天花粉蛋白诱导HeLa细胞凋亡过程中细胞骨架的改变和cAMP信号通路的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天花粉蛋白(TCS)具有多种药理学特性,包括中期流产、抗人HIV病毒和诱导多种肿瘤细胞凋亡的抗肿瘤活性。已有研究结果表明,TCS诱导JAR内ROS产生、细胞内钙离子浓度波动、caspase-3活化和凋亡;TCS抑制HSV-1感染的Vero细胞内MAPK和Bcl-2信号通路,进而抑制细胞复制。此外,TCS通过抑制PKC活性而诱导K562细胞凋亡。
     我们实验室的研究发现,TCS能够诱导Hela细胞形态学改变,包括微绒毛消失、细胞膜发泡,染色质浓缩和凋亡小体形成;TCS抑制细胞增殖的机制与细胞周期S期阻滞和诱导细胞内capsase凋亡通路活化有关。这些研究结果初步证实Hela细胞是TCS的敏感细胞之一,但TCS诱导Hela细胞凋亡过程中的细胞和分子机制仍需做深入的研究。
     鉴于此,本课题在原有的实验基础上,进一步研究了TCS诱导HeLa细胞凋亡过程中细胞骨架的改变、相关信号转导通路或靶点、转录因子环磷酸腺苷反应结合蛋白(CREB)在调节Bcl-2蛋白表达水平的作用,以便从细胞和分子水平上揭示TCS诱导Hela细胞凋亡的机理,为天花粉蛋白在肿瘤防治中的应用,提供重要的理论和实验依据。
     研究目的通过研究TCS诱导Hela细胞凋亡过程中细胞骨架的排列、骨架蛋白和基因表达的改变、以及相关信号转导通路或靶点,阐明TCS诱导Hela细胞凋亡的细胞和分子机制。
     研究方法采用CCK-8的方法,检测TCS对HeLa细胞的抑制作用;在confocal免疫荧光显微镜下,观察TCS诱导Hela细胞内细胞骨架微管(MT)和微丝(MF)的改变;利用western blot检测TCS对细胞骨架蛋白表达的影响,real-timePCR检测TCS对细胞骨架actin和tubulin亚型基因表达的影响;电子显微镜和Annexin/PI双染观察TCS对HeLa细胞诱导凋亡的作用;Fura-4荧光探针检测TCS诱导Hela细胞内钙离子水平的改变;腺苷酸环化酶(AC)、PKA、PKC、ERK、p38-MAPK蛋白激酶抑制剂或激活剂检测这些激酶在TCS抑制HeLa细胞增殖中的作用;用反义环磷酸腺苷反应结合蛋白(CREB)核苷酸敲除法和cAMP反应原件(CRE)诱骗(decoy)寡核苷酸(ODN)法,验证TCS是否通过调节转录因子CREB对Bcl-2蛋白的表达产生影响。
     研究结果(1)TCS诱导Hela细胞凋亡伴随着MF解聚和质膜下“环状”MT结构的形成;TCS抑制细胞骨架actin和tubulin亚型基因的表达,但不影响actin,α-tubulin和β-tubulin蛋白的表达。(2)钙离子螯合剂破坏TCS诱导的“环状”MT结构,但不影响TCS引起的MF解聚;而且钙离子螯合剂和TCS联合处理,显著性增加LDH的释放。(3)TCS诱导的细胞外钙离子内流,抑制细胞内腺苷酸环化酶的活性和细胞内cAMP的形成;PKC活化剂显著性拮抗TCS抑制的腺苷酸环化酶的活性和细胞内cAMP的水平;TCS抑制的p-CREB表达能够被cAMP异构体拮抗;然而,PKC/ERK/MAPK抑制剂阻滞了cAMP异构体的拮抗效应。(4)反义CREB核苷酸敲除法和CRE诱骗ODN法,有效阻滞了TCS对Bcl-2蛋白的调节作用。
     结论(1)TCS诱导Hela细胞凋亡伴随着MT“环状”结构的形成和抑制细胞骨架actin和tubulin亚型基因的表达,但不影响actin和tubulin蛋白表达的改变。(2)TCS诱导细胞内钙离子的升高参与调节和维持细胞内MT“环状”结构的形成与凋亡过程中细胞膜的完整性。(3)TCS诱导的细胞内钙离子升高,参与抑制Hela细胞内cAMP/PKC/MAPK/CREB活性,进而抑制细胞增殖。(4)TCS抑制的CREB磷酸化对调控Bcl-2基因表达起主要作用。这些结果为理解TCS诱导凋亡的细胞和分子机制提供了新的思路。
Trichosanthin(TCS)possesses a broad spectrum of biological and pharmacological activities,including abortifacient,anti-HIV and anti-tumor activities through apoptosis pathway in some cells.Previous studies showed that TCS induced the apoptosis of JAR cells via ROS production,internal Ca~(2+)elevation and caspase-3 activation.TCS suppressed mitogen-activated protein kinase(MAPK)and Bcl-2 signals leading to the replication inhibition in HSV-1 infected Vero cells.Furthermore, K562 cell apoptosis was induced by TCS via PKC inhibition.
     Additionally,the data obtained from our laboratory indicated that TCS caused Hela cells with markedly morphological changes,including microvilli disappearance or reduction,cell membrane vesiculation,cell shrinkage,condensation of chromosomes and apoptotic bodies with complete membrane.Further studies on the mechanisms of Hela cell apoptosis induced by TCS,showed that TCS-caused a S-phase arrest in cell cycle associated with a time-dependent increase of caspase-3,8, 9 activities.These preliminary results,therefore,indicate that Hela cells are sensitive to TCS.However,these data are insufficient for elucidating the cellular and molecular mechanisms occurring in Hela cell apoptosis induced by TCS.
     Objective To investigate the effects of TCS on cytoskeletal remodeling,the quantitative changes of actin and tubulin proteins,and subunit cytoskeletal mRNA levels in apoptotic Hela cell.Furthermore,we determined the specific intracellular signaling transduction pathways to explore the underlying cellular and molecular mechanisms of Hela cell apoptosis induced by TCS.
     Methods The antiproliferative effect of TCS on HeLa cells was measured with CCK-8.Cytoskeletal remodeling,the quantitative changes of actin and tubulin proteins, and subunit cytoskeletal mRNA levels in apoptotic Hela cell were examined by confocal immunofluorescence microscopy observations,western blot and quantitative real-time PCR assays.Electron microscopy and FCM analysis was employed to observe the apoptosis of Hela cells.Fura-4 fluorescence probe was used to check the cytosolic calcium level.Antisense knockdown of CREB gene expression,and blockade the binding of CREB to the Bcl-2 CRE were carded out to examine whether cAMP response element-binding(CREB)was involved in TCS-mediated Bcl-2 expression.
     Results(1)TCS induced the execution phase of cell apoptosis was a highly coordinated process of cellular reorganization,depolymerized microfilaments accumulated in the coarsened cytoplasm and apoptotic bodies,accompanied by the formation of a ring microtubule structure beneath the plasma membrane.However,no quantitative changes were observed on actin and tubulin proteins.Furthermore, apoptosis occurred by a suppression of actin and tubulin subunit gene expression.(2) Sequestrating the TCS-increased[Ca~(2+)]c with EGTA caused less protective of cell viability,which was related to the absence of apoptotic microtubule structure altered plasma membrane permeability.(3)TCS initiated an influx of extracellular Ca~(2+),and it was required for the suppression of adenyl cyclase(AC)activity and intracellular cAMP formation.Furthermore,this inhibition was abolished by preincubation with an activator of PKC rather than PKA.The expression of p-CREB protein expression inhibited by TCS was reversed by cAMP agonists.Nevertheless,blocking the ERK1/2 and p38 MAPK pathway in TCS/FSK treated cells significantly prevented the increase of cell viability.Furthermore,the phosphorylated ERK1/2 and p38 MAPK protein levels were decreased by the inhibitors of PKC.(4)CREB antisense effectively reduced CREB expression levels,and TCS was able to reduce Bcl-2 level in cells treated with CREB sense.The importance of activating the CREB pathway in Hela cell apoptosis induced by TCS was further demonstrated by a CRE decoy oligonucleotide to block the binding of CREB to the Bcl-2 CRE.As expected,the CRE oligonucleotide treatment resulted in the constant expression of Bcl-2 protein.In contrast,the treatment of CRE oligonucleotide failed to affect the phosphorylated CREB protein level.
     Conclusion These data suggested that(1)Hela cell apoptosis induced by TCS was accompanied by the cytoskeletal remodeling and suppression of cytoskeletal gene expression,but not by quantitative changes of proteins.(2)TCS-increased intracellular calcium exerted the pivotal role on the formation of apoptotic microtubule ring structure,which participated in the regulating of plasma membrane permeability.(3) TCS mediated Hela cell apoptosis via the regulation of cAMP/PKC/MAPK pathway. (4)TCS suppressed Bcl-2 expression through the inhibition of phosphorylated CREB. Therefore,these results provide deep insights for the understanding of the cellular and molecular mechanisms underlying TCS-caused cell apoptosis.
引文
[1]Maraganore JM,Joseph M,Bailey MC.Purification and characterization of trichosanthin.Homology to the ricin A chain and implications as to mechanism of abortifacient activity.J Biol Chem 1987;262(24):11628-33.
    [2]Zhang XJ,Wang JH.Homology of trichosanthin and ricin A chain.Nature 1986;321(6069):477-8.
    [3]Zhang JS,Liu WY.The mechanism of action of trichosanthin on eukaryotic ribosomes--RNA N-glycosidase activity of the cytotoxin.Nucleic Acids Res 1992;20(6):1271-5.
    [4]Takemoto DJ.Effect of trichosanthin an anti-leukemia protein on normal mouse spleen cells.Anticancer Res 1998;18(1A):357-61.
    [5]Zhang CY,Gong YX,Ma H,An CC,Chen DY.Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells.Analyst 2000;125(9):1539-42.
    [6]Zhang C,Gong Y,Ma H,An C,Chen D,Chen ZL.Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells.Biochem J 2001;355(Pt 3):653-61.
    [7]Chan WY,Huang H,Tam SC.Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells.Toxicology 2003;186(3):191-203.
    [8]Wang Y,Mi SL,Lou MY,Gao Y,Chen ZL,An CC.Enhanced green fluorescence protein tracks trichosanthin in human choriocarcinoma cells as a feasible and stable reporter.Front Biosci 2005;10:2279-84.
    [9]He J-F,Li J-C.The growth inhibition and the apoptosis of Hela cells induced with TCS.Acta Anatomica Sinica 2006;37(3):309-14.
    [10]Dou C-M,Li J-C.Preliminary study on effects of trichosanthes kirilowi root on Hela cells.Chinese Journal of Integrated Traditional and Western Medicine 2003;23(11):848-51.
    [11]Dou C-M,Li J-C.The anti-tumor effect of trichosanthin on HepA-H and Hela cells.Chinese Journal of Pathophysiology 2005;21(5):980-4.
    [12] Zheng YT, Chan WL, Chan P, Huang H, Tarn SC. Enhancement of the anti-herpetic effect of trichosanthin by acyclovir and interferon. FEBS Lett 2001 ;496 (2-3): 139-42.
    [13] Huang H, Chan H, Wang YY, Ouyang DY, Zheng YT, Tam SC. Trichosanthin suppresses the elevation of p38 MAPK, and Bcl-2 induced by HSV-1 infection in Vero cells. Life Sci 2006;79 (13):1287-92.
    [14] Li J, Xia X, Nie H, Smith MA, Zhu X. PKC inhibition is involved in trichosanthin-induced apoptosis in human chronic myeloid leukemia cell line K562. Biochim Biophys Acta 2007;1770 (1):63-70.
    [15] Ru QH, Luo GA, Liao JJ, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin. J Chromatogr A 2000;894 (1-2): 165-70.
    [16] Tsao SW, Yan KT, Yeung HW. Selective killing of choriocarcinoma cells in vitro by trichosanthin, a plant protein purified from root tubers of the Chinese medicinal herb Trichosanthes kirilowii. Toxicon 1986;24 (8):831-40.
    [17] Zheng YT, Zhang WF, Ben KL, Wang JH. In vitro immunotoxicity and cytotoxicity of trichosanthin against human normal immunocytes and leukemia-lymphoma cells. Immunopharmacol Immunotoxicol 1995;17 (1):69-79.
    [18] Chan WL, Shaw PC, Tam SC, Jacobsen C, Gliemann J, Nielsen MS. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem Biophys Res Commun 2000;270 (2):453-7.
    [19] Dou CM, Li JC. Effect of extracts of trichosanthes root tubers on HepA-H cells and HeLa cells. World J Gastroenterol 2004;10 (14):2091-4.
    [20] Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 1993; 14 (2): 133-51.
    [21] Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death. Faseb J 1995;9 (13):1277-87.
    [22] Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267 (5203):1456-62.
    [23] Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971 ;105 (1):13-20.
    [24] Kumar S. Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol 1999;26 (4):295-303.
    [25] Schrantz N, Blanchard DA, Auffredou MT, Sharma S, Leca G, Vazquez A. Role of caspases and possible involvement of retinoblastoma protein during TGFbeta-mediated apoptosis of human B lymphocytes. Oncogene 1999; 18 (23):3511-9.
    [26] Mills JC, Stone NL, Pittman RN. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 1999; 146 (4):703-8.
    [27] Pittman S, Geyp M, Fraser M, Ellem K, Peaston A, Ireland C. Multiple centrosomal microtubule organising centres and increased microtubule stability are early features of VP-16-induced apoptosis in CCRF-CEM cells. Leuk Res 1997;21 (6):491-9.
    [28] Pittman SM, Strickland D, Ireland CM. Polymerization of tubulin in apoptotic cells is not cell cycle dependent. Exp Cell Res 1994;215 (2):263-72.
    [29] Veselska R, Zitterbart K, Jelinkova S, Neradil J, Svoboda A. Specific cytoskeleton changes during apoptosis accompanying induced differentiation of HL-60 myeloid leukemia cells. Oncol Rep 2003;10 (4):1049-58.
    [30] Cervinka M, Cerman J, Rudolf E. Apoptosis in Hep2 cells treated with etoposide and colchicine. Cancer Detect Prev 2004;28 (3):214-26.
    [31] Moss DK, Betin VM, Malesinski SD, Lane JD. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 2006; 119 (Pt 11):2362-74.
    [32] Moss DK, Lane JD. Microtubules: forgotten players in the apoptotic execution phase. Trends Cell Biol 2006;16 (7):330-8.
    [33] Sanchez-Alcazar JA, Rodriguez-Hernandez A, Cordero MD, Fernandez-Ayala DJ, Brea-Calvo G, Garcia K, Navas P. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis 2007;12(7):1195-208.
    [34] Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991 ;7:663-98.
    [35] Lin HL, Liu TY, Wu CW, Chi CW. 2-Methoxyestradiol-induced caspase-3 activation and apoptosis occurs through G(2)/M arrest dependent and independent pathways in gastric carcinoma cells. Cancer 2001;92 (3):500-9.
    [36] Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 2001 ;40 (4):1117-23.
    [37] Sgorbissa A, Benetti R, Marzinotto S, Schneider C, Brancolini C. Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis. J Cell Sci 1999;112 (Pt 23):4475-82.
    [38] Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell 1995;82 (3):349-52.
    [39] Guenal I, Risler Y, Mignotte B. Down-regulation of actin genes precedes microfilament network disruption and actin cleavage during p53-mediated apoptosis. J Cell Sci 1997; 110 (Pt 4):489-95.
    [40] Birukawa N, Ando H, Goto M, Kanda N, Pastene L, Nakatsuji H, Hata H, Urano A. Plasma and urine levels of electrolytes, urea and steroid hormones involved in osmoregulation of cetaceans. ZOOLOGICAL SCIENCE 2005;22 (11):1245-57.
    [41] Luo Q, Ban M, Ando H, Kitahashi T, Bhandari R, McCormick S, Urano C. Distinct effects of 4-nonylphenol and estrogen-17 beta on expression of estrogen receptor alpha gene in smolting sockeye salmon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY 2005;140 (1):123-30.
    [42] Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 1992;286 (Pt 2):331-4.
    [43] Cotter TG, Lennon SV, Glynn JM, Green DR. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res 1992;52 (4):997-1005.
    [44] Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 1998;78 (3):763-81.
    [45] Afford S, Randhawa S. Apoptosis. Mol Pathol 2000;53 (2):55-63.
    [46] Sanchez-Alcazar JA, Rodriguez-Hernandez A, Cordero MD, Fernandez-Ayala DJ, Brea-Calvo G, Garcia K, Navas P. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis 2007.
    [47] Hatten ME, Liem RK, Mason CA. Two forms of cerebellar glial cells interact differently with neurons in vitro. J Cell Biol 1984;98 (1): 193-204.
    [48] Goldman JE, Abramson B. Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res 1990;528 (2): 189-96.
    [49] Goldman JE, Chiu FC. Growth kinetics, cell shape, and the cytoskeleton of primary astrocyte cultures. J Neurochem 1984;42 (1): 175-84.
    [50] Safavi-Abbasi S, Wolff JR, Missler M. Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia 2001;36 (1):102-15.
    [51] Erba HP, Eddy R, Shows T, Kedes L, Gunning P. Structure, chromosome location, and expression of the human gamma-actin gene: differential evolution, location, and expression of the cytoskeletal beta- and gamma-actin genes. Mol Cell Biol 1988;8(4):1775-89.
    [52] Bond JF, Farmer SR. Regulation of rubulin and actin mRNA production in rat brain: expression of a new beta-tubulin mRNA with development. Mol Cell Biol 1983;3 (8):1333-42.
    [53] Farmer SR, Wan KM, Ben-Ze'ev A, Penman S. Regulation of actin mRNA levels and translation responds to changes in cell configuration. Mol Cell Biol 1983;3 (2): 182-9.
    [54] Vandekerckhove J, Franke WW, Weber K. Diversity of expression of non-muscle actin in amphibia. J Mol Biol 1981;152 (2):413-26.
    [55] Masibay AS, Qasba PK, Sengupta DN, Damewood GP, Sreevalsan T. Cell-cycle-specific and serum-dependent expression of gamma-actin mRNA in Swiss mouse 3T3 cells. Mol Cell Biol 1988;8 (6):2288-94.
    [56] Chang A, Toloza E, Bulinski JC. Changes in the expression of beta and gamma actins during differentiation of PC12 cells. J Neurochem 1986;47 (6): 1885-92.
    [57] Lloyd C, Schevzov G, Gunning P. Transfection of nonmuscle beta- and gamma-actin genes into myoblasts elicits different feedback regulatory responses from endogenous actin genes. J Cell Biol 1992; 117 (4):787-97.
    [58] Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR, 3rd, Mogilner A, Zebroski H, Kashina A. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 2006;313 (5784): 192-6.
    
    [59] Bulinski JC. Cell biology. Actin discrimination. Science 2006;313 (5784): 180-1.
    [60] Lawrence JB, Singer RH. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 1986;45 (3):407-15.
    [61] Schevzov G, Lloyd C, Gunning P. High level expression of transfected beta- and gamma-actin genes differentially impacts on myoblast cytoarchitecture. J Cell Biol 1992;117 (4):775-85.
    [62] Elder PK, Schmidt LJ, Ono T, Getz MJ. Specific stimulation of actin gene transcription by epidermal growth factor and cycloheximide. Proc Natl Acad Sci U S A1984;81(23):7476-80.
    [63] Weinstock RS, Saville CM, Messina JL. Role of cytosolic calcium in regulation of cytoskeletal gene expression by insulin. Am J Physiol 1993;264 (4 Pt l):E519-25.
    [64] Suarez-Huerta N, Mosselmans R, Dumont JE, Robaye B. Actin depolymerization and polymerization are required during apoptosis in endothelial cells. J Cell Physiol 2000;184 (2):239-45.
    [65] Ben-Ze'ev A, Farmer SR, Penman S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 1979;17 (2):319-25.
    [66] Nicotera P, Bellomo G, Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 1992;32:449-70.
    [67] Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 1993;13 (5): 1993-2000.
    [68] Mattson MP, Guthrie PB, Hayes BC, Kater SB. Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989;9 (4): 1223-32.
    [69] Takadera T, Ohyashiki T. Apoptotic cell death and caspase 3 (CPP32) activation induced by calcium ionophore at low concentrations and their prevention by nerve growth factor in PC12 cells. Eur J Biochem 1997;249 (1):8-12.
    [70]Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS, Opas M, Bleackley RC, Green DR, Michalak M. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000; 150 (4):731-40.
    [71] Lin HL, Yang JS, Yang JH, Fan SS, Chang WC, Li YC, Chung JG The role of Ca2+ on the DADS-induced apoptosis in mouse-rat hybrid retina ganglion cells (N18). Neurochem Res 2006;31 (3):383-93.
    [72] Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: Implications for apoptosis. J Biol Chem 2007.
    [73] Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000;69:217-45.
    [74] Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383-424.
    [75] Qi H, Chen HZ, Jin ZJ. Caspase 3 gene expression and [Ca2+]i homeostasis underlying desipramine-induced C6 glioma cell apoptosis. Acta Pharmacol Sin 2002;23 (9):803-7.
    [76] Xia X, Hou F, Li J, Ke Y, Nie H. Two novel proteins bind specifically to trichosanthin on choriocarcinoma cell membrane. J Biochem (Tokyo) 2006; 139 (4):725-31.
    [77] Lim MS, Lim PL, Gupta R, Boelsterli UA. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes. Toxicol Appl Pharmacol 2006;217 (3):322-31.
    [78] Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004;287 (4):C817-33.
    [79] Li YM, Yang HW, Luo R. [Gene cloning, expression and purification of fusion protein epidermal growth factor-linker-trichosanthin]. Nan Fang Yi Ke Da Xue XueBao 2007;27(2):205-7.
    [80] Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 1996;135 (6 Pt 1):1441-55.
    [81] Caulin C, Salvesen GS, Oshima RG Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 1997;138 (6):1379-94.
    [82] Mills JC, Lee VM, Pittman RN. Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis. J Cell Sci 1998;111 (Pt 5):625-36.
    [83] Bonfoco E, Leist M, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Cytoskeletal breakdown and apoptosis elicited by NO donors in cerebellar granule cells require NMDA receptor activation. J Neurochem 1996;67 (6):2484-93.
    [84] Facanha AL, Appelgren H, Tabish M, Okorokov L, Ekwall K. The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics. J Cell Biol 2002;157 (6):1029-39.
    [85] Melander Gradin H, Marklund U, Larsson N, Chatila TA, Gullberg M. Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18. Mol Cell Biol 1997;17 (6):3459-67.
    [86] O'Brien ET, Salmon ED, Erickson HP. How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 1997;36 (2):125-35.
    [87] Naito Y, Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science 1972;176 (34):523-4.
    [88] Lindemann CB, Goltz JS. Calcium regulation of flagellar curvature and swimming pattern in triton X-100--extracted rat sperm. Cell Motil Cytoskeleton 1988;10(3):420-31.
    [89] Sakato M, King SM. Calcium regulates ATP-sensitive microtubule binding by Chlamydomonas outer arm dynein. J Biol Chem 2003;278 (44):43571-9.
    [90] Karcher RL, Roland JT, Zappacosta F, Huddleston MJ, Annan RS, Carr SA, Gelfand VI. Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 2001 ;293 (5533):1317-20.
    [91] Adamikova L, Straube A, Schulz I, Steinberg G. Calcium signaling is involved in dynein-dependent microtubule organization. Mol Biol Cell 2004; 15 (4): 1969-80.
    [92] Kruman, II, Mattson MR Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem 1999;72 (2):529-40.
    [93] Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MR Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998;18 (12):4439-50.
    [94] Ferguson C, Kern M, Audesirk G. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism. Neurotoxicology 2000;21 (3):365-78.
    [95] Florea AM, Splettstoesser F, Busselberg D. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol 2007;220 (3):292-301.
    [96] Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 1997;278 (5336):294-8.
    [97] Yamazaki Y, Tsuruga M, Zhou D, Fujita Y, Shang X, Dang Y, Kawasaki K, Oka S. Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis. Exp Cell Res 2000;259 (1):64-78.
    [98] Zaccolo M, Pozzan T. CAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci 2003;26 (2):53-5.
    [99] Bruce JI, Straub SV, Yule DI. Crosstalk between cAMP and Ca2+ signaling in non-excitable cells. Cell Calcium 2003;34 (6):431-44.
    [100] Antoni FA. Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol 2000;21 (2): 103-32.
    [101] Teitelbaum I, Berl T. Increased cytosolic Ca2+ inhibits AVP-stimulated adenylyl cyclase activity in rat IMCT cells by activation of PKC. Am J Physiol 1994;266(3 Pt 2):F486-90.
    [102] Takaichi K, Kurokawa K. Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest 1988;82 (4):1437-44.
    [103] Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 2002; 143 (5): 1748-60.
    [104] Yang SN, Yu J, Mayr GW, Hofmann F, Larsson O, Berggren PO. Inositol hexakisphosphate increases L-type Ca2+ channel activity by stimulation of adenylyl cyclase. Faseb J 2001;15 (10):1753-63.
    [105] Hoeffler JP, Deutsch PJ, Lin J, Habener JF. Distinct adenosine 3',5'-monophosphate and phorbol ester-responsive signal transduction pathways converge at the level of transcriptional activation by the interactions of DNA-binding proteins. Mol Endocrinol 1989;3 (5):868-80.
    [106] Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001 ;2 (8):599-609.
    [107] Hu CD, Kariya K, Okada T, Qi X, Song C, Kataoka T. Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation. J Biol Chem 1999;274 (1):48-51.
    [108] Gold MS, Levine JD, Correa AM. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 1998;18 (24): 10345-55.
    [109] Parada CA, Reichling DB, Levine JD. Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways. Pain 2005;113 (1-2):185-90.
    [110] Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR. The Raf-1 serine/threonine protein kinase. Semin Cancer Biol 1994;5 (4):247-53.
    [111] Li J, Xia X, Ke Y, Nie H, Smith MA, Zhu X. Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochim Biophys Acta 2007.
    [112] Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84(1):43-52.
    [113] Putney JW, Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986;7(1):1-12.
    [114] Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem 2007;282 (25): 18357-64.
    [115] Jacobson J, Duchen MR. Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 2004;256-257 (1-2):209-18.
    [116] Werth JL, Thayer SA. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 1994;14 (1):348-56.
    [117] Marumo F, Edelman IS. Effects of Ca++ and prostaglandin El on vasopressin activation of renal adenyl cyclase. J Clin Invest 1971;50 (8):1613-20.
    [118] Yu HJ, Ma H, Green RD. Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes. Mol Pharmacol 1993;44 (4):689-93.
    [119] Teitelbaum I, Berl T. Effects of calcium on vasopressin-mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium. J Clin Invest 1986;77 (5): 1574-83.
    [120] Gustin MC, Nelson DL. Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium. Biochem J 1987;246 (2):337-45.
    [121] Buc HA, Moncion A, Perignon JL. Regulation of adenylyl cyclase activity in human peripheral blood mononuclear cells: effects of protein kinase inhibitors and of a calcium ionophore. Int J Immunopharmacol 1998;20 (9):445-55.
    [122] Hecquet C, Lefevre G, Valtink M, Engelmann K, Mascarelli F. cAMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Oncogene 2002;21 (39):6101-12.
    [123] Nishihara H, Hwang M, Kizaka-Kondoh S, Eckmann L, Insel PA. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J Biol Chem 2004;279 (25):26176-83.
    [124] Johnson JR, Chu AK, Sato-Bigbee C. Possible role of CREB in the stimulation of oligodendrocyte precursor cell proliferation by neurotrophin-3. J Neurochem 2000;74 (4): 1409-17.
    [125] Desdouets C, Matesic G, Molina CA, Foulkes NS, Sassone-Corsi P, Brechot C, Sobczak-Thepot J. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol 1995; 15 (6):3301-9.
    [126] Freeland K, Boxer LM, Latchman DS. The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 2001 ;92 (1-2):98-106.
    [127] Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999;286 (5448):2358-61.
    [128] Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996;16 (10):5546-56.
    [129] Wang P, Yan H, Li J-C. CREB-mediated Bcl-2 expression in trichosnathin-induced Hela cell apoptosis. Biochemical and Biophysical Research Communications 2007;363:101-5.
    [130] Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol 1998;18 (4):1946-55.
    [131] Wang P, Li J-C. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and rubulin genes in apoptotic Hela cells. Life Sciences 2007;81:1130-40.
    [132] Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci U S A 2003; 100 (15):8921-6.
    [133] Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993;268 (20): 14553-6.
    [134] Chen CY, Faller DV. Direction of p21ras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 1995; 11 (8): 1487-98.
    [135] Chen CY, Liou J, Forman LW, Faller DV. Differential regulation of discrete apoptotic pathways by Ras. J Biol Chem 1998;273 (27): 16700-9.
    [136] Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rapl and ERK. Nat Cell Biol 2002;4 (11):901-6.
    [137] Wang L, Liu F, Adamo ML. Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rapl. J Biol Chem 2001;276 (40):37242-9.
    [138] Pomerance M, Abdullah HB, Kamerji S, Correze C, Blondeau JP. Thyroid-stimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, racl, and reactive oxygen species. J Biol Chem 2000;275 (51):40539-46.
    [139] Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989;59 (4):675-80.
    [140] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281 (5381): 1322-6.
    [141] Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001;26 (1):61-6.
    [142] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399(6735):483-7.
    [143] Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275 (5303): 1129-32.
    [144] Adhihetty PJ, O'Leary MF, Chabi B, Wicks KL, Hood DA. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol 2007;102(3):1143-51.
    [145] Akifusa S, Ohguchi M, Koseki T, Nara K, Semba I, Yamato K, Okahashi N, Merino R, Nunez G, Hanada N, Takehara T, Nishihara T. Increase in Bcl-2 level promoted by CD40 ligation correlates with inhibition of B cell apoptosis induced by vacuolar type H(+)-ATPase inhibitor. Exp Cell Res 1998;238 (1):82-9.
    [146] Du GJ, Lin HH, Xu QT, Wang MW. Bcl-2 switches the type of demise from apoptosis to necrosis via cyclooxygenase-2 upregulation in HeLa cell induced by hydrogen peroxide. Cancer Lett 2006;232 (2): 179-88.
    [147] Chan WK, Mole MM, Levison DA, Ball RY, Lu QL, Patel K, Hanby AM. Nuclear and cytoplasmic bcl-2 expression in endometrial hyperplasia and adenocarcinoma. J Pathol 1995;177 (3):241-6.
    [148] Ji L, Mochon E, Arcinas M, Boxer LM. CREB proteins function as positive regulators of the translocated bcl-2 allele in t(14;18) lymphomas. J Biol Chem 1996;271 (37):22687-91.
    [149] Pugazhenthi S, Nesterova A, Jambal P, Audesirk G, Kern M, Cabell L, Eves E, Rosner MR, Boxer LM, Reusch JE. Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons. J Neurochem 2003;84 (5):982-96.
    [150] Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275 (15): 10761-6.
    [151] Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JE. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem 1999;274(39):27529-35.
    [152] Saini HS, Gorse KM, Boxer LM, Sato-Bigbee C. Neurotrophin-3 and a CREB-mediated signaling pathway regulate Bcl-2 expression in oligodendrocyte progenitor cells. J Neurochem 2004;89 (4):951-61.
    [153] Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan JQ, Henshall DC, Simon RP. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 2005;25 (2):234-46.
    [154] Afshari FS, Chu AK, Sato-Bigbee C. Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodendrocytes: differential involvement of the transcription factor CREB. J Neurosci Res 2001 ;66 (1):37-45.
    [155] Park YG, Nesterova M, Agrawal S, Cho-Chung YS. Dual blockade of cyclic AMP response element- (CRE) and AP-1 -directed transcription by CRE-transcription factor decoy oligonucleotide. gene-specific inhibition of tumor growth. J Biol Chem 1999;274 (3): 1573-80.
    [156] Hara T, Hamada J, Yano S, Morioka M, Kai Y, Ushio Y. CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J Neurochem 2003;86 (4):805-14.
    [1]Zhang JS,Liu WY.The mechanism of action of trichosanthin on eukaryotic ribosomes--RNA N-glycosidase activity of the cytotoxin.Nucleic Acids Res 1992;20(6):1271-5.
    [2]Shaw PC,Chan WL,Yeung HW.Minireview:trichosanthhin a protein with multiple pharmacological properties.Life Sci 1994;55(4):253-62.
    [3]王萍,丁世萍,李继承.重组天花粉蛋白的原核表达、纯化和免疫原性分析.解剖学报 2006;37:172-6.
    [4]Zhang XJ,Wang JH.Homology of trichosanthin and ricin A chain.Nature 1986;321(6069):477-8.
    [5]Shaw PC,Mulot S,Ma SK,Xu QF,Yao HB,Wu S,Lu XH,Dong YC.Structure/function relationship study of Tyr14 and Arg22 in trichosanthin,a ribosome-inactivating protein.Eur J Biochem 1997;245(2):423-7.
    [6]Ke YB,Chen JK,Nie HL,He XH,Ke XY,Wang YH.Structure-function relationship of trichosanthin.Life Sci 1997;60(7):465-72.
    [7]Gu Y J,Xia ZX.Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.Proteins 2000;39(1):37-46.
    [8]Yan L,Wu S,Li HG,Li JH,Wong RN,Shi QL,Dong YC.Role of TYR70 in the N-glycosidase activity of neo-trichosanthin.Toxicon 1999;37(7):961-72.
    [9]Li HG,Xu SZ,Wu S,Yan L,Li JH,Wong RN,Shi QL,Dong YC.Role of Arg163 in the N-glycosidase activity of neo-trichosanthin.Protein Eng 1999;12(11):999-1004.
    [10]Zhang F,Lu YJ,Shaw PC,Sui SF.Change in pH-dependent membrane insertion characteristics of trichosanthin caused by deletion of its last seven C-terminal amino acid residues.Biochemistry(Mosc)2003;68(4):436-45.
    [11]Lu Y,Xia X,Sui S.The interaction of trichosanthin with supported phospholipid membranes studied by surface plasmon resonance.Biochim Biophys Acta 2001;1512(2):308-16.
    [12]Xia XF,Wang F,Sui SF.Effect of phospholipid on trichosanthin adsorption at the air-water interface.Biochim Biophys Acta 2001;1515(1):1-11.
    [13]Xia XF,Sui SF.The membrane insertion of trichosanthin is membrane-surface-pH dependent.Biochem J 2000;349 Pt 3:835-41.
    [14]He XH,Shaw PC,Xu LH,Tam SC.Site-directed polyethylene glycol modification of trichosanthin:effects on its biological activities,pharmacokinetics,and antigenicity.Life Sci 1999;64(14):1163-75.
    [15]He XH,Shaw PC,Tam SC.Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation.Life Sci 1999;65(4):355-68.
    [16]Chan WY,Huang H,Tam SC.Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells.Toxicology 2003;186(3):191-203.
    [17]Chan WL,Shaw PC,Tam SC,Jacobsen C,Gliemann J,Nielsen MS.Trichosanthin interacts with and enters cells via LDL receptor family members.Biochem Biophys Res Commun 2000;270(2):453-7.
    [18]Maraganore JM,Joseph M,Bailey MC.Purification and characterization of trichosanthin.Homology to the ricin A chain and implications as to mechanism of abortifacient activity.J Biol Chem 1987;262(24):11628-33.
    [19]Wang YF,Zhou WD,Liu JX,Fi C,Zhu WX,Chen YZ,Yan LM,Shen GS,Wu YE,Zhu W.Prostaglandin E and F2 alpha levels in plasma and amniotic fluid during mid-trimester abortion induced by trichosanthin.Prostaglandins 1981;22(2):289-94.
    [20]Law LK,Tam PP,Yeung HW.Effects of alpha-trichosanthin and alpha-momorcharin on the development of peri-implantation mouse embryos.J Reprod Fertil 1983;69(2):597-604.
    [21]Takemoto DJ.Effect of trichosanthin an anti-leukemia protein on normal mouse spleen cells.Antican1er Res 1998;18(1A):357-61.
    [22]Zhang CY,Gong YX,Ma H,An CC,Chen DY.Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells.Analyst 2000;125(9):1539-42.
    [23]Zhang C,Gong Y,Ma H,An C,Chen D,Chen ZL.Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells.Biochem J 2001;355(Pt 3):653-61.
    [24]Wang Y,Mi SL,Lou MY,Gao Y,Chen ZL,An CC.Enhanced green fluorescence protein tracks trichosanthin in human choriocarcinoma cells as a feasible and stable reporter.Front Biosci 2005;10:2279-84.
    [25]He J-F,Li J-C.The growth inhibition and the apoptosis of Hela cells induced with TCS.Acta Anatomica Sinica 2006;37(3):309-14.
    [26]Dou C-M,Li J-C.Preliminary study on effects of trichosanthes kirilowi root on Hela cells.Chinese Journal of Integrated Traditional and Western Medicine 2003;23(11):848-51.
    [27]Dou C-M,Li J-C.The anti-tumor effect of trichosanthin on HepA-H and Hela cells.Chinese Journal of Pathophysiology 2005;21(5):980-4.
    [28]Zheng YT,Chan WL,Chan P,Huang H,Tam SC.Enhancement of the anti-herpetic effect of trichosanthin by aeyclovir and interferon.FEBS Lett 2001;496(2-3):139-42.
    [29]Huang H,Chan H,Wang YY,Ouyang DY,Zheng YT,Tam SC.Trichosanthin suppresses the elevation of p38 MAPK,and Bcl-2 induced by HSV-1 infection in Vero cells.Life Sci 2006;79(13):1287-92.
    [30]Li J,Xia X,Nie H,Smith MA,Zhu X.PKC inhibition is involved in trichosanthin-induced apoptosis in human chronic myeloid leukemia cell line K562.Biochim Biophys Acta 2007;1770(1):63-70.
    [31]Ru QH,Luo GA,Liao J J,Liu Y.Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin.J Chromatogr A 2000;894(1-2):165-70.
    [32]Tsao SW,Yan KT,Yeung HW.Selective killing of choriocarcinoma cells in vitro by trichosanthin,a plant protein purified from root tubers of the Chinese medicinal herb Trichosanthes kirilowii.Toxicon 1986;24(8):831-40.
    [33]Zheng YT,Zhang WF,Ben KL,Wang JH.In vitro immunotoxicity and cytotoxicity of trichosanthin against human normal immunocytes and leukemia-lymphoma cells.Immunopharmacol Immunotoxicol 1995;17(1):69-79.
    [34]Dou CM,Li JC.Effect of extracts of trichosanthes root tubers on HepA-H cells and HeLa cells.World J Gastroenterol 2004;10(14):2091-4.
    [35]豆长明,李继承.栝蒌根提取物对HeLa细胞作用的初步研究.中国中西医结合杂志 2003;23(11):848-51.
    [36]豆长明,李继承.天花粉蛋白对HepA-H细胞和HeLa细胞抑癌活性研究.中国病理生理杂志 2005;21(5):980-4.
    [37]豆长明,李继承.天花粉蛋白抑制HeLa细胞生长及诱导细胞凋亡之机制探讨.解剖学报 2006;37:309-14.
    [38]Wang P,Li J-C.Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells.Life Sciences 2007;81:1130-40.
    [39]Adams JM,Cory S.The Bcl-2 protein family:arbiters of cell survival.Science 1998;281(5381):1322-6.
    [40]Adams JM,Cory S.Life-or-death decisions by the Bcl-2 protein family.Trends Biochem Sci 2001;26(1):61-6.
    [41]Wang P,Yan H,Li J-C.CREB-mediated Bcl-2 expression in trichosnathin-induced Hela cell apoptosis.Biochemical and Biophysical Research Communications 2007;363:101-5.
    [42]McGrath MS,Hwang KM,Caldwell SE,Gaston I,Luk KC,Wu P,Ng VL,Crowe S,Daniels J,Marsh J,et al.GLQ223:an inhibitor of human immunodeficiency vires replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage.Proc Natl Acad Sci U S A 1989;86(8):2844-8.
    [43]杨新科.天花粉蛋白在组织培养上抗病毒作用的研究.病毒学报1990;6:219-22.
    [44]丁媛媛,刘晶星,陈淑云.天花粉热提取物抗科萨寄B组病毒感染的研究.上海第二医科大学学报 2002;22:22-5.
    [45]胡苹,安成才,李毅.原核表达的天花粉蛋白和两外两种蛋白具有体外抗真菌活性.微生物学报 1999;39:234-40.
    [46]林国庆,邵靖宇.天花粉蛋白研究新进展.科学通报 1996;12:122-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700