纳米锰锌铁氧体的制备及传递特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰锌铁氧体作为一种重要的软磁材料,它的应用价值和长期的基础研究使得该类软磁铁氧体材料被广泛应用于变压器、磁芯、磁头等。近年来,纳米锰锌铁氧体因其软磁特性和较高的稳定性等特点,又在肿瘤热疗和磁流变液等方面受到人们的广泛关注。
     本论文系统地研究了锰锌铁氧体的制备、改性及其应用,具体研究内容如下:
     (1)以FeCl3·6H2O,MnSO4·H2O,ZnSO4·7H2O为原料,NaOH为共沉淀剂,利用化学共沉淀法合成纳米锰锌铁氧体颗粒,考察了不同的锰锌配比对纳米颗粒磁性能的影响。并用油酸对其表面改性,结果发现油酸改性可以有效地阻止纳米颗粒的团聚,减小颗粒的粒径。将锰锌纳米颗粒作为填料改性TPV,研究纳米粒子的填充对TPV力学性能的影响。通过一系列试验发现,经油酸改性的锰锌铁氧体纳米颗粒比未改性的纳米颗粒更能提高TPV的拉伸强度和断裂伸长率。
     (2)分别以A、B为表面活性剂,B和C为双表面活性剂,采用化学共沉淀方法制备锰锌铁氧体磁性流体,通过一系列手段进行表征,考察了不同表面活性剂对颗粒形貌、粒径及磁性能,以及对磁性流体性能的影响。同时分别探索了不同的磁性流体在给定交变磁场下的体外升温作用,分别考虑了不同的磁场强度和锰锌铁氧体固含量对升温效果的影响。在此基础上,选择性能各方面比较优良的表面活性剂制备得到的磁性流体,研究磁性流体在生物体外磁共振成像的效果,将肿瘤热疗与磁共振成像相结合。
     (3)纳米锰锌铁氧体因其较高的稳定性和软磁特性等特点,对磁流变液的分散性、抗沉降稳定性都能起到改良和加强的作用。本论文采用机械球磨法制备出以铁粉为磁性分散相、钛酸酯偶联剂为分散剂,并添加一定量的纳米锰锌铁氧体颗粒为分散相的导热油基磁流变液,对样品的分散性能、抗沉降稳定性能和粘度等性能进行了分析研究。考察了磁性颗粒用量、表面改性剂用量等因素对磁流变液零场粘度、磁流变性能和沉降稳定性的影响。
As an important magnetic material, manganese-zinc ferrite, due to the great application and long-term basic research, has been widely used in the various areas such as transformers, coil cores, magnetic heads and so on. In recent years, the interests in Mn-Zn ferrite nanoparticles are growing based on their potential applications in magnetic fluid hyperthermia and magnetorheological fluid because of its soft magnetic property, high stability and other characteristics.
     The preparation, characterization and application of Mn-Zn ferrites are investigated. Details are as follows:
     1. The Mn-Zn ferrite nanoparticles were prepared by chemical co-precipitation using FeC13·6H2O, MnSO4·H2O and ZnSO4·7H2O as the starting materials. During the co-precipitation, the effects of the ratio of Mn2+ and Zn2+ concentration on the magnetic properties were considered. To prevent the aggregation of nanoparticles, oleic acid was used as surfactant. The obtained nanoparticles were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetry (TG). The aggregate size was significantly reduced after modification, leading to the high dispersibility of nanoparticles in thermoplastic vulcanizate (TPV). Compared with the bare nanoparticles, the modified nanoparticles are proved to improve the tensile strength and elongation of TPV.
     2. The Mn0.8Zn0.2Fe2O4 magnetic nanoparticles were synthesized by co-precipitation; A and B were used as the surface modifier, respectively. Mn0.8Zn0.2Fe2O4 magnetic nanoparticles modified with bilayer surfactants were also prepared by co-precipitation. The results demonstrated that the nanoparticles modified by A had an average size of 80 nm and the saturation magnetization reached 41emu/g. Octahedral shaped Mn0.8Zn0.2Fe2O4 ferrites were synthesized using B as the surfactant and the evolution of these octahedra was examined by SEM and the mechanism was briefly discussed. VSM measurements revealed that the saturation magnetization was about 51emu/g at room temperature. Moreover, those different shaped Mn0.8Zn0.2Fe2O4 ferrites could be used to prepare magnetic fluid, which had potential applications in hyperthermia. The in-vitro heating experiments were performed, and the effect of Mn0.8Zn0.2Fe2O4 concentration and magnetic field intensity on heating effect was also investigated. The bilayer-modified nanoparticles had an average size of 15 nm, which could be used for fluid preparation. The magnetic fluid demonstrated fast magneto-temperature response, which had the potential application in both magnetic resonance imaging and magnetic fluid hyperthermia.
     3. Nanometer Mn-Zn ferrites have many unique characteristics which can enhance the anti-reunite ability, the anti-settling ability and the mechanics capability of the aqueous magnetorheological fluids. By changing the dosage of magnetic nanoparticles and coupling agent, the properties of the fluids have been systematically investigated, which includes sedimental stability, viscosity and magnetorheology properties.
引文
[1] Chen C. W. Magnetism and metallurgy of soft magnetic materials, Courier Dover Publications, 1986.
    [2] David J. Introduction to magnetism and magnetic materials, Chapman and Hall, 1998.
    [3] Cullity B. D.; Graham C. D. Introduction to magnetic materials, Wiley-IEEE, 2008.
    [4] Hickman I. Practical radio-frequency handbook, Newnes, 2007.
    [5] Heck C. Magnetic materials and their applications, Butterworth, 1974.
    [6] Snelling E. C.; Giles A. D. Ferrites for inductors and transformers, John Wiley and Sons, 1983.
    [7] Snelling E. C. Soft Ferrites: Properties and applications, Butterworth, 1988.
    [8] Buschow K. H. J.; Frank R. B. Physics of magnetism and magnetic materials, Springer, 2003.
    [9] Robert W. K.; Hamley I. W. Geoghegan M. Nanoscale science and technology, John Wiley and Sons, 2005.
    [10] Shi D. L. Nanostructured magnetic materials and their applications, Springer, 2002.
    [11]翁兴园,中国磁性材料行业当前的形势与对策及未来发展趋势,新材料产业, 2009, 3, 37-43.
    [12] Miller J. S.; Drillon M. Magnetism: molecules to materials, Wiley-VCH, 2001.
    [13] Martha P. H. Microwave applications of soft ferrites, J. Magn. Magn. Mater. 2000, 215-216, 171-183.
    [14] SkoáY. B.; Tokarz W.; Przybylski K. Preparation and magnetic properties of Mg-Zn and Mn-Zn ferrites, Phys. C 2003, 387, 290-294.
    [15]洪若瑜,磁性纳米粒和磁性流体制备与应用,北京:化学工业出版社, 2008.
    [16] Loaec J. Thermal hysteresis of the initial permeability of soft ferrites at transition temperatures, J. Phys. D 1993, 26(6), 963-966.
    [17] Drofenik M.; Znidarsic A.; Makovec D. Use of the retarded solution reprecipitation process to attain a higher initial permeability in Mn-Zn ferrites, Commun. Am. Ceram. Soc. 2003, 86(9), 1601.
    [18] Huang A. P.; He H. H.; Feng Z. K.; Wang S. L. Study on electromagnetic properties of Mn-Zn ferrites with Fe-poor composition materials, Chem. Phys. 2007, 105, 303-307.
    [19] Mohammad J.; Nasr I.; Maxym M.; Dirk M.; Armin F.; Jamshid A. V. Magnetic properties of nanostructured Mn-Zn ferrite, J. Magn. Magn. Mater. 2009, 321, 152-156.
    [20] Shokrollahi H.; Janghorban K. In?uence of additives on the magnetic properties, microstructure and densification of Mn-Zn soft ferrites, Mater. Sci. Eng. B 2007, 141, 91-107.
    [21] Arshak K. I.; Egan D. P.; Phelan K. Using statistical design of experiment to investigate the e?ect of firing parameters on the electrical and magnetic properties of Mn-Zn ferrite, Microelectron. Reliab. 2002, 42, 1127-1132.
    [22] Ravinder D.; Alirelumanga T. Composition dependence of elastic behaviour of mixed Mn-Zn ferrite, Mater. Lett. 1998, 38, 51-56.
    [23] Tsay C. Y.; Liu K. S.; Lin I. N. Co-firing process using conventional and microwave sintering technologies for Mn-Zn and Ni-Zn ferrites, J. Eur. Ceram. Soc. 2001, 21, 1937-1940.
    [24] Mauczok R.; Zaspalis V. T. Binder burnout material process interaction during sintering of Mn-Zn ferrites, J. Eur. Ceram. Soc. 2000, 20, 2121-2127.
    [25] Chandana R.; Anand S.; Das R. P.; Sahu K. K; Kulkarni S. D.; Date S. K.; Mishra N. C. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite, J. Appl. Phys. 2002, 91, 2211-2216.
    [26]李荫远,李国栋,铁氧体物理学,北京:科学出版社, 1978.
    [27] Moulin J.; Champion Y.; Greneche J. M. Magnetic properties of Mn-Zn ferrite with ultra-fine grain structure, J. Magn. Magn. Mater. 2003, 254, 538-540.
    [28] Mozaffari M.; Ebrahimi F.; Daneshfozon S. Preparation of Mn-Zn ferrite nanocrystalline powders via mechanochemical processing, J. Alloy Compd. 2008, 449,65-67.
    [29] Botta P. M.; Bercoff P. G.; Aglietti E. F. Two alternative synthesis routes for Mn-Zn ferrites using mechanochemical treatments, Ceram. Int. 2006, 32, 857-863.
    [30] Vakyan A.; Int P. B. Efficient continuous SHS technology for production of ferrite materials, J. Self-Propag. High-Temp. Synth. 2000, 9(1), 75-84.
    [31] Agrafiotis C. C.; Zaspalis V. T. Self-propagating high-temperature synthesis of Mn-Zn ferrites for inductor applications, J. Magn. Magn. Mater. 2004, 283, 364-374.
    [32] Yang K.; Guo Z. M.; Akhtar F. Effect of inner oxidant on self-propagating high-temperature synthesis of Mn-Zn ferrite powder, Rare Metals 2006, 25(6), 553-556.
    [33]殷声,自蔓延高温燃烧合成技术和材料,北京:冶金工业出版社, 1995.
    [34] Olar R.; Badea M.; DlamandescuL. Soft chemical synthesis and characterization of some substituted ferrites, J. Alloy Compd. 2004, 363 (1-2), 262-267.
    [35] Arulmurugan R.; Jeyadevan B.; Vaidyanathan G. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation, J. Magn. Magn. Mater. 2005, 288, 470-477.
    [36] Jeyadevan B.; Tohji K.; Nakatsuka K. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure, J. Magn. Magn. Mater. 2000, 217, 99-105.
    [37]洪若瑜,张世忠,李洪钟,狄国庆,锰锌铁氧体纳米粒的制备条件,磁性材料及器件, 2006, 37(3), 17-19.
    [38]陈雪峰,曹雪,洪若瑜,丁建刚,纳米锰锌铁氧体的制备及在TPV中的应用,化学研究与应用, 2009, 21, 1494-1499.
    [39] Yong S. C.; Schaffer D.; Vernon B. L. Homogenous grain growth and fast-fing of chemically modified nanocrystalline Mn-Zn ferrites, Mat. Res. Bull. 1999, 34, 2361-2368.
    [40] Dong L. M.; Han Z. D.; Zhang Y.M. Preparation and sinterability of Mn-Zn ferrite powders by sol-gel method, J. Rare Earth 2006, 12, 54-56.
    [41] Azadmanjiri J. Preparation of Mn-Zn ferrite nanoparticles from chemical sol-gel combustion method and the magnetic properties after sintering, J. Non-Cryst. Solids 2007, 353(44-46), 4170-4173.
    [42] Lu X.; Tao Z.; Jia M. Hydrothermal synthesis of Mn-Zn ferrites from spent alkaline Zn-Mn batteries, Particuology 2009, 7(6), 491-495.
    [43] Nalbandian L.; Delimits A.; Zaspalis V. T. Hydrothermally prepared nanocrystalline Mn-Zn ferrites: Synthesis and characterization, Micropor. Mesopor. Mat. 2008, 114, 465-473.
    [44] Xuan Y. M.; Li Q.; Yang G. Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles, J. Magn. Magn. Mater. 2007, 312, 464-469.
    [45] Fang J.; Kumbhar A.; Welie L. Nanoneedles of maghemite iron oxide prepared from a wet chemical route, Mater. Res. Bull. 2003, 38(3), 461-467.
    [46] Kim K. N.; Kim S. G. Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis, Powder Technol. 2004, 145(3), 155-162.
    [47]姚志强,王琴,钟炳,超临界流体干燥法制备Mn-Zn铁氧体超细粉末,磁性材料及器件, 1999, 30(1), 28-31.
    [48]刘辉,魏雨,张岩峰,纳米铁酸盐的制备研究低温催化相转化合成纳米铁酸锌及表征,无机材料学报, 2002, 17(1), 56-60.
    [49] Yan Q.; Gambino R.; Sampath S. Effects of zinc loss on the magnetic properties of plasma-sprayed Mn-Zn ferrites, Acta Mater. 2004, 52(11), 3347-3353.
    [50] Ott G.; Wrba J.; Lucke R. Recent developments of Mn-Zn ferrites for high permeability applications, J. Magn. Magn. Mater. 2003, 254-255, 535-537.
    [51] Tsutaoka T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials, J. Appl. Phys. 2003, 93, 2789.
    [52] Tsutaoka T.; Kasagt T.; Hatakeyama K. Magnetic field effect on the complex permeability for a Mn-Zn ferrite and its composite materials, J. Eur. Ceram. Soc. 1999, 19, 1531-1535.
    [53] Yamada S.; Otsuki E. Analysis of eddy current loss in Mn-Zn ferrites for power supplies, J. Appl. Phys. 1997, 81, 4791.
    [54] Li H. H.; Feng Z. K.; He H. H.; Zhu Q. Q.; Jiang J. J.; Nie J. H.; Yu X. L. Effects of Fe2+ content in raw materials on Mn-Zn ferrite magnetic properties, J. Magn. Magn. Mater. 2001, 237(2), 153-157.
    [55]刘九皋,傅晓敏,锰锌铁氧体材料技术性能的拓展,磁性材料及器件,2005, 2, 7-10.
    [56]何方方,许丕池,张忠仕,周元林,抗电磁干扰Mn-Zn铁氧体的应用及发展,材料导报, 2008, 22(10), 28-31.
    [57]赵宏杰,周济,马振伟,桂治伦,李龙士,锰锌铁氧体非线性磁性能的研究,功能材料,2004,35(5),553-554.
    [58]曹渊,陶长元,刘作华,张丙怀,纳米无机物/高分子磁功能复合材料研究进展,压电与声光, 2006, 28(1), 56-59.
    [59] Sun H. Z.; Bai Y. Insitu preparation of nanoparticles/polymer composites, Sci. China Ser. E 2008, 51(11), 1886-1901.
    [60] Uma C.; Suresh K.; Jewrajka; Suparna G. Dispersion of functionalized silver nanoparticles in polymer matrices: Stability, characterization, and physical properties. Polym. Composite. 2008, 30(6), 827-834.
    [61] Fu Q.; Wang G. H. Effect of morphology on brittle ductile transition of HDPE/ CaCO3 blends, J. Appl. Poly. Sci. 1993, 49(11), 1985-1988.
    [62] Fu Q, Wang G H, Liu C X. Polyethylene toughened by CaCO3 particles: The interface behavior and fracture mechanism in high density polyethylene/CaCO3 blends, Polymer, 1995, 36(12): 2397-2401.
    [63] Hong, R. Y.; Pan, T. T.; Li, H. Z. Microwave synthesis of magnetic Fe3O4 nanoparticles used as aprecursor of nanocomposites and ferrofluids, J. Magn. Magn. Mater. 2006, 303, 60.
    [64] Hong, R. Y.; Pan, T. T.; Han Y. P.; Zhang S. Z.; Li, H. Z.; Ding, J. Graft polymerization synthesis and application of magnetic Fe3O4/polyacrylic acid composite nanoparticles, J. Appl. Polym. Sci. 2007, 106, 1439.
    [65] Li, X. H.; Zou, J. B.; An, H.; Chen, E. B.; Liu, J. Research on the iron-nirtide magnetic fluid safety valve sealing, J. Magn. Magn. Mater. 2002, 252(2), 330.
    [66] Kim, Y. S.; Kim, Y. H. Application of ferro-cobalt magnetic fluid of oil sealing, J. Magn. Magn. Mater. 2003, 267(1), 105.
    [67] Jordan A.; Wust P.; Scholz R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo, Int. J. Hyperther. 1997, 13(6), 587.
    [68] Apostolova I.; Wesselinowa J. M. Possible low-Tc nanoparticles for use inmagnetic hyperthermia treatments, Solid State Commun. 2009, 149, 986-990.
    [69] Sharma R.; Chen C. J. Newer nanoparticles in hyperthermia treatment and thermometry, J. Nanopart. Res. 2009, 11, 671-689.
    [70] Magda L. E.; Angel C. Madeline T. L.; Carlos R. Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications, J. Magn. Magn. Mater. 2009, 321(19), 3061-3066.
    [71] Ma M.; Zhang Y.; Li X. b.; Fu D. G.; Zhang H. Q.; Gu N. Synthesis and characterization of titania-coated Mn-Zn ferrite nanoparticles, Colloid. Surface. A 2003, 224(1-3), 207-212.
    [72] Zhang X. A.; Katherine S. L.; Alan J.; Stephen J. L. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Pnas, 2007, 104 (26), 10780-10785.
    [73] Poduslo, J. F.; Wengenack, T. M.; Curran, G. L.; Wisniewski, T.; Sigurdsson, E. M.; Macura, S. I.; Borowski, B. J.; Jack, C. R. J. Molecular targeting of alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging, Neurobiol. Dis. 2002, 11, 315.
    [74] Wadghiri, Y. Z.; Sigurdsson, E. M., Sadowski M.; Elliott; J. I.; Li, Y.S.; Scholtzova, H.; Tang, C. Y.; Aguinaldo, G.; Pappolla, M.; Duff, K.; Wisniewski, T.; Turnbull, D. H. Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging, Magn. Reson. Med. 2003, 50, 293.
    [75] Shafrir N.; Lambropoulos J. C.; Jacobs S. D. A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides, Precis. Eng., 2007, 31, 83-93.
    [76] Das M.; Jain V. K.; Ghoshdastidar P. S. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Mach. Tool. Manuf. 2008, 48, 415-426.
    [77] Seok J. W.; Kim Y. J.; Jang K. I.; Min B. K.; Lee S. J. A study on the fabrication of curved surfaces using magnetorheological fluid finishing, Int. J. Mach. Tool. Manuf. 2007, 47, 2077-2090.
    [78] Jha S.; Jain V. K. Modeling and simulation of surface roughness inmagnetorheological abrasive flow finishing (MRAFF) process, Wear 2006, 261, 856-866.
    [79] Tricard M.; Kordonski W. I.; Shorey A. B.; Evans C. Magnetorheological jet finishing of conformal, freeform and steep concave optics, CIRP Ann.-Manuf. Technol., 2006, 55, 309-312.
    [80] Sheng R.; Flores G. A.; Liu J. In vitro investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids, J. Magn. Magn. Mater. 1999, 194 (1-3), 167-175.
    [81] Kordonski W. I.; Gorodkin S. R. Magnetorheological fluid-based seal, J. Intell. Mater. Syst. Struct. 1996, 7(5), 569-572.
    [82] Umit D.; Faramarz G.; Evrensel C. A. A new magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV), J. Intel. Mat. Syst. Str. 2008, 19, 641-650.
    [83] Sahin H.; Liu Y.; Wang X.; Gordaninejad F.; Evrensel C.; Fuchs A. Full-scale magnetorheological fluid dampers for heavy vehicle rollover, J. Intel. Mat. Syst. Str. 2007, 18, 1161-1167.
    [84] Choi Y. T.; Wereley N. M. Shock isolation systems using magnetorheological dampers, J. Vib. Acoust. 2008, 130, 24503-24508.
    [85] Lin P. Y.; Roschke P. N.; Loh C. H. Hybrid base-isolation with magnetorheological damper and fuzzy control, Progr. Str. Eng. Mat. 2006, 14, 384-405.
    [86] Choi S. B.; Sung K. G. Vibration control of magnetorheological damper system subjected to parameter variations, Int. J. Vehicle Des. 2008, 46, 94-110.
    [87] Kwok N. M.; Haa Q. P.; Nguyena M. T.; Lia J.; Samalia B. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA, ISA T. 2007, 46, 167-179.
    [88] Jin G.; Sain M. K.; Spencer J. B. F. Nonlinear blackbox modeling of MR dampers for civil structural control, IEEE Trans. Control Syst. Technol. 2005, 13, 345-355.
    [89] Yan G.; Zhou L. L.; Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers, J. Sound Vib. 2006, 296,368-382.
    [90] Ortiz E. C.; Perez O. P.; Voyles P.; Gutierrez G.; Tomar M. S. MnxZn1?xFe2?yRyO4 (R=Gd, Eu) ferrite nanocrystals for magnetocaloric applications, Microelectr. J. 2009, 40, 677-680.
    [91] Wang J.; Zeng C.; Peng Z. M.; Chen Q. W. Synthesis and magnetic properties of Zn1?xMnxFe2O4 nanoparticles, Phys. B 2004, 349, 124-128.
    [92] Arulmurugan R.; Vaidyanathan G.; Sendhilnathan S.; Jeyadevan B. Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties, J. Magn. Magn. Mater. 2006, 298, 83-94.
    [93] Hong R. Y.; Zhang S. Z.; Han Y. P.; Li H. Z.; Ding J.; Zheng Y. Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids, Powder Technol. 2006, 170, 1-11.
    [94] Hemeda O. M.; Said M. Z; Barakat M. M. Spectral and transport phenomena in Ni ferrite-substituted Gd2O3, J. Magn. Magn. Mater. 2001, 224, 132-142.
    [95]肖军华,曹有名,史育群,纳米氢氧化镁增强TPV/PP的力学性能及形态结构研究,塑料, 2007, 36(6): 36-40.
    [96] Gunko Y. K.; Pillai S. C.; McInerney D. Magnetic nanoparticles and nanopartile assemblies from metallorganic precursors, J. Mater. Sci. 2001, 12, 299-302.
    [97]路娟,刘清飞,罗国安,药物的聚乙二醇修饰研究进展,有机化学, 2009, 29(8), 1167-1174.
    [98] Pathak T. K.; Vasoya N. H.; Lakhani V. K. Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite, Ceram. Int. 2010, 36, 275-281.
    [99] Burda C.; Chen X. B.; Narayanan R.; Elsayed M. A. Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 2005, 105, 1025-1102.
    [100] Wang Z. L. Transmission Electron microscopy of shape controlled nanocrystals and their assemblies, J. Phys. Chem. B 2000, 104, 1153.
    [101] Jang K. I.; Seok J. G.; Min B. K.; Lee S. J. Behavioral model for magnetorheological ?uid under a magnetic field using lekner summation method, J. Magn. Magn. Mater. 2009, 321, 1167-1176.
    [102] Bossis G..; Lacis S.; Meunier A.; Volkova O. Magnetorheological ?uids, J. Magn. Magn. Mater. 2002, 252, 224-228.
    [103] Simon T. M. The effective magnetic properties of magnetorheological fluids, Math. Compu. Model. 2001, 33, 273-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700