光子晶体微腔的性能分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自光子晶体1987年被提出以来,由于其微型化和光子禁带特性,人们在基础物理研究及其应用前景做了多方面研究。光子晶体以微型结构,可以在一定频率范围内控制和操纵电磁波的传播,因此可以应用于集成光电路设备,例如选择滤波器、能量分束器、耦合器等等。而光子晶体微腔具有同样的微小体积,还有高品质因子,对光具有强局域能力,可以应用于传感器、滤波器、全光开关等等。本文对光子晶体微腔的特性分析和应用前景进行了研究,其主要工作和研究成果如下:
     基于光子晶体环形腔结构的生物传感器性能分析:研究设计了一个高性能的环形微腔,通过调整微腔的结构以及改变与靠近微腔的两行空气孔的参数,微腔与光子晶体波导之间能实现高效耦合,所以能在指定区域内进行有效地分子检测,使用微注入技术能实现单孔注入,减少分析物,实现对不同生物分子的感知和识别。通过调整腔的结构可以提高传感器的灵敏度。传感器的灵敏度最高可达到10nm/RIU,透射率最高可达0.67,较先前的文献工作有所提高。
     单排孔结构的光子晶体微腔的特性分析及应用:研究设计了一个单排孔结构的微腔并与w1波导耦合。单排孔结构共包括七个空气孔,通过有规律地逐渐改变七个空气孔的半径而获得高品质因子,品质因子能达到387.5,透射率达到0.75。该微腔能同时应用全光开关、传感器和滤波器,均有良好性能,其中光强调制的光开关的调制深度η为29.4db,传感器的灵敏度为104.2nm/RIU,滤波器半宽为4nm,可用于四通道粗波分复用系统中。
     基于SOI的光子晶体制作实验:研究分析了基于SOI的光子晶体微腔实验测试以及光子晶体制作。首先研究了光子晶体微腔的实验原理和平台搭建,然后针对使用EBL工艺制作的光子晶体进行了波导设计,主要是喇叭形波导的设计以及SOI晶圆上的结构安排,最后对经EBL制作后的光子晶体进行打磨和抛光等后期加工,完成光子晶体的制作。
     总之,这些研究工作和研究成果对于未来全光网络和光集成电路具有重要的理论指导意义及应用参考价值。
Since first proposed in1987, Photonic crystal (PhC) has received considerable attention for the fundamental physics study as well as various potential applications due to its excellent property of miniaturization and photonic band gap.The PhCs are engineered nanostructures which are capable of controlling and manipulating the propagation of electromagnetic waves within a certain frequency range.Various integrated nano-photonics devices have been proposed, such as channel drop filter, power splitter, coupler and so on.However, PhC cavity possesses not only the small volume but also the high quality and strong field confinement, which is a well-known approach to achieve sensor, channel drop filter and all optical switch and so on.This paper investigated the properties and potential applications of PhC cavity, the main work and research results are as follows:
     Performance analysis of biosensor based on PhC microcavity structure: A high-performance PhC resonator was proposed.By adjusting the structure of micro-cavity and changing the parameters of the first and second rows of air holes adjacent to the cavity, the coupling efficiency of micro-cavity and PhC waveguide could be greatly improved.Thus,molecule detection can be effectively conducted in the assigned area.The micro-injection technology can be used to achieve single-hole injection, so various biomolecule can be sensed and recognized with only tiny analyte.Besides, the sensitivity of sensors would be enhanced by adjusting the structure of cavity. At last,the system sensitivity could reach10nm/RIU, and the transmittance was up to0.67, which has improved more compare to the previous reports.
     Performance analysis and applications of PhC cavity with single-row hole:The coupling structure of PhC cavity with single-row hole and the W1 waveguide was studied and designed. The single-row hole was comprised of seven air holes.To achieve a high quality factor, the seven air holes were gradually altered. Then the quality factor could reach387.5and the transmittance could be up to0.75.The designed micro-cavity can be simultaneously applied to all optical switch, sensor and filter with favorable property. The modulation depth of optical switch based on intensity modulation was29.4db, the sensor sensitivity was104.2/RIU, the half-width of filter was4nm and can be applied in the system of four-channel coarse wavelength-division-multiplexing.
     The preparation experiment of photonic crystal based on SOI:The experimental test of PhC cavity and the PhC preparation based on SOI were studied and analyzed. Firstly, the experimental principle and building of PhC cavity was studied. Secondly, the design of funnel-shaped waveguide and the structural arrangement of SOI wafer. Thirdly, the PhC was fabricated by using the EBL technology, and the post processing, including grinding and polishing procedures, was also implemented.
     In conclusion, all the work and research results will bring great theoretical significance and reference value in guiding the future all optical network and all integrated circuits.
引文
[1]Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.,58(20),1987,2059-2062.
    [2]S.John. Strong localization of photons in certain disorder physics dielectric superlattices. Phys. Rev. Lett.,58(23),1987,2486-2589.
    [3]Ferruccio Pisanello, Parallel and high sensitive photonic crystal cavity assisted read-out for DNA-chips, Microelectronic Engineering,87,2010,747-749
    [4]S. Robinson, Investigation on two dimensional photonic crystal resonant cavity based bandpass filter, Optik,123,2012,451-457
    [5]Bo Li, NEMS diaphragm sensors integrated with triple-nano-ring resonator, Sensors and Actuators A:Physical,172,2011,61-68
    [6]Bui Thanh Tung, Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity, Optics Express,19,2011,8821
    [7]Zheng Han, High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator, Optics Letters,36,2011,10
    [8]T. Stomeoa, Fabrication of force sensors based on two-dimensional photonic crystal technology,Microelectronic Engineering,84,2007,1450
    [9]Tahereh Ahmadi Tameh, Improving the performance of all-optical switching based on nonlinear photonic crystal microing resonators, AEU,65,2011,281-287
    [10]Shota Yamada, Experimental investigation of thermo-optic effects in sic and si photonic crystal nanocavities, Optics letters,36,2011,3981
    [11]王向字.光子晶体和光子晶体光纤在传感器中的应用.机械与电子.卷31.2008,3:90-91
    [12]Trong Thi Maia, and Fu-Li Hsiao. Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sensors and Actuators. Vol 6836. 2010:10-20
    [13]Harneet Gahir Thakur, Sandipan Nalawade. Polarization maintaining index-guided photonic crystal fiber sensor for slowly varying pressure measurement. Optics& Laser Technology. Vol 42.2010:1139-1144
    [14]injie Shi, Vincent K.S. Hsiao. "Humidity sensing based on nanoporous polymeric photonic crystals".Sensors and Actuators B. Vol.29.2008:391-396
    [15]Xiaoling Wang, Zhenfeng Xu, and Naiguang Lu. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Optics Communications. Vol 281.2008:1725-1731
    [16]Fu-Li Hsiao, Chengkuo Lee. Novel Biosensor Based on Photonic Crystal Nano-Ring Resonator. Procedia Chemistry Vol.1.2009:417-420
    [17]Skivesen, N. Tetu, A. Kristensen, M. Kjems, J. Protein detection with a planar photonic-crystal sensor, IEEE, the International Quantum Electronic Conference,17, 06,2007
    [18]Yunbo Guo, Thommey P. Thomas, Jing Yong Ye, Andrzej Myc, Real-time, Label-free Protein Binding Detection with a One Dimensional Photonic Crystal Sensor, IEEE, Lasers and Electro-Optics.28,08,2009
    [19]M. R. Lee, B. L. Miller, and P. M. Fauchet, Two-Dimensional Photonic Crystal Microcavity Sensor for Single Particle Detection, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America,2008
    [20]MA Dundar, Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,OPTICS EXPRESS,18,2012,4049
    [21]S Zlatanovic, Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration, Sensors and Actuators B:Chemical,2009
    [22]江萍,胡小永,二维光子晶体微腔全光开关与可调谐滤波器,第十二届基础光学与光物理讨论会论文,2010
    [23]Y Zhang, Opttcal switches and logic gates based on self-collimated beams in two-dimensional photonic crystals, OPTICS EXPRESS, Vol.15,2007
    [24]Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity, OPTICS EXPRESS, Vol.17,2009:1518
    [25]C Lee, Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator, Apllied Optics,2009
    [26]Numerical optimization of high-Q-factor photonic crystal microcavities with a graded air lattice, J. Opt. Soc. Am. B,Vol.28, No.2,2011
    [27]陈猛,王一,SOI材料的发展历史、应用现状与发展新趋势(上),中国集成电路,2007.7
    [28]C. Kang, S. M. Weiss, Photonic crystal with multiple-hole defect for sensor applications, Opt. Express,22,18188,2008.
    [29]A. Vlasov, M. Boyle, H. Hamann, Active control of slow light on a chip with photonic crystal waveguides, Nature,438,04210,2005.
    [30]X. Chen, A. Lan, X. Wang, T. Chen, Electro-optically Active Slow Light Enhanced Silicon Slot Photonic Crystal Waveguides, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,15,2009.
    [31]J. H. Wulbern, A. Petrov, and M. Eich, Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator, Opt. Express,1,303,2008.
    [32]A. Di Falco, L. O'Faolain, T. F. Krauss, Slotted Photonic Crystal waveguides and cavities for slow light and sensing applications, IEEE,2008.
    [33]M. A. Diindar, C. I. Ryckebosch, R. N. Fouad Karouta,Leo J. Jzendoorn, and W. Rob, Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index, Opt. Express,5,4049,2010.
    [34]X. L.Wang, Zh. F. Xu, N. G Lu, J.Zhu, F. Jin,Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure, Opt. Communications,281,1725,2008.
    [35]X. Zhang, H. P. Tian, Y. F. Ji, Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes, Opt. Communications,283,1768, 2010.
    [36]W. Jun, Y. P. Yang, Ch. Chang, P. Chao, W. Z. Yu, Slow light in tapered slot photonic crystal waveguide, Chinese Sci Bull,54,3658,2009.
    [37]T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. DeVittorio, D. Biallo, A. Dorazio, M. DeSari, V. Marrocco, V. Petruzzelli, F. Prudenzano, Fabrication of force sensors based on two-dimensional photonic crystal technology, Microelectronic Engineering,84,1450,2007.
    [38]T. Lu and P. T Lee, Ultra-high sensitivity optical stress sensor based on double layered hotonic crystal microcavity, Opt. Express,3,1518,2009.
    [39]Zh.F. Xu, L.C. Cao, C. Gu, Q.H. He, and GF. Jin, Micro displacement sensor based on line-defect resonant cavity in photonic crystal,"Opt. Express,14,298,2006.
    [40]S. C. Buswell, V. A. Wright, J. M. Buriak, V. VanlS. Evoy, Specific detection of proteins using photonic crystal waveguides, Opt. Express,20,15949,2008.
    [41]C.A. Barrios, M. J. Banuls, V. G Pedro, K. B. Gylfason, B. Sanchez, A.Griol, A. Maquieira, H. Sohlstrom, M. Holgado, and Casquel, Label-free optical biosensing with slot-waveguides, Science,317,783 2007.
    [42]M. Lee and P. M. Fauchet, Two dimensional silicon photonic crystal based biosensing platform for protein detection,"Opt. Express,8,4530,2007.
    [43]A. DiFalco, L. OFaolain, T. F. Krauss, Chemical sensing in slotted photonic crystal heterostructure cavities, APPLIED PHYSIC SLETTERS,94,063503,2009.
    [44]A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Label-free, single-molecule detection with optical microcavities,"Science,317,783,2007.
    [45]W. Jun, Y. P. Yang, Ch. Chang, P. Chao, W. Z. Yu, Wide bandand low dispersion slow light in slotted photonic crystal waveguide, Opt. Communications,283,2185,2010.
    [46]D. Psaltis, S. R. Quake,and C.Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature,442,381,2006.
    [47]Ashley Shade, Cayelan C Carey, Emily Kara, Stefan Bertilsson, Katherine D McMahon, Matthew C Smith, Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies, The ISME Journal,3,881,2009.
    [48]S. Mandal and D. Erickson, Nanoscale optofluidic sensor arrays, Opt. Express,16, 1623,2008.
    [49]P.Pfeiffer, P. Meyrueis, D. Patillon, et al. Limiting sensitivity of a differential absorption spectrometer with direct detection in the and vibration bands. IEEE Transactions on Instrumentation and Measurement,2004,531:45-50.
    [50]L. S. Rothman, D. Jacquemart, A. Barbe, et al. The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer,2005, 96:139-204.
    [51]M. Kuntz, M. Hopfner, Efficient line-by-line calculation of absorption coefficients. Journal of Quantitative Spectroscopy& Radiative Transfer,1999,63:97-114.
    [52]A. Di Falco, L. O'Faolain, T. F. Krauss. Photonic crystal slotted slab waveguides. Photonics and Nnostructures-Fundamentals and Applications,2008,6:38-41.
    [53]J. D. Ryckman, S. M. Weiss. Localized field enhancements in guided and defect modes of a periodic slot waveguide. IEEE Photonics Journal,2011,36:986-995.
    [54]A. Di Falco, L. O'Faolain, T. F. Krauss. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters,2008,928:082501.
    [55]H. Aghababaeian, M. H. Vadjed-Samiei, N. Granpayeh. Temperature stabilization of group index in silicon photonic crystal waveguides. Journal of the Optical Society of Korea,2011,154:398-402.
    [56]C. Caer, X. L. Roux, V. K. Do, et al. Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photonics Technology Letters,2011,23(18:1298-1300.
    [57]S. Mookherjea, A. Oh. Effect of disorder on slow light velocity in optical slow-wave structures. Optics Letters,2007,323:289-291.
    [58]J. Hou, H. Wu, D. S. Citrin. Wideband slow light in chirped slot photonic-crystal coupled waveguides. Optics Express,2010,1810:10567-10580.
    [59]L. Dai, T. Li, C. Jiang. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide. Journal of the Optical Society of America B,2011,287:1622-1626.
    [60]J. Ma and C. Jiang. Demonstration of Ultraslow Modes in Asymmetric Line-Defect Photonic Crystal Waveguides. IEEE PHOTONICS TECHNOLOGY LETTERS,2014,2008,1237-1239.
    [61]J. Li, T. P. White, L. O'Faolain, et al. Systematic design of flat band slow light in photonic crystal waveguides. Optical Express,2008,169:6227-6232.
    [62]Y. Hamachi, S. Kubo, T. Baba. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. Optics Letters,2009,347: 1072-1074.
    [63]J. Liang, L. Y. Ren, M. J. Yun, X. J. Wang. Wideband slow light with ultralow dispersion in a Wl photonic crystal waveguide. Applied Optics,2011,5031:G98-G103.
    [64]H. Kurt, K. Ustiin, L. Ayas. Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Optics Express,2010,1826: 26965-26977.
    [65]F. Long, H. Tian, Y. Ji. Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes. Applied Optics,2010,49 25:4808-4813.
    [66]L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express,2006, 1420:9444-9450.
    [67]A. Saynatjoki, M. Mulot, J. Ahopelto, et al. Dispersion engineering of photonic crystal waveguides with ring-shaped holes, Opt. Express 1513,2007,8323-8328.
    [68]J. Hou, D. Gao, H. M. Wu, et al. Flat band slow light in symmetric line defect photonic crystal waveguide. IEEE Photonics Technology Letters,2009,2120:1571-1573.
    [69]Y. Zhang, B. Yu, P. Yuan. Flatband Slow Light Photonic Crystal Waveguide in both TE and TM Polarizations. CLEO/Pacific Rim 2009, Shanghai, China.
    [70]T. Baba, T. Kawasaki, H. Sasaki, et al. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Optics Express,2008,1612: 9245-9253.
    [71]D. Psaltis, S. Quake and C. Yang. Developing optofluidic technology through the fusion of microfluidicsand optics. Nature,2006,442:381-386.
    [72]D. Erickson, T. Rockwood, T. Emery, et al. Nanofluidic tuning of photonic crystalcircuits. Optics Letters.2006,31:59-61.
    [73]C. Smith, U. Bog, S. Tomljenovic-Hanic, et al. Reconfigurable microfluidic photonic crystal slabcavities. Optics Express,2008,16:15887-15896.
    [74]R. Hao, E. Cassan, H. Kurt, et al. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express,2010,186:5942-5950.
    [75]J. Jagersk, N. Le Thomas, V. Zabelin, et al. Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides. Optical Letters,2009,34 13:359-361
    [76]R. Hao, E. Cassan, X. Le Roux, et al. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optical Express,2010,1816:16309-16319.
    [77]P. E. Barclay, K. Srinivasan, M. Borselli, et al. Efficient input and output fiber coupling to a photonic crystal waveguide. Optical Letters,2004,297:697-699.
    [78]D. W. Prather, J. Murakowski, S. Shi, High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. Optics Letters,2002,2718:1601-1603.
    [79]P. Sanchis, J. Marti, J. Blasco, et al. Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal. Optics letters,2002, 10(24:1391-1397.
    [80]M. M. Delphine, C. Eric, B. Damien, et al. Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime. Optical Engineering,2008,471,014602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700