高效超导单光子探测器的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单光子探测在量子信息科技中有十分重要的作用,然而单光子探测器直到如今也存在很多问题,本文主要探讨了超导纳米单光子探测器所存在的缺陷以及其现有解决方案。并且提出新的解决方案,采用纳米天线极大提高单光子源和单光子探测器的性能。本文通过comsol软件,模拟了在带有反射腔结构和放反射涂层的单光子探测器的探测面上加入纳米天线结构,该结构能大大提高探测器对光子的收集效率,而同时并不影响探测器的速率。从而解决了超导探测器速率效率不能两全的难题。此外我们还研究了纳米天线自身特性(比如天线的位置以及大小)对于光子收集效率的影响,并给出了最优情况,在最优条件下单结构,复结构和3um*3um的实际结构的超导纳米线的光子收集效率比不加天线结构时分别提高了92倍、73倍、24倍。在此基础上我们分析了增益效果差异的原因,并提出了后续工作可能的方向。
The performance of single photon detector is vital for quantum information technology, but there are several drawbacks of existing detectors.
     It has been reported that nano-antenna can greatly enhance the performance of single-photon resources and detectors. In this paper we simulate (by comsol) a superconducting nano-wire single-photon detector with cavity and anti-reflect coating and specially designed nano-antenna which enhances the photon collection efficiency of the detector without damaging the detector's speed, thus overcome the dilemma of speed and efficiency. We further study how the nano-antenna's characteristics, such as the antenna's position, affect the active area and give out the best result. The photon collection efficiency is increased by92,73and24times, respectively, compared with previous detectors. Furthermore, we study the cause of gain difference, and predict the subsequent works that will help to enhance the performance of single-photon detectors.
引文
[1]A. Ekert, N. Gisin, B. Huttner, H. Inamori, and H. Weinfurter, in The Physics of Quantum Information, D. Bouwmeester, A. Ekert, and A. Zeilinger,2000
    [2]C. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,1984,175-179
    [3]H. Inamori, N. Liitkenhaus, and D. Mayers, Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41,2007,599-627
    [4]D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, Security of Quantum Key Distribution with Imperfect Devices, Quantum Information and Computation 4, No.5,2004,325-360
    [5]A. K. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett.67, 1991,661
    [6]C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett.68,1992,3121
    [7]W.-Y. Hwang, Quantum Key Distribution with High Loss:Toward Global Secure Communication, Phys. Rev. Lett.91,2003,057901
    [8]X.-B. Wang, Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography, Phys. Rev. Lett.94,2005,230503
    [9]X. Ma, B. Qi. Y. Zhao, and H. Lo, Practical decoy state for quantum key distribution, Phys.Rev.A 72.2005,012326
    [10]C. Bennett. G. Brassard, and J. Robert, SIAM J. Comput.17,1988,210
    [11]C. H. Bennett. G. Brassard, C. Crepeau, and U. M. Maurer, IEEE Trans.Inf. Theory 41,1995,1915
    [12]D. Deutsch, A. Ekert. R. Jozsa, C. Macchiavello, S. Popescu, and A.Sanpera, Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels, Phys. Rev. Lett.77,1996,2818
    [13]N. Gisin. G. Ribordy. W. Tittel, and H. Zbinden, Quantum cryptography. Rev. Mod. Phys.74,2002,145
    [14]A. Lacaita, F. Zappa. S. Cova, and P. Lovati, Single-photon detection beyond 1 urn:performance of commercially available InGaAs/InP detectors, Appl. Opt. Vol.35, Issue 16,1996,2986
    [15]G. N. Gol'tsman, O. Okunev. G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and Roman Sobolewski, Picosecond superconducting single-photon optical detector, Appl. Phys. Lett.79,2001,705
    [16]张蜡宝,康琳,陈健等,超导纳米线单光子探测器,Acta Phys. Sin. Vol.60 No.3, 038501.2011
    [17]张蜡宝,钟扬音,康琳等,超导红外单光子探测器,科学通报,53卷21期,2008
    [18]Eric A. Daulera, Andrew J. Kermanb, Bryan S. Robinson, Joel K. W. Yang, Boris Voronov, Gregory Gol'tsman, Scott A. Hamilton, and Karl K. Berggren, Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors, arXiv.org,2008
    [19]R. Esteban, T. V. Teperik, and J. J. Greffet, Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances, PRL 104,026802,2010
    [20]V. V. Klimov and M. Ducloy, Spontaneous emission rate of an excited atom placed near a nanofiber, PHYSICAL REVIEW A,69,013812,2004
    [21]D. E. Chang, A. S. Sorensen, P. R. Hemmer and M. D. Lukin, Quantum Optics with Surface Plasmons, PRL 97,053002,2006
    [22]Bert Hecht, Beate Sick, Urs P. Wild, Volker Deckert, Renato Zenobi, Olivier J. F. Martin, and Dieter W. Pohl, Scanning near-field optical microscopy with aperture probes:Fundamentals and applications, J. Chem. Phys.112,2000,7761
    [23]K.B. Crozier, A. Sundaramurthy, G.S. Kino and C.F. Quate, Optical antennas: resonators for local field enhancement, Journal of Applied Physics, vol.94,2003, 4632
    [24]D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. S. Kino and W. E. Moerner Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible, Nano Lett.4,2004957-961
    [25]Resonant optical antennas. Muhlschlegel P, Eisler HJ. Martin OJ, Hecht B, Pohl DW. Science.308(5728) 2005 1607
    [26]C. Huang. A. Bouhelier, J. Berthelot. G. Colas des-Francs. E. Finot. J.-C. Weeber. A. Dereux. S. Kostcheev, A.-L. Baudrion. J. Plain. R. Bachelot. P. Royer, and G. P. Wiederrecht, External control of the scattering properties of a single optical nanoantenna, Appl. Phys. Lett.96,2010,143116
    [27]http://en.wikipedia.org/wiki/Photomultiplier
    [28]S. Kagawa. T. Kaneda, T. Mikawa, Y. Banba. Y. Toyama, and O. Mikami, Fully ion-implanted p+ -n germanium avalanche photodiodes. Appl. Phys. Lett.38, 1981,429-431
    [29]Hyun, Kyung-Sook; Park, Chan-Yong, Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure, Journal of Applied Physics, vol.81, Iss.2,1997,974-984
    [30]http://en.wikipedia.org/wiki/Quantum_dot#cite_note-33
    [31]J. C. Blakesley. P. See. A. J. Shields. B. E. Kardyna P. Atkinson. I. Farrer, and D.A. Ritchie, Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes, PRL 94,067401,2005
    [32]Reinier W. Heeres, Sander N. Dorenbos, Benny Koene, Glenn S. Solomon, Leo P. Kouwenhoven and Valery Zwiller, On-Chip Single Plasmon Detection, Nano Lett.,10,2010.661-664
    [33]Z. L. Yuan, A. W. Sharpe. and A. J. Shields. High speed single photon detection in the near-infrared. Applied Physics Letters 91.2007.041114
    [34]Xiuliang Chen. E Wu, Guang Wu, and Heping Zeng, Low-noise high-speed InGaAs/InP-based single-photon detector. Optics Express, Vol.18, Issue 7,2010. 7010-7018
    [35]Yi Jian, E. Wu, Guang Wu, and Heping Zeng, Optically Self-Balanced InGaAs-InP Avalanche Photodiode for Infrared Single-Photon Detection, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.22, NO.3,2010
    [36]Guang Wu, Yi Jian, E Wu, Heping Zeng, Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode, OPTICS EXPRESS Vol.17, No.21,2009,18782
    [37]Guang Wu, Yi Jian, E. Wu, and Heping Zeng, Linear External Optical Gain Photodetector at Few-Photon Level, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.22, NO.10,2010
    [38]Xiaorong Gu, Yao Li, Haifeng Pan, E Wu, and Heping Zeng, High-Speed Single-Photon Frequency Upconversion With Synchronous Pump Pulses, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO.6,2009
    [39]J. R. Clem and K. K. Berggren, Geometry-dependent critical currents in superconducting nanocircuits, Phys. Rev. B 84,2011,174510
    [40]Mohsen K. Akhlaghi, Haig Atikian, Amin Eftekharian, Marko Loncar, and A. Hamed Majedi, Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors, Optics Express, Vol.20, Issue 21,2012,23610-23616
    [41]A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl. Phys. Lett.88,2006,111116
    [42]Burm Baek, Eric A. Dauler, Andrew J. Kerman, Richard. Molnar, Scott A. Hamilton, Karl K. Berggren, Richard P. Mirin and Sae Woo Nam, High-order temporal coherences of chaotic and laser light Martin J. Stevens, OPTICS EXPRESS, Vol.18 Issue 2,2010,1430
    [43]F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, Afterpulsing and instability in superconducting nanowire avalanche photodetectors, Appl. Phys. Lett.100,2012,112601
    [44]K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. Voronov, G. N. Gol'tsman, and K. K.Berggren, Opt. Express Vol.14 Issue 2,2006,527
    [45]Xiaolong Hu, Eric A. Dauler. Richard J. Molnar. and Karl K. Berggren, Opt. Express Vol.19 Issue 1.2011,17
    [46]Dongxing Wang, Tian Yang, and Kenneth B. Crozier, OPTICS EXPRESS Vol. 19 Issue 3,2011.2148
    [47]K. B. Crozier, A. Sundaramurthy. G. S. Kino, and C. F. Quate, Optical antennas: resonators for local field enhancement, J. Appl. Phys.94,2003.4632
    [48]E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Plasmonic laser antenna, Appl. Phys. Lett.89,2006,093120
    [49]N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin. K. B. Crozier, F. Capasso, D. Bour, S. Corzine. and G. Hofler, Plasmonic quantum cascade laser antenna, Appl. Phys. Lett.91,2007,173113
    [50]HA. Kramers, Quantum Mechanics,1958
    [51]D. Bohm, Quantum Theory,1954
    [52]TD. Newton, EP. Wigner, Localized states for elementary particles. Reviews of Modern Physics,21,1949,400-406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700