S Rrna[J]. J Clin Microbiol, 1992, 138: 1167-1175.
    [49] Patel R, Piper K E, Rouse M S, et al. Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates[J]. J Clin Microbiol, 1998, 36: 3399-3407.
    [50] Sotirios tsiodras, Howard S Gold. Diversity of Domain V of 23S rRNA Ge-ne Sequence in Different Enterococcus Species[J]. J Clin Microbiol, 2000, 38(11): 3991-3993
    [51] Tsiodras S, Gold H S, Coakley E P, et al. Diversity of domain V of 23S rRNA gene sequence in different Enterococcus species[J]. J Clin Microbiol, 2000, 38: 3991-3993.
    [52] 洪帮兴,江丽芳,胡玉山.23S rRNA基因序列分析及其在细菌鉴别诊断中的应用[J].中华微生物学和免疫学杂志,2004,24(3):241-245
    [53] 徐晓刚,林东舫,朱德妹.常见致病菌23S rRNA基因片段序列分析及其应用初探[J].中华传染病杂志,2004,22(5):293-298
    [54] 林东舫,徐晓刚,朱德妹.23S rRNA基因在常见病原菌鉴定中的应用[J].中华检验医学杂志,2005,28(1):79-81
    [55] 徐晓刚,林东舫,朱德妹等.23S rRNA基因在临床常见致病菌检测中的应用[J].检验医学,2004,19(2):131-135
    [56] Labrenz M, Brettar I, Christen R. Development and Application of a Real Time PCR Approach for Quantification of Uncultured Bacteria in the Central Baltic Sea[J]. Appl Environ Microbiol, 2004, 70(8): 4971-4979.
    [57] Sedgley C M, Nagel A C, Dahlen G. Real-time quantitative polymerase chain reaction and culture analyses of Enterococcus faecalis in root canals[J]. J Endod, 2006, 32(3): 173-177.
    [58] Sedgley C M, Nagel A C, Shelburne C E. Quantitative real-time PCR detection of oral Enterococcus faecalis in humans[J]. Arch Oral Biol, 2005, 50(6): 575-583.
    [59] Frahm E, Obst U. Application of the fluorogenic probe technique(TaqManPCR) to the detection of Enterococcus spp. and Escherichia coli in water samples[J]. J Microbiol Methods, 2003, 52(1): 123-31.
    [60] Santo Domingo J W, Siefring S C, Haugland R A. Real-time PCR method to detect Enterococcus faecalis in water[J]. Biotechnol Lett, 2003, 25(3): 261-5.
    [61] Jian-Wen He, Sunny Jiang. Quantification of Enterococci and Human Adenoviruses in Environmental Samples by Real-Time PCR[J]. Appl Environ Microbiol, 2005, 71(5): 2250-2255.
    [62] 徐雪松,李秀,金淑杰.脉冲电泳技术在粪肠球菌流行病学分型中的应用[J].中华医学检验学杂志.1997,20(6):376-379.
    [63] 桂炳东,胡龙华,贾坤如等.随机扩增DNA多态性技术在肠球菌流行病学分型中的应用[J].江西医学检验,1999,17(1):5-6.
    [64] 李仲兴,郑家齐,李家宏.诊断细菌学[M].第一版.北京:卫生出版社,1992,197-199.
    [65] Sigrun Rumpel, Adelia Razeto. Structure and DNA-binding properties of the cytolysin regulator CylR2 from Enterococcus faecalis[J]. Nature, 2002, 417: 746-750.
    [66] Pillar C M, Gilmore M S. Enterococcal virulence-pathogenicity island of E. Faecalis[J]. Front Biosci, 2004, 9: 2335-46.
    [67] Nallapareddy S R, Wenxiang H, Weinstock M. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island[J]. J B acteriol, 2005, 187(16): 5709-5718.
    [68] Shankar N, Baghdayan A S, Willems R. Presence of pathogenicity island genes in Enterococcus faecalis isolates from pigs in Denmark[J]. J Clin Microbiol, 2006, 44(11): 4200-3.
    [69] Coburn P S, Baghdayan A S. Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island[J]. Mol Microbiol, 2007, 63(2): 530-44.
    [70] Coburn P S, Pillar C M, Jett B D, et al. Enterococcus faecalis Senses Target Cells and in Response Expresses Cytolysin[J]. Science, 2004, 306: 2270-2272.
    [71] Teresa Semedo, Margarida Almeida Santos, Paula Martins, et al. Comparativ-e Study Using Type Strains and Clinical and Food Isolates To Examine Hemo-lytic Activity and Occurrence of the cyl Operon in Enterococci[J]. Jouranal of clinical Microbiology, 2003, 41(6): 2569-2576
    [72] Weigel L M, Clewell D B, Gill S R, et al. Genetic Analysis of a High Level Vancomycin-Resistant Isolate of Staphylococcus aureus[J]. Science, 2003, 302. 1569- 1571.
    [73] Haas W, Gimore M S. Molecular nature of a novel bacterial toxin: the cytolysin of Enterococcus faecalis [J]. Med Microbiol Immunol, 1999, 187: 183-190.
    [74] Haas W, Shepard B D, Gilmore M S. Two-componet regulator of Enterococcus faecalis cyltolysin responds to quorum-sening autoinduction[J]. Nature, 2003, 415: 84-87.
    [75] 马立艳,许淑珍,马纪平.肠球菌致病机制的研究进展[J].中华医院感染学杂志,2005,15(3):356-359
    [76] Chow J W, Thai L A, Perri i M B, et al. Plasmid-associated hemolysin and aggregation substance production contributes to virulence in experimental enterococcal endocarditis[J]. Antimicrob Agents Chemother, 1993, 37: 2474-2477.
    [77] Ike Y, Hashimoto H, Clewell D B. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice[J]. Infect Immun, 1984, 45: 528-530.
    [78] Jett B D, Jensen H G, Nordquist R E, et al. Contributionof the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis [J]. Infect Immun, 1992, 60: 2445-2452.
    [79] Aejandro Toledo-arana, Jaione Valle, Cristina Solano. The Enterococcal Surface Protein, Esp, Is Involved inEnterococcus faecalis Biofilm Formation[J]. Applied and Environmental Microbilogy, 2001, 67(10): 4538-4545.
    [80] Yana Su, Mark C Suavik, Ping He. Nucleotide Sequence of the Gelatinase Gene (gelE) from Enterococcus faecalis subsp. Liquefaciens[J]. Infection and Immunity, 1991, 59 (1): 415-420.
    [81] Jing Zeng, Fang Teng, Barbara E. Murray. Gelatinase Is Important for Translocation of Enterococcus faecalis across Polarized Human Enterocyte-Like T84 Cells[J]. Infection and Immunity, 2005, 73(3): 1606-1612.
    [82] Park S Y, Kim K M, Lee J H, et al Extracellular gelatinase of Enterococcus faecalis destroys a defense system ininsecthemol-ymph and human serum[J]. Infect Immun, 2007, 75 (4): 1861-1869.
    [83] Zeng J, Teng F, Murray B E. Gelatinase is important for translocation ofEnterococcus faecalis across polarized human enterocyte-like T84 cells[J]. Infect Immun, 2005, 73(3): 1606-1612.
    [84] Christopher J K. ristich, Yung-Hua Li, Dennis G, et al. Esp-Independent Biofilm Formation by Enterococcus faecalis[J]. journal of bacteriology, 2004, 1: 154-163
    [85] Nathan shankar, Virginia C lockatell, Arto S Baghdayan, et al. Role of Enterococcus faecalis Surface Protein Esp in the Pathogenesis of Ascending UrinaryTract Infection. Infaction and Immunity[J]. 2001, 69(7): 4366-4372.
    [86] Jouko Sillanpa, Yi Xu, Sreedhar R, et al. A family of putative MSCRAMM from Entero-coccus faecalis[J]. Microbiology, 2004, 150: 2069-2078
    [87] Tomita H, Ike Y. Tissue-specific adherent Enterococcus faecalis strainsthatshow highly efficient adhesion to human bladder carcinoma T24 cells also adhere to extracellular matrix proteins[J]. Infect Immun, 2004, 72(10): 5877-5885.
    [88] Hubble T S, Hatton J F, Nallapareddy S R, et al. Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to den-tin[J]. Oral Microbiol Immunol, 2003, 18(2): 121-126.
    [89] Kowalski W J, Kasper E L, Hatton J F, et al. Enterococcus faecalis adhesin, Ace, mediates attachment to particulate dentin[J]. J Endod, 2006, 32(7): 634-637.
    [90] 黄孝天,刘晶.抗肠球菌免疫治疗的基础理论[J].国外医学预防诊断治疗用生物制品分册,2005,28(6):266-269.
    [91] Jianguo Xiao, Magnus Hoeoek, George M. et al. Weinstock Conditional adherence of Enterococcus faecalis to extracellular matrix proteins[J]. FEMS Immunology and Medical Microbiology, 1998, 21: 287-295
    [92] Hirt H, Schlievert P M, Dunny G M, et al. In vivo induction ofvirulence and antibiotic resistence transfer in Enteroccus faecalis mediated by the sex pheromone sening system of pCF10[J]. Infect Imrnu, 2002, 70(2): 716-723.
    [93] Mohamed JA, Huang W, Nallapareddy SR, Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis[J]. Infect Immun. 2004: 72(6): 3658-63.
    [94] Kristich C J, Li Y H. Esp-independent biofilm formation by Enterococcus faecalis[J]. Bacteriol, 2004, 186(1), 154-163.
    [95] Ramadhan A A, Hegedus E. Biofilm formation and esp gene carriage in enterococci[J]. J Clin Pathol, 2005: 58(7): 685-686.
    [96] Tendolkar P M, Baghdayan A S, Gilmore M S. et al. Enterococcal surfaceprotein, Esp, enhances biofilm formation by Enterococcus faecalis[J]. Infect Immun, 2004, 72: 6032-6039.
    [97] Toledo-Arana A, Valle J. The Enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation[J]. Appl Environ Microbiol, 2001, 67(10): 4538-4545.
    [98] 马立艳,许淑珍.肠球菌表面蛋白基因与生物膜形成关系的探讨[J].山东医药,2006,46(5):11-13.
    [99] Pillai S K, Sakoulas G, Eliopoulos G M, et al. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis[J]. J Infect Dis, 2004, 190(5): 967-70.
    [100] Mohamed J A, Murray B E. Influence of the fsr locus on biofilm formation by Enterococcus faecalis lacking gelE[J]. J Med Microbiol, 2006: 55(12): 1747-1750.
    [101] Christian Theilacker, Wolfgang A, Krueger, et al. Rationale for the development of immunotherapy regimens against enterococcal infection[J]. Vaccin, 2004, 22: 31-38.
    [102] 吴利先,黄文祥.粪肠球菌sprE基因的功能研究[J].中华微生物学和免疫学杂 志,2005,25(10):841.
    [103] Annet E J, van Merode, Henny C vander Mei, et al. Influence of CultureHeterogeneity in Cell Surface Charge on Adhesion and Biofilm Formation by Enterococcus faecalis[J]. Jouranl of Bacteriology, 2006, 188(7): 2421-2426
    [104] Annet E J van Merode, Henny C van der Mei, Henk J Busscher, et al. Enterococcus faecalis strains show culture heterogeneity in cell surface charge[J]. Microbiology, 2006, 152: 807-814.
    [105] Verneuil N, Maze A, Sanguinetti M, et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages[J]. Microbiology, 2006, 152(9): 2579-89.
    [106] Verneuil N, Sanguinetti M, Le Breton Y, et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages[J]. Infect Immun, 2004, 72(8): 4424-31.
    [107] 吴利先,黄文祥.sprE基因敲除粪肠球菌突变株的构建和功能的初步研究[J].中国人兽共患病学报,2006,22(9):828-833.
    [108] 李建升.243株肠球菌感染菌种分布及其耐药性观察[J].南华大学学报·医学版,2006,34(1):102-103.
    [109] Camargo I L, Gilmore M S, Darini A L. Multilocus sequence typing and analysis of putative virulence factors in vancomycin-resistant and vancomycinsensitive Enterococcus faecium isolates from Brazil[J]. Clin Microbiol Infect, 2006, 12(11): 1123-1130.
    [110] Nallapareddy S R, Weinstock G M, Murray B E. Clinical isolates of Enterococcus faeciurn exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMMfamily[J]. Mol Microbiol, 2003, 47(6): 1733-1740.
    [111] Nallapareddy S R, Singh K V, Murray B E. Construction of improved temperature-sensitive and mobilizable vectors and their use for constructing mutations in the adhesin-encoding acm gene of poorly transformable clinical Enterooccus faecium strains. Appl Environ Microbiol. 2006, 72(1): 334-45.
    [112] 吴利先,黄文祥.屎肠球菌耐万古霉素的分子生物学机制及毒力因子[J].国际流行病学传染病学杂志,2006,33,(2):132-136
    [113] Leavis H, Top J, Shankar N, et al. A Novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity[J]. J Bacteriol, 2004, 186 (3): 672-682.
    [114] Oancea C, Klare I, Witte W, et al. Conjugative transfer of the virulence gene, esp, among isolates of Enterococcus faecium and Enterococcus faecalis[J]. J Antimicrob Chemother, 2004, 54(1): 232-235.
    [115] Van Wamel W J, Hendrickx A P, Bonten M J, et al. Growth ConditionDependent Esp Expression by Enterococcus faecium Affects Initial Adherence and Biofilm Formation[J]. Infect Immun, 2007: 75(2): 924-31.
    [116] Rice L B, Carias L, Rudin S, et al. A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin[J]. J Infect Dis, 2003, 187 (3): 508-512.
    [117] Tracy J E, Michael J G. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates[J]. Applied and Environmental Microbiol, 2001, 67(4): 1628-1635.
    [118] Teng F, Kawalec M, Weinstock G M, et al. An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth[J]. Infect Immun, 2003, 71 (9): 5033-5041.
    [119] Rakita R M, Vanek N N, Jacques-PalazK, et al. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation[J]. Infect Immun, 1999, 67: 6067-6075.
    [120] 翁心华,卢洪洲.临床常见耐药菌及其抗菌治疗的研究进展[J].中国实用内科杂志,2004,24(8):449-451.
    [121] 张群智,周惠平.311株肠球菌所致医院感染与耐药性分析[J].中华医院感染学杂志,2000,10(4):257-259.
    [122] Aarestrup F M. Occurrence of glycopeptide resistance among Enterococcusfaecium isolates from conventional and ecological poultry farms[J]. Microb Drug Resist, 1995, 1: 255-257.
    [123] Devriese L A, Hommez J, Wijfels R, et al. Compositionof the enterococcal and streptococcal intestinal flora of chickens[J]. J Appl Bacteriol, 1991, 71: 46-50.
    [124] Devriese L A, Ieven M, Goossens H, et al. Presence of vancomycin resistant enterococci in farm and pet animals[J]. Antimicrob Agents Chemother, 1996, 40: 2285-2287.
    [125] Klare I, Heier H, Claus H, et al. vanA mediated high-level glycopeptide resistance in Enterococcus faecium fromanimal husbandry[J]. FEMS Microbiol Lett 1995, 125: 165-171.
    [126] 唐正安,张乃芬,胡燕,等.鹑鸡肠球菌引起败血症3例[J].云南医药,2002,23(5):426.
    [127] 张文东,王永贤,张应国.公猪睾丸炎肠球菌的分离与鉴定[J].云南畜牧兽医,1998,3:18.
    [128] 尹崇,乌尼.鸡源肠球菌的分离与鉴定[J].湖南畜牧兽医,1999,2:6.
    [129] 华文久,耿民新,邱国璜等.接触病猪引起屎肠球菌感染暴发流行40例临床报告.南通医学院学报,1999,19(4):394.
    [130] 单松华,谢爱织等.进口鸵鸟的粪肠球菌的分离与鉴定[J].上海农业学 报,1998,14(1):87-89.
    [131] 史同瑞,王铭杰,许腊梅.兔源肠球菌的分离[J].当代畜牧.1998,5:12-13.
    [132] 齐亚银,剡根强,王静梅.致羔羊脑炎型粪肠球菌的分离及鉴定[J].石河子大学学报(自然科学版),2005,2:18-20.
    [133] 陈一资,蒋文灿,胡滨.对鸭场暴发罕见的粪链球菌病的研究[J].中国兽医学报2003,23(4):324-325.
    [134] 张扣兴,唐英春,张天托,等.肠球菌的临床检测和药物敏感性研究[J].新医学,1998,29(增刊):33.
    [135] Xu J, Gallert C, Winter J. Multiple antibiotic resistances of Enterococcus isolates from raw or sand-filtered sewage[J]. Appl Microbiol Biotechnol, 2007, 74(2): 493-500.
    [136] 李家泰,齐慧敏,李耘.2002-2003年中国医院和社区获得性感染革兰阳性细菌耐药监测研究[J].中华检验医学杂志,2005,28(3):254-266
    [137] Whitener C J, Pakr S Y, Browne F A, et al. Vancomycin resistant Staphylococcus aureus in the absence ofvancomycin exposure[J]. Clin Infect Dis, 2004, 38 (8): 1049.
    [138] Marshall S H, Donskey C J, et al. Gene Dosage and Linezolid Resistancein Enteroco ccus faecium and Enterococcus faecalis[J], antimicrobial agents and chemotherapy, 2002, 46 (10): 3334-3336.
    [139] Neil Woodford, Luke Tysall, Cressida Auckland, et al. Detection of Oxazolidinone-Resistant Enterococcus faecalis and Enterococcus faecium Strains by Real-Time PCR and PCR-Restriction Fragment Length Polymorphism Analysis[J]. Jouranl of Clinical Microbiology, 2002, 40(11): 4298-4300.
    [140] Tsigrelis C, Singh K V, Coutinho T D, et al. Vancomycin-Resistant Enterococcus faecalis Endocarditis: Linezolid Failure and Strain Characterizationof Virulence Factors[J]. J Clin Microbiol, 2007, 45(2): 631-635.
    [141] 朱其太.值得警惕的鸡万古霉素耐药性肠球菌[J].Guide to Chinese poulty.1999,16:19-20.
    [142] Donabedian S M, Thal L A, Hershberger E, et al. Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food[J]. J Clin Microbiol, 2003, 41 (3): 1109-1113.
    [143] Lim S K, Tanirnoto K, Tomita H. Pheromone-responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from humans and chicken feces[J]. Appl Environ Microbiol, 2006, 72(10): 6544-6553.
    [144] Saeed A Khana, Mohamed S Nawaza, Ashraf A Khana, et al. Molecular characterization of multidrug-resistant Enterococcus spp. from poultry and dairy farms: detection of virulence and vancomycin resistance gene markers by PCR[J]. Molecular and Cellular Probes, 2005, 19: 27-34.
    [145] Tetsuya Harada, Noboru Tsuji, Koichi Otsuki, et al. Detection of the esp gene in high-level gentamicin resistant Enterococcus faecalis strains from pet animals in Japan[J]. Veterinary Microbiology, 2005, 106: 139-143.
    [146] Roper D L, Huyton T, Vagin A. et al. The molecular basis of Vancomycin resistance in clinically relevant enterococci: Crystal structure of D-alanyl-D-lacl-ate liga (VanA) [J]. Proc Ncad Sci USA, 2000, 97 (16): 8921.
    [147] Pier Sandro Cocconcelli, Daniela Cattivelli, Simona Gazzol, et al. Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentations[J]. International Journal of Food Microbio-logy, 2003, 88: 315-323
    [148] 叶贺佳,叶万树,黄东璋.细菌耐药性的产生机理及其控制对策#动物医学进展,2005,26(10):33-38.
    [149] 程曦,贾文祥.耐万古霉素肠球菌的耐药机制[J].研究微生物学免疫学进展,2002,30(4):88-93
    [150] Launay A, Ballard S A, Johnson P D, et al. Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice[J]. Antimicrob Agents Chemother, 2006, 50(3): 1054-1062.
    [151] Paulsen IT, Banerjei L, Myers G S, et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis[J]. Science, 2003, 299 (5615): 2071-2074.
    [152] Woodford N. Epiclemiology of the genetic elements responsible for acquired glycopeticle resistance in Enterococci[J]. Microb Drug Resist, 2001, 7: 229-236.
    [153] 沈洪,许淑珍,马纪平.肠球菌转座子介导的耐药基因转移研究进展[J].中华医院感染学杂志,2005,15(7):837-841.
    [154] 王丽平,陆承平,唐家琪.细菌基因盒-整合子系统与细菌耐药性[J].中国人兽共患病杂志,2005,21(1):85-89.
    [155] 周婷,王新,文心田.整合子-基因盒系统与细菌耐药性[J].动物医学进展,2005,26(3):29-32.
    [156] Uttley A H, Collins C H, Naidoo J, et al. Vancomycin-resistant enterococci[J]. Lancet, 1993, 342(8871): 615.
    [157] Dalla Costa L M, Reynolds P E, Souza H A, et al. Characterizatim of a divergent Vmld-type resistance dement from the first glycopeptide-resistam strain of Enterococcus faeeium isolated in brazil[J]. Antimicrob Agents Chemer, 2000, 44: 3444-3446.
    [158] 王睿,裴斐.肠球菌属耐药机制与新抗菌药物研究进展[J].临床药物治疗杂志,2003,1:29-35.
    [159] 韩亚新,孙欣,杨会军.耐万古霉素肠球菌的耐药机制[J].河北医药,2004,26(8):672- 673.
    [160] 韩轶群,张志强,张劭夫.肠球菌及其耐药机制研究[J].实用医药杂志2003,20(7):552-555.
    [161] Jian Tu, Yen-Ho Chu. Vancomycin Resistance in Enterococcus faecium: ACapillary Electrophoresis-Based Assay for VanX Enzyme[J]. Analytical Biochem-istry, 1998, 264: 293-296.
    [162] 胡兴戎.糖肽类抗生素的作用及肠球菌的糖肽耐药机制[J].国外医学抗生素分册2001,22(3):116.
    [163] Domingo M C, Huletsky A, Bernal A, et al. Characterization of a Tn538-like transposon containing the vanB2 gene cluster in a Clostridium strain isolated from human faeces[J]. J Antimicrob Chemother, 2005, 55: 466-474.
    [164] Barbara E, Murray M D. Vanconycin-resistance enterococcal infection[J]. N Engl J Med, 2000, 342 (10): 710.
    [165] 瞿婷婷,须欣,陈亚岗.肠球菌耐药性的研究进展[J].国外医学·流行病学传染病学分册,2005,32:6.
    [166] Fang H, Hedin G, Telander B. Emergence of VanD-type vancomycin resistant in Stockholm, Sweden, 007, 13(1): 106-108.
    [167] Boyd DA, Kibsey P, Roscoe D. Enterococcus faecium N03-0072 carries a new VanD-type vancomycin resistance determinant: characterization of the VanD5 operon[J]. J Antimicrob Chemother, 2004, 54(3): 680-683.
    [168] 杨会军,张丽霞.耐万古霉素肠球菌基因分型及耐药机制的研究进展[J].国外医学(微生物学分册),2004,27(1):29-31.
    [169] Murray B E. Beta-lactamase-producing enterococci[J]. Antimicrob Agents Chemother, 1992, 36: 2355-2359.
    [170] 李爽,张正.肠球菌耐药性的研究进展[J].中华检验医学杂志,2004,27(10):10-14.
    [171] Ligozzi M, Pittaluga F, Fontana R. Identification of a genetic element(psr)which negatively controls expression of Enterococcus hirae penicillin-binding protein[J]. J Bacterio, 1993, 175 (7): 2046-20511.
    [172] Zorzi W, Zhou X Y, Dardenne O, et al Structure of the low-affinity penicillin-binding protein PBP5 fm in wild-type and highly penicillin-resistant str-ains of Enterococcus faecium [J]. J B acteriology, 1996, 178 (16): 4948-4957.
    [173] Sapunaric F, Franssen C, Stefanic P, et al. Redefining the role of psr inbeta lactam resistance and cell autolysis of Enterococcus hirae[J]. Bacteriol, 2003, 185(20): 5925-5935.
    [174] 章乐艳,许淑珍.肠球菌对β-内酰胺类抗生素耐药机制的研究进展[J].临床和实验医学杂志,2005,14(11):34-39.
    [175] 颜英俊,刘华,刘伟.耐高浓度氨基糖甙类抗生素肠球菌的研究进展[J].国外医学.临床生物化学与检验学分册,2005,26(1):29-32
    [176] 刘志远,许淑珍,马纪平.肠球菌庆大霉素高水平耐药机理的研究进展[J].中华检验医学杂志,2004,27(4):266-269.
    [177] Klibi N, Ben Slama K, Masmoudi A, et al. Diversity of structures carrying the aac(6')-aph(2") gene in clinical Enterococcus faecalis and Enterococcus faecium strains isolated in Tunisia[J]. J Chemother, 2006, 18(4): 353-359.
    [178] 吕萍,沈叙庄.肠球菌的耐药性研究进展.国外医药抗生素分册,2006,27(3):132-136.
    [179] 杜蓉,冯萍.肠球菌的耐药机制研究进展[J].华西医学,2006,21(2):395-396.
    [180] Filipova M, Bujdakova H, Drahovska H, et al. Occurrence of aminoglycosi-de-modifyingenzyme genes aac(6')-aph(2"), aph(3'), ant(4') and ant(6) in clinical isolates of Enterococcus faecalis resistant to high-level of gentamicin and amikacin[J]. Folia Microbiol (Praha), 2006, 51(1): 57-61.
    [181] Kao S J, You I, Clewell D B, et al. Detection of the High-Level Aminogly coside Resistance Gen aph (2")-Ib in Enterococcus faecium [J]. Antimicrob Agents Chemother, 2000, 44 (10): 2876-2879.
    [182] Tai S F, Zervos M J, Clewell D B, et al. Anew high-level gentamicin resistance gene, aph (2")-Id, in Enterococcus spp [J]. Antimicrob Agents Chemother, 1998, 42(5): 1229-1232.
    [183] Portillo A, Ruiz Larrea F, Zarazaga M, et al. Macrolide resistance genes in Enterococcus spp [J]. Antimicrob A gents Chemother, 2000, 44 (4): 967.
    [184] 陆亚华,时庭文,陈虹.肠球菌红霉素四环素耐药基因研究[J].江苏大学学报(医学版),2004,(3)14:203-205.
    [185] 王玉宝,宋诗铎.肠球菌对大环内酯类抗生素的耐药机制.国外医药抗生素册,2003,24(1):5-8
    [186] 叶贺佳,叶万树,黄东璋.细菌耐药性的产生机理及其控制对策#动物医学进展,2005,26(10):33-38.
    [187] Onodera Y, Okuda J, Tanaka M, et al. Inhibitory activities of quinolones against DNA gyrase and topoisomerase Ⅳ of Enterococcus faecalis[J]. Antimicrob Agents Chemother, 2002, 46 (6): 1800.
    [188] 王玉宝,宋诗铎.肠球菌对氟喹诺酮类抗菌药物耐药机制研究进展[J].医学综述,2006,12(10):621-625
    [189] 王玉宝,宋诗铎,刘德梦.屎肠球菌临床株对氟喹诺酮耐药机制的研究[J].中国感染与化疗杂志,2006,6(4):240-244
    [190] 唐曼娟,杨祚升,吴移谋.肠球菌对氟喹诺酮类抗菌药的耐药机制[J].国外医药抗生素 分册,2004,(3)25:128-131.
    [191] David R Murdoch, Stanley Mirrett, Lizzie J Harrel, et al. Comparison of Microscan Broth Microdilution, Synergy Quad PlateAgar Dilution, and Disk Diffusion Screening Methods for Detection ofHigh-Level Aminoglycoside Resistance in Enterococcus Species[J]. Jouranl of Clinical Microbiology, 2003, 7: 2703-2705.
    [192] 黄支密,石晓霞,糜祖煌.肠球菌抗生素耐药基因检测[J].中华医院感染学杂志,2006,16(1):1-5.
    [193] Stein Christian Mohn, Arve Ulvik, Roland Jureen, et al. Duplex Real-TimePCR Assay for Rapid Detection of Ampicillin-Resistant Enterococcus faecium[J]. Antimicrobial Agents and Chemotherapy, 2004, 2: 556-560.
    [194] Neil Woodford, Luke Tysall, Cressida Auckland, et al. Detection of Oxazolidinone-Resistant Enterococcus faecalis and Enterococcus faecium Strains by Real-Time PCR and PCR-Restriction Fragment Length PolymorphismAnalysis[J]. Jouranl of Clinical Microbiology, 2002, 10: 4298-4300.
    [195] Routsi C, Platsouka E, Willems R J L, et al. Detection of Enterococcal Surface Protein Gene (esp) and Amplified Fragment Length Polymorphism Typing of Glycopeptide-Resistant Enterococcus faecium during Its Emergence in a Greek Intensive Care Unit[J]. Jouranl of Clinical Microbiology, 2003, 9: 5742-5746.
    [196] 张群智,周惠平.肠球菌的耐药性及脉冲场凝胶电泳分型研究[J].中华医学检验杂志,1998,21(2):1-3.
    [197] Nicole van den Braak, Eddy Power, Richard Anthony, et al. Random amplication of polymorphic DNA versus pulsed gel gelelectrophoresis of SmaI DNA macrorestriction fragments for typingstrains of vancomycin-resistant enterococci[J]. FEMS Microbiology Letters, 2001, 92: 45-52.
    [198] Roberta Creti, Monica lamperi, Lucia Bertuccini, et al. Survey for virulence determinants among Enterococcus faecalis isolated from different sources[J]. Journal of Madecal Microbiology, 2004, 53: 13-20.
    [199] Elisa Bittencourt de Marques, Se' rgio Suzart. Occurrence of virulence associated genes in clinical Enterococcus faecalis strains isolated in Londrina, Brazil[J]. Journal of Medical Microbiology, 2004, 53: 1069-1073.
    [200] Mundy L M, Sahrn D F, Gilmore M. Ralationships betwwen enterococcal virulence and antimicrobial resistance[J]. Clin Microbiol Rev, 2000, 13 (4): 513-522.
    [201] Mccormick J K, Hirt H, Waters C M, et al. Antibodies to a surface exposed, N-terminal domain of aggregation substances are not protective in the rabbit model of enterococcus faecalis infective endocarditis[J]. Immun, 2001, 69 (5): 3305-3314.
    [202] Kruger WA, Kruger-Rameck, Koch S, et al. Assensment of the role of antibiotics and enterococal virulence factors in a mouse model of extra-intestinal translocation[J]. Crit Care Med, 2004, 32 (2): 467-471.
    [203] Markus Hufnagel, Lynn E Hancock, Stefanic Koch. Serological and Genetic Diversity of Capsular Polysaccharides in Enterococcus faecalis[J]. Journal of Clincal Microbiology, 2004, 6: 2548-2557.
    [204] 刘佩红,沈素芳等.上海地区猪源链球菌分离株的病原特性鉴定[J].中国兽医学报,2001,2l(1):42-47.
    [205] 白文彬,于康震主编.动物传染病诊断学[M].中国农业出版社.2002.696-697.
    [206] National Committee for Clinical Laboratory Standards. Methods for antimicrobial susceptibility Testing of Anaerobic Bacteria. Villanova PA: NCCLS, 1993
    [207] Donald E L, Keller N, Barth A, et al. Clinical prevalence antimicrobial susceptibility and geographic resistance patterns of Enterococci: results from the SENTRY antimicrobial surveillance program, 1997-1999[J]. Clin Infecti Dis, 2001, 32 (12): 133-145.
    [208] Booth M C, Bogie C P, Sahl H G, et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic[J]. Mol Microbiol, 1996 21: 1175-1184.
    [209] 杨劲松,包幼迪.肠球菌致病性的初步探讨[J].中国人兽共患病杂志,1997,13(6),33—35.
    [210] 赖晓全,王洪波.肠球菌感染及其耐药性变迁[J].华中科技大学学报(医学版),2004,33(6):745-747.
    [211] Perencevich E N, Fisman D N, Lipsitch M, et al. Projected benefits Of active five surveillance forvancomycin-resistant enterococcus in intensive care units[J]. Clin Infect Dis. 2004, 38 (8): 1108.
    [212] Thouverez M, Talon D, Microbiological and epideralological studies of Enterococcus faeciurn resistant to amoxycillin a university hospital in eastern France[J]. Clin Microbiol Infect, 2004, 10(5): 441.
    [213] Yazgi H, Ertek M, Erol S, et al. A comparasion of high-level aminoglycoside resistance in vancomycin-sensitive and vancomycin-resistant Enterococcus species[J]. J Int Med Res, 2002, 30(5): 529.
    [214] 奚敏,邱荆安,姚俐.粪肠球菌致儿童食物中毒的抢救及护理[J].重庆医学,2004,33(4):545.
    [215] Bert F. Woalfrey Evaluation of Automicrobic System for Identification and Susceptibility testing of Gram Negative Bacilli[J]. J Clinical Microbiology, 1984, 20: 1053.
    [216] 王艳红,张扣兴.肠球菌感染的研究进展[J].国外医学呼吸系统分册,2005,25(1):38-40.
    [217] L. Mannua, A. Pabaa, E. Dagaa, et al. Comparison of the incidence of virulence determinants andantibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin[J]. International Journal of Food Microbiology, 2003, 88: 291-304.
    [218] 吕典秋,李学湛,吕文河,等.NCM-ELISA检测马铃薯Y病毒(PVY)技术的研究及应用[J].中国马铃薯,2006,20(6):339-342.
    [219] 李兆利,薛飞,朱远茂,等.牛传染性鼻气管炎病毒gB基因的截短表达与间接ELISA诊断方法的建立[J].畜牧兽医学报,2006,37(12),1328~1333.
    [220] 陈波,尤永进,潘洁,等.区分动物疫苗免疫与病毒感染的口蹄疫非结构蛋白3AB鉴别诊断试剂盒的研制[J].中国预防兽医学报,2007,29(1):52-58.
    [221] 汪家政,范明主编.蛋白质技术手册[M].第1版.北京:科学出版社,2001.38-41.
    [222] 杨利国,胡少昶,魏平华,等.酶免疫测定技术[M].第一版.南京:南京大学出版社,1995.55-60.
    [223] 程安春,汪铭书,方鹏飞,等.间接酶联免疫吸附试验(ELISA)检测血清2型鸭疫里默氏杆菌抗体的研究[J].中国兽医杂志,2004,40(12):14-16.
    [224] 丁炜东,曹丽萍,张体银,等.检测新城疫病毒中和抗体的间接ELISA和竞争ELISA方法的初步建立[J].中国兽医杂志,2005,41(3):13-15.
    [225] 郭明璋,王启明,董亚芳,等.ELISA检测兔巴氏杆菌病抗体的研究[J].中国兽药杂志,1997,31(1):1-5.
    [226] 黄金海,王英珍,肖锡治,等.检测鸡慢性呼吸道病抗体ELISA方法的建立[J].中国兽医学报,2000,22(2):133-135.
    [227] 张体银,李军伟,孙蕾,等.应用间接ELISA检测鸡痘病毒抗体方法的建立[J].中国兽医学报,2005,25(3):128-130.
    [228] Knijff E, Dellaglio F, Lombardi A. et al. Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes[J]. Journal of Microbiological Methods, 2001, 47: 35-40.
    [229] Schaberg D R, Culver D H, Gaynes R P. Major trends in the microbial etiology of nocosomial infection[J]. Am J Med, 1991, 91: 72-75.
    [230] 马立艳,许淑珍,马纪平.肠球菌部分致病基因和表型的检测[J].中华检验医学杂志,2005,28(5):529-532.
    [231] 周建云.抗原修复对免疫组化标记结果的影响[J].交通医学,2003.17(6):42-43.
    [232] 宋丽君,李英勇.不同抗原修复在免疫组化技术中应用的探讨[J].实用医学杂志,2005.21(9):58-60.
    [233] 倪灿荣,马大烈,戴益民.免疫组化试验技术及应用[M].第一版.北京:化学工业出版社/现代生物技术与医药科技出版中心,2006.59-63.
    [234] 纪小龙,王淑琴,李红芬.免疫组化在临床诊断中的作用[J].Chin J Lab Digan,1998,2(2):18-20.
    [235] 杨毅,陆江阳.标本固定时间对免疫组化染色结果的影响[J].诊断病理学杂志,2005.6(12):3.
    [236] 吴计生,段淑云,郝建平.免疫组化抗原修复的应用进展[J].实用医技杂志,2006,13(20):3592-3593.
    [237] 孟琼华,程安春,汪铭书,等.间接免疫酶组织化学法检测雏鹅感染鸭疫里默氏杆菌的研究[J].中国兽医杂志,2004,40(9):10-15.
    [238] Beoten T M, Willems R, Weinstein R A. Vancomycinresistant enterococci: Why are they here, and where do they come frome ? Lancet Infect Dis I, 2001, 314-325.
    [239] Moro M L, Gandin C, Bella A, et al. A national survey on the surveillance and control of nosocomial infections in public hospitals in Italy (Rapporti ISTISAN 01/4). Rome: Instito Superiore di Santita (Italy), 2001.
    [240] 刘进元,常智杰,赵广荣.《分子生物学实验指导》[M].第三版.北京:清华大学出版社,2002.67-75.
    [241] Vessa Vankerckhoven, Van Autgaerden, Carl Vael, et al. Development of a Multiplex PCR for the Detection of asal, gelE, cylA, esp, and hyl Genes in Enterococci and Survey for Virulence eterminants among European Hospital Isolates of Enterococcus faecium [J]. Ournal of Clinical Microbiology, 2004, 42 (10): 73-79.
    [242] Helen Leavis, Janetta Top, Nathan Shankar, et al. A Novel Putative Enterococcal Pathogenicity Island Linked to the espVirulence Gene of Enterococcus faecium and Associated with Epidemicity[J]. Journal of Bacteriology, 2004, 186(3): 672-682.
    [242] Charles M A P Franz, Albrechtb Muscholl-slberhom, Nuha M K Yousif. Incidence of Virulence Factors and Antibiotic Resistance among Enterococci Isolated from Food[J]. Applied and Eenvironmental. Microbiology, 2001, 67, (9): 4385-4389.
    [244] Galli D, Ottspeich F, Wirth R. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1[J]. Molecular Microbiology, 1990, 4(7): 895-904.
    [245] Yan A Su, Mark C., Sulavik, et al. Nucleotide Sequence of the Gelatinase Gene (gelE) from Enterococcus faecalis subsp. Liquefaciens[J]. Infection and Immunity, 1991, 59 (1): 415-420.
    [246] Viswanathan Shankar, Arto S Baghdayan, Mark M Huycke, et al. InfectionDerived Enterococcus faecalis Strains are enri-ched in esp, a gene encoding a novel surface protein[J]. Infection and Immunity, 1999, 67 (1): 193-200.
    [247] Segarra R A, M. C. Booth, D. A. Morales, et al. Molecular characterization of the Enterococcus faecalis cytolysin activator[J]. Infect Immun, 1991, 59: 1239-1246.
    [248] Michaels, Gilmore, Roberta, et al. Genetic Structure of the Enterococcus faecalis Plasmid pADi-Encoded Cytolytic Toxin System and Its Relationship toLantibiotic Determinants[J]. Journal of Bacreriology, 1994, 176(23): 7335-7344.
    [249] Lowe A M, Lambert P A, Smith A W. Cloning of an Enterococcus facealis Endocarditis Antigen: Homology with Adhesins from Some Oral Streptococci[J]. Infection and Immunity, 1995, 63 (2): 2703-706.
    [250] Rich R L, Kreikemeyer B, Owens R T, et al. Ace is a collagen-binding MSCRA-MM from Enterococcus faecalis[J]. J Biol Chem, 1999, 274(38): 26939-26945
    [251] Drahovska H, Slobodnikova L, Kocincova D, et al. Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia[J]. Folia Microbiol (Praha). 2004, 49(6): 763-8.
    [252] Schaberg D R, Culver D H, Gaynes R RMajor trends in the microbial etiology of nosocomial infection[J]. Am J Med, 1991, 91: 72-75.
    [253] Mannua L, Pabaa A, Dagaa E, et al. Comparison of the incidence of virulence determinants andantibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin[J]. International Journal of Food Microbiology, 2003, 88: 291-304.
    [254] Low D E, Willey B M. Multidrug-resistant enterococci: a threat to the surgical patient[J]. Am J Surg, 1995, 165: 85.
    [255].周铁丽,张李雅.肠球菌引起医院感染的机率及耐药性变迁[J].中华医院感染学杂志,1998,8(4):247.
    [256] Perencevich EN, Fisman DN, Lipsitch M, et al. Projected benefits of active five surveillance forvancomycin-resistant enterococcus in intensive care units[J]. Clin Infect Dis, 2004, 38(8): 1108.
    [257] Xu J, Gallert C, Winter J, et al. Multiple antibiotic resistances of Enterococcus isolates from raw or and-filtered sewage[J]. Appl Microbiol Biotechnol, 2006, 22: 28.
    [258] Simjee S, Zhang Y, McDermott PF, Heterogeneity of vat(E)-carrying plasmids in Enterococcus faecium recovered from human and animal sources[J]. Int J Antimicrob Agents, 2006, 28(3): 200-205.
    [259] Jacobsen L, Wilcks A, Hammer K. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tractof gnotobiotic rats[J]. FEMS Microbiol Ecol, 2007, 59(1): 158-66.
    [260] Garcia-Galaz A, Perez-Morales R, Diaz-Cinco M. Resistance of Enterococcus strains isolated from pigs to gastrointestinal tract and antagonisticeffect against Escherichia coli K88[J]. Rev Latinoam Microbiol, 2004, 46(2): 5-11.
    [261] 何明清,程安春.动物微生态学[M].第一版.成都,四川科学技术出版社,2004.80-90.
    [262] Baldassarri L, Criti R, Arciola C R, et al. Analisis of virulence facters in case of enterococcal endocarditis [J]. Clin Microbol Infact, 2004, 10: 1006-1008.
    [263] 张汾艳.发现共生肠球菌对三种抗生素有耐药性[J].传染病网络动态,2006,6:3-4.
    [264] 袁杰利,傅晓丽.屎肠球菌活菌制剂的研究[J].中国微生态学杂志,2003,15(1):20-21.
    [265] 李仲兴.肠球菌感染的研究进展[J].医学综述,2005,11(10):938-944.
    [266] 殷震,刘景华.动物病毒学[M].第二版.北京:科学出版社,1997.329-331.
    [267] Herve Dupont, Philippe Montravers, Jacqueline Mohler, et al. Disparate Finding on the Role of Virulence Factors of Enterococcus in Mouse and Rat Models of Peritonitis[J]. American Society for Microbiology. 1998, 7: 2570-2575.
    [268] 李光辉,张婴元.肠球菌感染研究进展[J].国外医学内科学分册.1999,26(11):471-475.
    [269] 杨正时,房海主编.人及动物病原细菌学[M].河北科学技术出版社,2003,1783—1787.
    [270] Semedo T, Santos MA, Lopes MF, et al. Virulence factors in food, clinical and reference Enterococci: A common trait in the genus?[J]. Syst Appl Microbiol, 2003, 26(1): 13-22.
    [271] Drahovska H, Slobodnikova L, Kocineova D, et al. Antibiotic resistance and virulened factors among clinical and food enterococci isolated in Slovakia[J]. Folia Microbiol (Praha), 2004, 49(6): 763-768.
    [272] Lepage E, Brinster S, Caron C, et al. Comparative genomic hybridization analysis of Enterococcus faecalis: identification of genes absent from food strains[J]. J Bacteriol, 2006, 188(19): 6858-6868.
    [273] Eaton T J, Gasson M J. Molectdar screening of Enterococcus virulence determinants and potential for genetic exchan ge between food and medical isolates [J]. Appl Environ Microbiol, 2001, 67: 1628-1635.
    [274] Shankar N, Baqhdayan A S, Willems R, et al. Presence of pathogenicity island genes in Enterococcus faecalis isolates from pigs in Denmark[J]. J Clin Microbiol, 2006, 44 (11): 4200-4203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700