用全球定位系统(GPS)研究中国大陆现今地壳运动模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆受周缘板块的挤压、各块体间的相互作用影响,致使其内部聚积了特别强大的构造作用力,历史上成为板内构造最活跃、板内地震最强烈的地区,构造变形覆盖了印欧碰撞带以北两到三千公里的范围。正确理解大陆构造变形运动过程及其动力机制,是探求地震成因和进行中、长期或短临地震预报的首要前提。因此,必须首先获取分辨精细、精度一致的岩石圈构造变动速度场,而岩石圈构造变动速度场的获取必须以质量均匀、分布广泛、密度适当的地壳变形和应变的实测资料作基础。迄今为止,对此运动、动力过程的认识基本来自第四纪以来主要活动断层大量观测调查及百余年来地震矩张量反演。中国大陆的晚新生代构造变形分布十分广泛,获取第四纪活动断裂和活动褶皱的定量数据需要漫长的时间和大量的投入,短时间内很难完成。地质学、地震学对地壳整体运动研究仍是一种间接推算,受资料来源及分析方法上制约,其准确性与可靠性在短期内难有根本提高,对现今地壳运动形态的精细观测更难有作为。与地质、地震资料相比,GPS观测结果具有量化清晰、精度高,时间尺度一致,动力学意义明确等优点,逐步成为岩石圈大尺度构造运动与动力学研究的重要基础资料。
     自上世纪八十年代开始,中国大陆现今地壳运动的GPS监测资料日益丰富,一张全面反映中国大陆地壳运动的速度图像已经形成,使利用GPS测定的站点速率,研究构造变形的模式速度场成为可能。本文继续了前期工作,主要用“中国地壳运动观测网络”实测速率值(1200个测站),通过数值模拟技术构建了南至青藏高原南侧的印欧板块碰撞边界和南中国海,北至贝加尔湖,西至咸海以东的中亚地区,东以日本海以西为界的中国大陆构造变形的整体速度场。为此本文针对构造变形是以连续还是以分块的方式进行了对比研究。
     首先在地块细分的多样性和块体边界的不确定性条件下,中国大陆的构造变形运动虽然块体或断裂带之间的非连续性是绝对的,可当假定中国大陆运动在重力驱动下类似流体缓慢流动,认为可将变形描述为连续粘性介质运动。基于此,本文利用球面上双三次样条函数数值模拟方法,将离散的值在空间域上连续化,来求解中国大陆的构造变形场,应变场。
     然后本文根据块体、非连续变形假定反演中国大陆GPS速度场,结合中国大陆活动构造背景,建立地块运动模型。以整个变形区域内的主要走滑断层、正断层和逆断层为边界细致划分块体来同时模拟弹性岩石圈块体的旋转和边界断层闭锁产生的应变。给出了33个块体的细致模型和29个块体的简化模型;得到了各主要断层的活动速率、地块运动速率、欧拉矢量以及应变率。
     两种模拟GPS观测结果显示:
     (1)印度板块与欧亚板块的碰撞、挤压是构成中国大陆内部岩石层水平形变的主要驱动力;对中国大陆及周边地区构造活动的连续变形分析还表明GPS推算的数年尺度应变场的平均最大、最小水平主压应变率方向与长期地质资料、百年尺度地震资料展示的应力状态基本吻合;
     (2)绕东喜马拉雅构造结,模型速度场和主应力方向有近似180o的顺时针旋转,说明中国东南部的应力场主要受到了周边特定板块边界的作用;
     (3)太平洋板块和菲律宾板块作用力虽然比印度板块的作用力小,但仍然是影响中国大陆东部的重要因素;
     (4)以玛尼-玉树-甘孜-理塘断裂带为中心构成了一条现今地壳物质东流带,并且青藏高原物质向东的挤出或流动没有超出其东边界,而是在东边界一带转化成绕东喜马拉雅构造结的顺时针旋转;
     (5)青藏高原内部以连续地壳变形或均匀地壳缩短为现今构造变形的主要特征,印度和欧亚板块之间相对运动量的90%被青藏高原的现今地壳缩短速率所吸收和调节,且西藏中部东西存在东西向的拉张,其拉张速率为16mm/yr左右;
     (6)阿尔金断裂带的左旋走滑速率是5.8±1.5 mm/yr ,祁连山和阿拉善之间的左旋走滑速率是6.5±2.0mm/yr,横穿喜马拉雅和青藏的南北向压缩速率为19.0+/-2.0 mm/yr,穿过西天山的南北向压缩速率为14.0±1.1 mm/yr,穿过中天山的南北向压缩速率为7.9±1.2mm/yr;
     (7)塔里木块体围绕欧拉极(37.39°N, 96.4°E,-0.533°/Ma)相对西伯利亚作顺时针旋转,华南块体则围绕欧拉极(63.38°N,159.87°W)作轻微的顺逆时针方向旋转,鄂尔多斯块体围绕欧拉极(49.06°N,118.51°E,0.213°/Ma)相对西伯利亚作逆时针方向旋转。
     从统计结果和GPS残差图来看两种模型在中国大陆范围内都得到了较好的模拟效果。但连续模型似乎得到更好拟合效果,但这并不表明分块模型不能适用于大陆构造研究。实际上,本文得到的块体滑动速率、活动断裂滑动速率说明无论青藏高原,还是整个中国大陆,现今活动构造变形仍可以视为有限制的较低速率岩石圈和块体运动,不过进一步比较有待今后更多的GPS数据和地质、地震资料。
China continent is characterized by considerable intraplate deformation that is witnessed by widespread earthquakes, arisen from the continental collision between Eurasia and Indian plates and interactions among sub-plates. A quantitative description, with suitable resolution and precision, of tectonic kinematics is a prerequisite for qualitative understanding of physical properties of continental lithosphere and its dynamic aspects which control the continent deformation, which are of critical to reveal earthquake mechanism and forecast earthquake. In the last decade, kinematic demonstration of continent deformation at a large scale of 2-3 thousands of kilometers in Asia was mainly rooted in the observations of Quaternary active faulting and a summation of one-century long seismic moment tensors. Because of the limited amount geologic works in critical areas such as Tibet and rather shorter catalog of historic earthquakes available for inversion, the derived velocity field depicting the ongoing crustal movement was poorly constrained.
     And any attempt to improve its precision and resolution in relative short period is hampered by many limiting factors that remains nowadays. To the contrary, Global Positioning System (GPS) measurement, with its outstanding merits such as high precision, low expense, dense distribution and flexible survey mode revolutionizes monitoring of the crustal movement at all scales ranging from global plate motion for several thousands of kilometers to local fault slip within several kilometers. From 1990s, the GPS data have been accumulating progressively in China. As yet, a unified measurement of crustal deformation velocity field for the Chinese mainland has been available, based on the sophisticated analysis of these data. With that, tectonic deformation velocity field and its gradient field are inferred through fitting to the GPS-derived velocity data. This work advances the former studies by matching directly over 1000 GPS velocities with a continuous horizontal velocity field for the entire China using the method assumed that continental deformation is distributed continuously.
     The instantaneous active deformation in Asia was approximated numerically by various methods such as f crustal flow and rigid blocks. The tenet of these methods is attributed to assumptions describing the kinematic behavior of crust deformation as continuum flow or block-like motion. Although active faults which delineate generally boundaries of rigid blocks in Asia are distributed over the Tibet and its adjacent regions with moderate and major faulting, A school of thoughts suggested that the kinematics of crust deformation is analogous to response of a thin viscous sheet drived by gravitational potentional difference, therefore it can be treated as continuous viscous medium. Base on this, this study applies Bi-cubic Spline interpolation function on the earth sphere to best matching GPS site velocities in order to recovery a unified crustal deformation field.
     This paper summarizes the tectonic movement and dynamics background in China, and firstly simulates the contemporary horizontal velocity and strain rate fields (~1200 velocity vectors) in China, assuming that the crust can be treated as a continuum, the velocity field inferred from the GPS rates has an overall precision better than 2 mm/yr. Secondly, on the basis of block-like model on framework of active tectonics in China continent, two kinds of block-like kinematic model to fit the GPS velocity field are investigated . The GPS vectors are inverted simultaneously for the rotation and fault locking . the slip rates of the major faults are inferred. and motion velocity and Euler rotation poles are calculated for each block of which the internal strain rate are assessed too.
     Our modeling demonstrates that:
     (1) The collision between India and Eurasia plate is the main driving force which controls horizontal component of crustal deformation in most of China continent;
     (2) The velocity field and direction of principal stress axis have a clockwise rotation of about 180°around the Eastern Himalaya Syntaxis. The rotation shows that the stress field in southeast China is mainly influenced by the combined forces transferred from plate boundaries to east and southwest;
     (3) The Pacific and Philippine Sea plates are important factors modulating the stress field of the eastern China;
     (4) The extrusion rate toward N13.5°E direction increases from south to north, and reaches to the maximum along the Mani-Yushu-Ganzi-Litang, which suggests there exists an eastward crust flow, bounded to the north, by the Mani-Yushu-Ganzi-Litang zone. The eastward extrusion doesn’t extend beyond the east boundary of the Tibetan Plateau. The eastward extrusion is translated into a clockwise rotation around the Eastern Himalaya Syntaxis;
     (5) In the velocity field, a large fraction, ~90 %, of India’s convergence with Eurasia is absorbed by crust thickening, especially the north-south shortening across the Himalaya. The Tibetan plateau is subject to widespread E-W extension at a rate up to 16mm/yr;
     (6) localized deformation is concentrated on the Altyn Tagh faul associated with 5.8±1.5mm/yr of left-lateral strike-slip, and N-S compression of 6.5±2.0mm/yr is founded to occur within a zone between Qilian Shan and Alashan. The convergent rate is estimated to 19.0 +/-2.0mm/yr across Himalaya and south Tibet, 14.0±1.1 mm/yr in the western Tien Shan, and 7.9±1.2 mm/yr on central segment of Tien Shan;
     (7) India rotates relative to Eurasia about a pole at (27.9°N 19.6°E 0.395°/Ma), south of China moves at 8.0±1.5 mm/yr in the direction of N120°±7.4°E, corresponding to a pole at 63.38°N,159.87°W,0.088°/Ma. Tarim Basin rotates clockwise relative to Eurasia about a pole (37.39°N,96.4°E,-0.533°/Ma), Erdos block rotates counterclockwisely relative to Eurasia about a pole at 49.06°N,118.51°E with a rate of 0.213°/Ma.
     The studies indicate that the GPS velocity field can matched equally well with plate-like model and continuous deformation model at a uncertainty of 1-2 mm/yr attained by existing measurements, though overall misfit of the GPS inversion is in slightly favor of the continuous deformation model. In fact the consistency between GPS velocity and the block model also preclude the conclusion that the continuous deformation model is superior to the block model in kinematic description of continental deformation. To the contrary, this studies argue for a widely accepted opinion that the continent tectonic deformation may be described best by block-like motion and interaction among them along the edges but the present-day motion rates of blocks are in generally not so fast as we thought before.
引文
[1] 马杏垣 主编. 中国岩石圈动力学地图集. 北京:中国地图出版社,1989
    [2] 马宗晋,陈鑫连, 叶叔华等. 中国大陆区现今地壳运动的 GPS 研究,科学通报, 46(13), 1118-1120,2001
    [3] 丁国瑜, 卢演俦. 对我国现代板内运动状态的初步探讨,科学通报. 31(18),1412-1415,1986
    [4] 丁国瑜. 活动亚板块、构造地块相对运动. 见丁国瑜主编. 中国岩石圈动力学概论.北京:地震出版社, 142-153, 1991
    [5] 牛之俊, 马宗晋, 陈鑫连等. 中国地壳运动观测网络, 大地测量与地球动力学, 22(3), 88-93, 2002
    [6] 牛之俊, 游新兆, 王 琪等. 中国地壳运动速度场-GAMIT 和 GISPY 解算结果比对研究, 大地测量与地球动力学, 23(3),4-8, 2003
    [7] 牛之俊, 王 敏, 孙汉荣等. 中国大陆现今地壳运动速度场的最新观测结果, 科学通报, 50(8), 840-841, 2006
    [8] 万永革, 王敏, 沈正康, 等,利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布. 地震地质, 26(3), 393-404 , 2004
    [9] 邓起东 等. 中国活动构造基本特征. 中国科学(D 辑),32 卷(12), 1020-1030,2002
    [10] 杜瑞林,王琪. 中国大陆现今地壳运动统一速度场(1991-2000). 高精度 GPS观测资料处理、解释讨论会,2000
    [11] 杜瑞林, 王琪, 张培震. 中国大陆现今地壳运动和构造变形. 现代地壳运动与地球动力学研究. 北京:地震出版社,1-20,2001
    [12] 赖锡安, 等主编. 中国大陆现今地壳运动. 北京:地震出版社,2004
    [13] 李延兴, 杨国华 等. 中国大陆活动地块的运动与应变状态. 中国科学(D 辑),33卷(增刊):65-80,2003
    [14] 任金卫. 中国大陆构造变形运动学及动力学解释. 高精度 GPS 观测资料处理、解释讨论会,73-92, 2000
    [15] 石耀霖 朱守彪. 利用GPS观测资料划分现今地壳活动地块的方法.大地测量与地球动力学, 24 卷(2):1-5, 2004
    [16] 石耀霖 朱守彪. 用 GPS 位移资料计算应变方法的讨论. 26 卷(1):1-7, 2006
    [17] 王敏,沈正康, 等. 中国大陆地壳运动与活动地块模型. 中国科学(D 辑)增刊,33 卷:21-33,2003
    [18] 张强, 朱文耀. 中国地壳各构造地块运动模型的初建. 科学通报,第9期, 967-972, 2005.
    [19] 环文林, 时振梁,焉家全, 江素云. 中国及邻区现代构造形变特征. 地震学报,1,109-120, 1979
    [20] 曾融生, 孙为国. 青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论. 地震学报,14,534-563, 1992
    [21] 任金卫, 汪一鹏, 吴章明. 青藏高原北部东昆仑断裂带第四纪活动特征及滑动速率, 《活动断裂研究》(7),147-164, 地震出版社, 1999
    [22] 洪汉净, 汪一鹏, 沈军等. 我国大陆地壳地块运动的平均图象及其动力学意义,活动断裂研究理论与应用, 6:17—29,1998
    [23] 杨少敏, 游新兆等. 用双三次样条函数和GPS资料反演现今中国大陆构造形变场, 大地测量与地球动力学, 22(1),2002
    [24] 杨少敏, 王琪等, 利用 GPS 资料分析 2000 网现代水平构造形变场,中国地震学会地壳形变测量专业委员会 2001 年学术年会论文集. 2001
    [25] 乔学军, 王 琪, 杜瑞林等. 昆仑山口西 Ms8.1 地震的地壳变形特征, 大地测量与地球动力学, 22(4), 6-11, 2002
    [26] 许忠淮, 东亚地区现今构造应力图的编制. 地震学报,23(5),2001
    [27] 王琪,丁国瑜, 乔学军等. 天山现今地壳快速缩短与南北地块的相对运动.科学通报,14:1543-1547, 2000
    [28] 王琪,张培震,牛之俊. J.T.Freymeuller,中国大陆现今地壳运动与构造变形,中国科学(D 辑),31(7):529~536,2001
    [29] 江在森, 张 希, 祝意青等. 昆仑山口西 MS8.1 地震前区域构造变形背景,中国科学(D 辑),33(增刊),163-172,2003
    [30] 游新兆等. 中国大陆地壳现今运动的GPS测量结果与初步分析, 地壳形变与地震, 21, 3, 2001
    [31] 朱文耀 , 王小亚等 . 中国大陆地壳运动背景场 . 科学通报, 44 ( 14 ) :1537-1539,1999
    [32] 张国民, 汪素云, 李 丽等.中国大陆地震震源深度及其构造含义, 科学通报, 47(9), 663-668, 2002
    [33] 张培震, 中国大陆岩石圈构造变动与地震灾害。第四纪研究,5: 404-413,1999。
    [34] 张培震,王琪, 马宗晋,中国大陆现今构造运动的 GPS 速度场与活动地块. 地学前缘,2002(2), 430-441
    [35] 张培震,王琪,马宗晋,青藏高原现今构造变形特征与 GPS 速度场. 地学前缘,2002(2), 442-450
    [36] 阚荣举,张四昌,宴风桐. 我国西南地区现代构造应力场与现代构造活动特征的探讨,地球物理学报, 20(2),96-109,1977
    [37] 阚荣举, 王绍晋,黄崐等. 中国西南地区现代构造应力场与板内断块相对运动,地震地质, 5(2),79-90, 1983
    [38] 谢富仁等,中国西南地区现代构造应力场基本特征,地震学报,15(4),1993.
    [39] 徐锡伟, 陈文彬, 马文涛等. 2001 年 11 月 14 日昆仑山库赛湖地震(Ms 8.1)地表破裂的基本特征,地震地质,24(1),1-13,2002
    [40] 国家地震局阿尔金活动断裂带课题组. 阿尔金活动断裂带. 北京:地震出版社,1992
    [41] 赵少荣,动态大地测量反演及物理解释的理论与应用,武汉测绘科技大学博士论文,1993(9)
    [42] 陈培善. 1995 地震矩张量及其反演,地震地磁观测与研究, 16(5)
    [43] Avouac, J. P. and P. Tapponnier, Kinematic model of active deformation in central Asia, Geophys. Res. Lett., 20. 895-898, 1993
    [44] Armijo R., Tapponnier P., Mercier J. L., et al., Quaternary extension in Southern Tibet : Field observations and tectonic implications. J. Geophys. Res., 91, 13803-13872, 1986
    [45] Armijio Roland, P. ,Tapponnier and Han Tonglin,1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. J.Geophy Res. 94, B3, 2787-2838
    [46] Argus, D. F. and R. G. Gordon, Pacific-North America plate motion from very long baseline interferometry compared with that determined from magnetic anomalies, transform faults, and earthquake slip vectors, J. Geophys. Res., 95, 17,315-17,324,1990
    [47] Banerjee P. and Burgmann R., Convergence across the northwest Himalaya from GPS measurements. Geophys. Res. Lett., 29(13), 10.1029/2002 GL015184, 2002
    [48] Bendick R,Bilham R,Freymueller JT,et al. Geodetic evidence for a low slip rate in the altyn tagh fault system,Nature,402, 69-72,2000
    [49] Bernard,M.,B.Shen-Tu,W.E.Holt,and D.Davis,Kine-matics of active feformation in the Sulaiman Lobe and Range, Pakistan J.Geophys.Res.,13253-13279,2000
    [50] Bibby,H. M.,A. J. Haines, and R. I. Walcott, Geodetic strain and the present day plate boundary zone through New Zealand, in Recent Crustal Movements of the Pacific Regoin, edited by W.I.Reilly and B.E.Harford, R. Soc. N.Z. Bull., 24,427-438,1986
    [51] Calais E., Vergnolle M., Sankov V., et al, GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. J. Geophys. Res., 108, 2501, doi:10.1029/2002JB002373, 2003
    [52] Cardwell,R. K., and B. L. Isacks, Geometry of the subducted lithosphere beneath the Banda Sea in eastern Indonesia fron sismicity and fault plane solutions, J.Geophys.Res.,83,2825-2838,1978.
    [53] Cardwell,R. K., and B. L. Isacks, and D.E.Karig, The spatial distribution of earthquakes, focal mechanism solutions , and subducted lithosphere in the Philippine and northeastern Indonesian islands, in The Tectonec and Geoogic Evolution of Southeast Asian Seas and Islands,Geophys, Monogr. Ser., Vol.23, edited by D.E. Hayes, pp.1-35, AGU, Washington, D.C.,1980
    [54] Chen Q, J.T. Freymuelle et al. A deforming block model for the present-day tectonics of Tibet. J.Geophys.Res, 109,B01403,2004(a)
    [55] Chen Q, J.T. Freymueller,Q.,et al. Spatially variable extension in southern Tibet based on GPS measurements, J. Geophys.Res, 109,B01403,2004(b)
    [56] Chen Z., Burchfiel B. C., Liu Y., et al., Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res., 105, 16215- 16227, 2000
    [57] DeMets, C., R. G. Gordon, D. F. Argus and S. Stein, Effect of recent revision to the geomagnetic reversal time scale on estimates of current plate motion, Geophys. Res. Lett., 21, 2,191-2,194, 1994
    [58] England, P., and P. Molnar, The field of crustal velocity in asia calculated from Quaternary rates of slip on faults, Geophys.J.Int., 130,551-582,1997a
    [59] EnglandP.,andP.Molnar, Active deformation of Asia: from kinematics to dynamics, Science,278 ,647-650, 1997b
    [60] England P and Molnar, P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eartern Tiber. Nature, 344, 6262,140-142, 1990
    [61] England P. and P.Molnar. Late Quaternary to decadal velocity fields in Asia. J.Geophys.Res, 110,B12401, 2005
    [62] Fitch, T. J., Plate convergence. Transcurrent faults and internal deformation adjacent to southeast Asia and western Pacific, J. Geophys. Res., 77,4432-4460,1972
    [63] Fung Y. C. Foundations of solid mechanics[M].Prentice-Hall,Englewood Cliffs,N.J.,1965
    [64] Gordon R. G., and Stein S., Global tectonics and space geodesy. Science, 256, 333-342, 1992
    [65] Haines, A. J.,Calculating velocity fields across plate boundaries from observed shear rates, Geophys. J. R. Astron. Soc., 68,203-209, 1982
    [66] Haines, A. J., and W.E. Holt, A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res., 98, 12,057-12,082, 1993
    [67] Haines, A. J., J. A. Jackson, W. E. Holt, and D. C. Agnew, Representing distributed deformation by continuous velocity fields, Sci. Rept. 98/5, inst. of Geol. and Nucl. Sci., Wellington, New Zealand, 1998
    [68] Holt, W. E and A. J. Haines, Velocity field in deforming Asia from inversion of earthquake released strains, Tectonics, 12, 1-20, 1993a
    [69] Holt, W. E., and A. J. Haines, The kinematics of northern South Island New Zealand determined from geologic strain rates, J. Geophys. Res., 100, 17,991-18,010, 1995
    [70] Holt, W. E, M., Li and A. J. Haines, Earthquake strain rates and instantaneous relative motions within central and eastern Asia, Geophys. J. Int., 122, 569-593, 1995
    [71] Holt, E.W., N. Chamot-Rooke, X. Le Pichon, A. J. Haines, B. Shen-Tu and J. Ren, Veolocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, Geophys. J. Res., 105, 2000
    [72] Kreemer, C., W.E. Holt, S. Goes, and R. Govers. Active deformation in the eastern Indonesia and Philippines from GPS and seismicity data, J. Geophys. Res, 105., 663-680, 2000
    [73] Kostrov, V.V., Seismic moment, energy of earthquakes, and the seismic flow of rock,Izv. Acad.Sci. USSR Phys. Solid Earth, Engl. Transl.,10,23-44,1974
    [74] Mao A et al. Noise in GPS coordinate time series. J. of Geophys. Res, 104, 2797-2816, 1999
    [75] McCaffrey R. et al. Rotation and plate locking at southern Cascadia subduction zone. Geophys.Res.Lett., Vol 27, 3117-3120, 2000
    [76] McCaffrey R.. Crustal block rotations and plate coupling. Geodyn.Ser,Vol 30,100-122,AGU, 2002
    [77] McCaffrey, R.. Block kinematics of the Pacific - North America plate boundary in the southwestern US from inversion of GPS, seismological, and geologic data. J. Geophys.Res, 110, B07401,2005
    [78] McCaffrey, R., Active tectonics of the eastern Sunda and Banda Arcs, J. geophys. Res., 93, 15,163-15,182, 1988
    [79] McCaffrey, R.,Seismological constraints and speculations on Banda arc tectonics , Neth.j.sea Res.,24,141-152,1989.
    [80] Molnor, P. and P. Tapponnier, Cenozoic tectonics of Asia: Effects of a continental collision, Science, 189, 419-426, 1975
    [81] Molnar, P., and W. P. Chen, Focal depths and fault plane solutions of earthquakes under the Tibetan plateau, J. geophys. Res., 88, 1,180-1,196, 1983.
    [82] Molnor, P., and Q. Deng, Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, J. geophys. Res., 93, 6,203-6,227, 1984
    [83] Molnar P., Continental tectonics in the aftermath of plate tectonics. Nature, 335,131-137, 1988
    [84] Molnar, P. and Helene Lyon-Caen,1989. Fault plane solution of earthquakes and active tectionics of the Tibetan Plateau and its margins. Geophys. J. Int. , 99,123-153.
    [85] Molnor, P. A review of the seismicity and the rates of underthrusting and deformation at the Himalaya, J. Himalayan Geol., 1(2), 131-154, 1990
    [86] Molnar P., and J. Gipson, A bound on the rheology of continental lithosphere using very long baseline interferometry: The velocity of south China with respect to Eurasia, J.Geophys. Res., 101,545-553,1996
    [87] Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol.Soc.Am,87,1135-1154,1985
    [88] Paul J., Burgmann R., Gaur V. K., et al, The motion and active deformation of India.Geophys. Res. Lett. 28(4) , 647-651, 2001
    [89] Peltzer, G. and P. Tapponnier, Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach, J. geophys. Res., 93, 15,085-15,117, 1988
    [90] Peltzer, G. and P. Tapponnier and R. Armijo, Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet. Science, 1989, 246: 1283-1289
    [91] Peltzer, G. and F. Saucier, Present-day kinematics of Asia derived from geologic fault rates, J. geophys. Res., 101, 27,943-27,956, 1996
    [92] Replumaz and Tapponnier. Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. J. Geophys.Res., 108,(B6)2285, 2003
    [93] Ren, J., Y. Wang, Z. Wu and J. Ye., Holocene displacement and slip rate of Kusaihu-Maqu fault (Xidatan-Dongdatan), northern Tibetan plateau, Proceedings, 1993 Joint Conference of Seismology in East Asia, October 29-November 2, 1993, Tottori, Japan, 162-164, 1993
    [94] Savage,J.C.,J.L.Svarc,W.H.Prescott,et al. Deformation across the forearc of the Cascadia subduction zone at Cape Blanco,Oregon. J. Geophys. Res, 105, 3095-3102, 2000
    [95] Savage,J.C. et al.Strain accumulation and rotation in the eastern California shear zone. J.Geophys.Res,106(B10):21995-22007, 2001
    [96] Stein, S., Space geodesy and plate motions, in Space Geodesy and Geodynamics, edited by D.E. Smith, and D.L. Turcotte, pp.5-20, American Geophysical Union, Washington, D.C., 1993
    [97] Shen-Tu, B., Holt, W.E., and Haines, A.J., Intraplate deformation in the Japanese Islands: a kinematic study of intraplate deformation at a convergent plate margin, J. Geophys. Res., 100: 24,275-24,293, 1995
    [98] Shen-Tu, B., Holt, W.E., and Haines, A.J., Contemporary kinematics of the westrern United States determined from earthquake moment tensors, very long baseline interferometry, and GPS observations, J. Geophys. Res., 103, 18,087-18,117, 1998
    [99] Shen, Z.K., C.Zhao, A.Yin, Y.Li, D.D.Jackson, P.Fang, and D.Dong, Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements, J. Geophys. Res., 105,5721-5734, 2000
    [100] Shen Z.-K., Wang M., Li Y., et al., Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res., 106, 30607-30622, 2001
    [101] Tapponnier P., Peltzer G., Le Dain A.Y., et al., Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10, 611-616,1982
    [102] Thatcher W., Continuum versus microplate models of active continental deformation. J. Geophys. Res., 100, 3885-3894, 1995
    [103] Thatcher W., GPS Constraints on the Kinematics of Continental Deformation. Int. Geol. Rev., 45, 191-212, 2003
    [104] Wallace, L. M., J. Beavan, R. McCaffrey, and D. Darby. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys.Res, B12406, doi:10.1029/2004JB003241, 2004
    [105] Vigny C., Socquet A., Rangin C., et al., Present-day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res., 108(B11), 2533, doi: 10. 1029/ 2002JB001999, 2003
    [106] Wang Q., Zhang P.-Z., et al.,Present-day crustal deformation in China constrained by Global Position System measurements, Science, 294, 574-577,2001
    [107] Zoback M. L., First- and second-order pattern of stress in the lithosphere : the world stress project. J. Geophys. Res., 97, 11703-11728, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700