高纯超细α-Al_2O_3粉体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨了利用两种不同的前驱体,即勃姆石加入晶种和碳酸铝铵,经过高温煅烧合成超细α-Al2O3粉体。通过对前驱体以及最终α-Al2O3粉体进行X-射线衍射、热重、透射电镜、扫描电镜以及激光粒度分布表征,分析了各实验参数、工艺流程对所得前驱体及最终粉体的影响,探讨了制备条件与其微观结构和性质之间的关系,从而为制备性能优异的超细氧化铝粉体提供理论和实验依据。
     1.勃姆石引入晶种法制备高纯超细α-Al2O3粉体
     通过在水热合成的勃姆石前驱体中引入拟薄水铝石溶胶晶种的方法制备了α-Al2O3粉体,并采用XRD、TEM、SEM、激光粒度分布等分析测试手段表征了产物的物相组成、形貌、粒径大小、粒径分布,研究了晶种加入量对产物形貌及粒度的影响。TG-DSC结果表明,勃姆石前驱体要在1250℃的高温下煅烧才能得至α-Al2O3物相,并且产物为烧结的蠕虫状结构,分散性较差,但是拟薄水铝石在1150℃就可发生α相变,当向勃姆石中加入少量拟薄水铝石作为晶种,可使勃姆石前驱体的α相变温度由1250℃降低到1175℃,并改善了最终α-Al2O3粉体的微观形貌,由蠕虫状变为无团聚的分散颗粒,所制备的α-Al2O3粉体纯度高,平均粒径为250nm左右,粒径分布窄,分散性好;随着晶种加入量的增大,α-Al2O3粉体的平均粒径未发生明显变化,但粒径分布明显变窄。
     2.碳酸铝铵热解法制备高纯超细α-Al2O3粉体
     通过硫酸铝铵与碳酸氢铵的沉淀反应首先制备得到碳酸铝铵前驱体,再经高温热分解得到了α-Al2O3粉体,采用XRD、TEM、SEM、激光粒度分布等分析测试手段对前驱体及最终产物进行了表征,研究了沉淀反应参数、实验工艺对前驱体形貌及粒径的影响,以及机械球磨前驱体对最终α-Al2O3粉体的影响。结果表明,在室温条件下,采用同时滴加两种原料液的方式,在合适的原料摩尔比及底液体积的最优制备条件,能得到分散性好无团聚的近长方体碳酸铝铵聚集体前驱体;通过改变原料溶液的滴加速度,能得到不同粒径大小的前驱体颗粒;对前驱体进行机械球磨预处理再进行高温煅烧,能明显降低前驱物的α相变温度,并改善最终α-Al2O3粉体的微观形貌,使产物由大小不均匀的蠕虫状颗粒转变为分散的类球形颗粒;对不同粒径大小的前驱体球磨相同时间后再进行煅烧,可以得到不同粒径大小的α-Al2O3粉体,在一定程度上做到了粒径可控的α-Al2O3粉体的制备。
In this paper, fine-grained a-alumina powders with high-purity were synthesized using boehmite or ammonium alumina carbonate hydroxide (AACH) as precursors after the calcinations process. The obtained precursors and final α-Al2O3powders were characterized in detail by XRD, SEM, TEM, TG-DSC, and particle size distribution analysis. The effect of experiment parameters, process technology and calcinations process on the properties of precursor samples and final α-Al2O3powder was investigated. The relationship between the preparation parameters and the microstructures of the materials are established, which might provide a theoretical basis for the synthesis of precursors and α-Al2O3with good performance.
     1. Preparation of fine-grained a-alumina powders with high-purity from boehmite with seeding addition
     Fine-grained a-alumina powder was prepared from boehmite sol with pseudo-boehmite as seed. The effect of the seed on the formation temperature and the particulate properties of α-Al2O3was investigated using XRD, SEM, TEM, TG-DSC and particle size distribution analysis. TG-DSC and XRD results showed that the phase transformation from prepared boehmite to α-Al2O3begins to occur at-1250℃with vermicular agglomerated particles obtained, but the phase transition for as-prepared pseudo-boehmite could take place at~1150℃. When a small amount of pseudo-boehmite were added into boehmite sol, during calcinations α-Al2O3particles formed in situ from pseudo-boehmite at lower temperature can play a role as seed nucleation, which then induce the phase transformation from boehmite precursor to α-Al2O3and obviously lowered the tranformation temperature. The experimental results showed that the obtained α-Al2O3powders had an average particle size of-250nm with high purity, good dispersity and narrow particle size distribution. With the increasing of the seed amount, no remarkable change was observed in the average particle size of α-Al2O3particles, but the particle size distribution became narrower.
     2. Preparation of fine-grained a-alumina powders with high-purity by thermal decomposition of AACH
     Fine-grained α-alumina powder was prepared by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH), a new precursor obtained via the precipitation reaction between ammonium aluminum sulphate (NH4Al(SO4)2) and ammonium hydrogen carbonate (NH4HCO3). The precursor and the calcined product were characterized by XRD, SEM, TEM, TG-DSC and particle size distribution analysis. The effect of experiment parameters, process technology and mechanical milling pre-treatment on the properties of precursor and final α-Al2O3product was investigated. The results showed that less-agglomerated, well-discrete and cuboid-like AACH precursor can be successfully synthesized in the optimal technical condition; AACH sample with different particle size was obtained by varying the titration rate of the raw material solutions; mechanical milling AACH precursor drastically lowered the a-alumina transition temperature and spherical-like α-Al2O3particles with less-agglomerated rather than vermicular agglomerated particles were obtained at lower calcination temperature; α-Al2O3powder with controllable diameter was finally successfully synthesized by calcining different-sized AACH precursor.
引文
1. C. Li, P. Choi, Molecular dynamics study on the effect of solvent adsorption on the morphology of glycothermally produced α-Al2O3 particles, J. Phys. Chem. C.,2008, 112,10145-10152.
    2. M. Munro, Evaluated material properties for a sintered alpha-Alumina, J. Am. Ceram. Soc.,1997,80,1919-1928.
    3. C. Liu, L. Wang, W. Ren, Z. Rong, X. Wang, J. Wang, Synthesis and characterization of a mesoporous silica (MCM-48) membrane on a large-pore α-Al2O3 ceramic tube, Micro. Meso. Mater,2007,106,35-39.
    4. X. Wang, N. Padture, H. Tanaka, Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nature Mater,2004,3,539-544.
    5. M. L. Balmer, F. F. Lange, V. Jayaram, C. G. Levi, Development of nano-composite microstructures in ZrO2-Al2O3 via the solution precursor method, J. Am. Ceram. Soc.,1995,78,1489-1494.
    6. T. Ishizaka, Y. Kurokawa, T. Makino, Y. Segawa, Optical properties of rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films prepared by the sol-gel method, Opt. Mater,2001,15,293-299.
    7.李世普,特种陶瓷工艺学,武汉大学出版社:武昌1991,p82.
    8.毕见强,赵萍,邵明梁,特种陶瓷工艺与性能,哈尔滨工业大学出版社:哈尔滨2008,p122.
    9. F. W. Dynys, M. Ljungberg, J. W. Halloran, Microstructural transformations in alumina gels. MRS Proc.,1984,32,321-326.
    10. J. Li, X. Sun, Synthesis and sintering behavior of a nanocrystalline a-alumina powder, Acta Mater,2000,48,3103-3112.
    11. A. Boumaza, L. Favaro, J. Ledion, G. Sattonnay, J. B. Brubach, P. Berthet, A. M. Huntz, P. Roy, R. Tetot, Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study, J. Solid State Chem., 2009,182,1171-1176.
    12. I. Levin, D. Brandon, Metastable alumina polymorphs:Crystal Structures and Transition Sequences, J. Am. Ceram. Soc.,1998,81,1995-2012.13.Y. Wang, P. M. Bronsveld, J. T. M. DeHosson, B. Djuricic, D. McGarry, S. Pickering, Ordering of octahedral vacancies in transition aluminas, J. Am. Ceram. Soc.,1998,81,1655-1660.
    14. T. Chou, T. Nieh, Nucleation and concurrent anomalous grain growth of α-Al2O3 during γ→α phase transformation, J. Am. Ceram. Soc.1991,74,2270-2279.
    15. X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, Theoretical study of the dehydration process of boehmite to y-alumina, J. Phys. Chem. B.,2001,105,5121-5130.
    16. F. Granados-Correa, J. Jimenez-Becerril, Chromium (Ⅵ) Adsorption on Boehmite, J. Hazard. Mater,2009,162,1178-1184.
    17. F. W. Dynys, J. W. Halloran, Alpha alumina formation in alum-derived gamma alumina, J. Am. Ceram. Soc.,1982,45,442-448.
    18. H. L. Wen, Y. Y. Chen, F. S. Yen, C. Y. Huang, Size characterization of θ-and α-Al2O3 crystallites during phase transformation, Nanostruct. Mater,1999,11,89-101.
    19. P. L. Chang, F. S. Yen, K. C. Cheng, H. L. Wen, Examinations on the critical and primary crystallite sizes during 0-to a-phase transformation of ultrafine alumina powders, Nano. Lett.,2001,1,253-261.
    20. G. R. Karagedov, N. Z. Lyakhov, Preparation and sintering of nanosize α-Al2O3 powder, Nanostruct. Mater.,1999,5,559-572.
    21. J. Ding, T. Tsuzuki, P. G. McCormick, Ultrafine alumina particles prepared by the mechanochemical/thermal processing, J. Am. Ceram. Soc.,1996,79,2956-2958.
    22.工志强,马铁成,蔡英骥,超细α-Al2O3的低温燃烧合成及其烧结特性的研究[J],硅酸盐学报,2000,5,28-31.
    23. Y J. Chen, N. G. Glumar, G. Skandan, High rate production of nonagglomerated nanoparticle by flame synthesis, Chem. Phys.,1997,143-148.
    24. E. Borsella, S. Botti, R. Giorgi, et al, Laser-driven synthesis of nanocrystalline alumina powders from gas-phase precursors, Appl. Phys. Lett.,1993,63,1345-1347.
    25. B. Felde, Synthesis of ultrafine alumina powder by sol-gel techniques, Adv. Sci. Technol,1999,14,49-56.
    26. F. Mirjalili, M. Hasmaliza, L. C. Abdullah, Size-controlled synthesis of nano a-alumina particles through the sol-gel method, Ceram. Int.,2010,36,1253-1257.
    27. H. Li, H. Lu, S. Wang, J. Jia, H. Sun, X. Hu, Preparation of a nano-sized α-Al2O3 powder from a supersaturated sodium aluminate solution, Ceram. Inter,,2009,35, 901-904.
    28. P. Luo, Niehtg, Schwartzaj, et al, Surface characterization of nano-structured metal and ceramic particles, Mater. Sci. Eng.,1995,204(A),59-64.
    29. J. Yang, S. Mei, J. M. F. Ferreira, Hydrothermal synthesis of submicrometer a-alumina from seeded tetraethylammonium hydroxide-peptized aluminum hydroxide, J. Am. Ceram. Soc.,2003,86,2055-2058.
    30. P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, H. Schmidt, Hydrothermal synthesis of nanosize α-Al2O3 from seeded aluminum hydroxide, J. Am. Ceram. Soc, 1998,81,2732-34.
    31. V. K. Lamer, R. H. D. Theory, Production and mechanism of formation of monodispersed hydrosols, J Am. Ceram. Soc.,1950,72,4847-4854.
    32. F. Kara, G Sahin, Hydrated aluminium sulfate precipitation by enzyme-catalysed urea decomposition, J. Eur. Ceram. Soc.,2000,20,689-694.
    33. Y. Wu, Y. Zhang, X. Huang, J. Guo, Preparation of platelike nano alpha alumina particles, Ceram. Int.,2001,27,265-268.
    34. S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, Economical synthesis of Al2O3 nanopowder using a precipitation method, Mater. Lett.,2009,63,2274-2276.
    35. X. Sun, J. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, Synthesis of nanocrystalline α-Al2O3 powders from nanometric ammonium aluminum carbonate hydroxide, J. Am. Ceram. Soc.,2003,86,1321-1325.
    36. A. Krell, P. Blank, H. Ma et al, Transparent sintered corundum with high hardness and strength, J. Am. Ceram. Soc.,2003,86,12-18.
    37. E. Teh, Y. Leong, Y. Liu, Isomerism and solubility of benzene mono-and dicarboxylic acid:Its effect on alumina dispersions, Langmuir,2011,27,49-58.
    38. Y. T. O, J. Koo, K. J. Hong, J. S. Park, D. C. Shin, Effect of grain size on transmittance and mechanical strength of sintered alumina, Mater. Sci. Eng. A.,2004, 374,191-195.
    39. P. Luo, Niehtg, Schwartzaj, et al, Surface characterization of nano-structured metal and ceramic particles, Mater. Sci. Eng.,1995,204(A),59-64.
    40.冯拉俊,刘毅辉,雷阿利,纳米颗粒团聚的控制[J],微纳电子技术,2003,7,536-542.
    41.李葵英,界面与胶体的物理化学[M],哈尔滨工业大学出版社:哈尔滨,1998.
    42.许坷敬,许煌汾,表面活性剂在制各ZrO2微粉中的作用[J],材料研究学报,1999,13,434-436.
    43.许迪春,郝晓春,朱宜惠,湿化学法制备ZrO2(Y2O3)超细粉末过程中团聚状态的控制[J],硅酸盐学报,1992,20,48-54.
    44. R. N. Das, A. Hattori, K. Okada, Influence of processing medium on retention of specific surface of gamma-alumina at elevated temperature, Appl. Catal.,2001,207, 95-102.
    45. D. T. Beruto, R. Botter, Effect of vacuum and of strong adsorbed water films on micropore formation in aluminum hydroxide xerogel powders,J. Colloid Interface Sci.,2009,300,97-104.
    46. M. L. P. Antunes, H. S. Santos, Characterization of the aluminum hydroxide microcrystals formed in some alcohol-water solutions, Mater. Chem. Phys.,2002,76, 243-249.
    47. D. Chaumont, A. Craievich, A. Zarzycki, Effect of ultrasound on the formation of ZrO2 sol and wet gels, J. Non-Cryst. Solids,1992,41,147-148.
    48. P. H. Twari, A. J. Hunt, K. D. Lofftus, Ambient temperature supercritical drying of transparent silica aerogels, Mater. Lett.,1985,3,363-368.
    49. C. Ma, Y. Chang, W. Ye, Hexagon y-alumina nanosheets produced with the assistance of supercritical ethanol drying,J.Supercrit. Fluids,2008,45,112-120.
    50. D. T. Beruto, R. Botter, Effect of vacuum and of strong adsorbed water films on micropore formation in aluminum hydroxide xerogel powders,J. Colloid Interface Sci.,2009,300,97-104.
    51. R.K. Her, Fibrillar colloidal boehmite; Progressive conversion to gamma, theta, and alpha aluminas, J. Am. Ceram. Soc.,1961,44,618-624.
    52. E. Suvaci, G. L. Messing, Seeding of the Reaction-Bonded Aluminum Oxide Process, J. Am. Ceram. Soc.,2001,84,657-659.
    53. G. Urretavizcaya, J. M. P. Lopez, Thermal transformation of sol-gel alumina into a-phase. Effect of a-Al2O3 seeding. Mater. Res. Bull.,1992,27,375-385.
    54. D. Turnbull, B. Vonnegut, Nucleation Catalysis, Ind. Eng.Chem.,1952,44, 1292-1298.
    55. C. S. Nordahl, G. L. Messing, Sintering of a-Al2O3-seeded nanocrystalline γ-Al2O3 powders, J. Eur. Ceram. Soc.,2002,22,415-422.
    56. M. Kumagai, G. L. Messing, Controlled transformation and sintering of a boehmite sol-gel by alumina seeding, J. Am. Ceram. Soc.,1985,68,500-505.
    57. S. Kwon, G. L. Messing, Sintering of mixtures of seeded boehmite and ultrafine a-alumina, J. Am. Ceram. Soc.,2000,83,82-88.
    58. G. R. Karagedov, A. L. Myz, Preparation and sintering pure nanocrystalline a-alumina powder, J. Eur. Ceram. Soc.,2012,32,219-225.
    59. J. L. McArclle, G. L. Messing, Solid-phase epitaxy of boehmiteserived a-alumina on flematite seed crystals,J. Am. Ceram. Soc.,1989,72,864-867.
    1. R. K. Iler, Fibrillar colloidal boehmite:Progressive conversion to gamma, theta, and alpha aluminas, J. Am. Ceram. Soc.,1961,44,618-624.
    2. H. L. Wen, Y. Y. Chen, F. S. Yen, C. Y. Huang, Size characterization of θ-and a-Al2O3 crystallites during phase transformation, NanoStruct. Mater.,1999,11,89-101.
    3. P. L. Chang, F. S. Yen, K. C. Cheng, H. L. Wen, Examinations on the critical and primary crystallite sizes during 0-to a-phase transformation of ultrafine alumina powders, Nano Lett.,2001,1,253-261.
    4. I. Levin, D. Brandon, Metastable alumina polymorphs:Crystal structures and transition sequences, J. Am. Ceram. Soc.,1998,81,1995-2012.
    5. F. W. Dynys, M. Ljungberg, J. W. Halloran, Microstructural transformations in alumina gels, MRS Proc.,1984,32,321-326.
    6. A. Krell, P. Blank, H. Ma et al, Transparent sintered corundum with high hardness and strength, J. Am. Ceram. Soc.,2003,86,12-18.
    7. E. Teh, Y. Leong, Y. Liu, Isomerism and solubility of benzene mono-and dicarboxylic acid:Its effect on alumina dispersions, Langmuir,2011,27,49-58.
    8. J. B. Koo, K. J. Hong, J. S. Park, D. C. Shin, Effect of grain size on transmittance and mechanical strength of sintered alumina, Mater. Sci. Eng. A,2004,374,191-195.
    9. D. Turnbull, B. Vonnegut, Nucleation catalysis, Ind. Eng. Chem.,1952,44, 1292-98.
    10. G. Urretavizcaya, J. M. P. Lopez, Thermal transformation of sol-gel alumina into α-phase:Effect of α-Al2O3 seeding. Mater. Res. Bull.,1992,27,375-385.
    11. C. S. Nordahl, G. L. Messing, Thermal analysis of phase transformation kinetics in α-Al2O3 seeded boehmite and γ-Al2O3, Thermochim. Acta,1998,318,187-199.
    12. N. S. Bell, S. Cho, J. H. Adair, Size control of a-alumina particles synthesized in 1,4-butanediol solution by a-alumina and a-hematite seeding, J. Am. Ceram. Soc., 1998,81,1411-1420.
    13. M. Kumagai, G. L. Messing, Controlled transformation and sintering of a boehmite sol-gel by alumina seeding. J. Am. Ceram. Soc.,1985,68,500-505.
    14. S. Kwon, G. L. Messing, Sintering of mixtures of seeded boehmite and ultrafine a-alumina,J. Am. Ceram. Soc.,2000,83,82-88.
    15. E. Prouzet, D. Fargeot, J. F. Baumard, Sintering of boehmite-derived transition alumina seeded with Corundum, J. Mater. Sci. Lett.,1990,9,779-781.
    16. J. G Li, X. D. Sun, Synthesis and sintering behavior of a nanocrystalline a-alumina powder, Act a Mater.,2000,48,3103-12.
    17. G. R. Karagedov, A. L. Myz, Preparation and sintering pure nanocrystalline a-alumina powder, J. Eur. Ceram. Soc.,2012,32,219-225.
    18. Z. P. Xie, J. W. Lu, Influence of a-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide, Mater. Lett.,2003,57, 2501-2508.
    19. Y. Yoshizawa, K. Hirao, S. Kanzaki, Fabrication of low cost fine-grained alumina powders by seeding for high performance sintered bodies, J. Eur. Ceram. Soc.,2004, 24,325-330.
    20. J. L. McArclle, G. L. Messing, Solid-phase epitaxy of boehmiteserived a-alumina on flematite seed crystals, J. Am. Ceram. Soc.,1989,72,864-867.
    21. J. L. McArdle, G. L. Messing, Transformation and microstructure control in boehmite-derived alumina by ferric oxide seeding, Adv. Ceram. Mater,1988,33, 87-92.
    22. K. R. Han, C. S. Lim, M. J. Hong, J. W. Jang, K. S. Hong, Preparation method of submicrometer-size new a-alumina by surface modification of a-alumina with alumina sol, J. Am. Ceram. Soc.,2000,83,750-54.
    23. B. R. Baker, R. M. Pearson, Water content of pseudoboehmite:A new model for its structure, J. Catal.,1974,33,265-278.
    24. T. Tsukada, H. Segawa, A. Yasumori, K. Okada, Crystallinity of boehmite and its effect on the phase transition temperature of alumina, J. Mater. Chem.,1999,9,549-553.
    25. J. Chandradass, D. S. Bae, Synthesis and characterization of alumina nanoparticles by igepal CO-520 stabilized reverse micelle and sol-gel processing, Mater. Manuf. Processes,2008,23,494-498.
    I. X. Sun, J. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, Synthesis of nanocrystalline α-Al2O3 powders from nanometric ammonium aluminum carbonate hydroxide, J. Am. Ceram. Soc.,2003,86,1321-25.
    2.W. L.Wang, J. Q. Bi, Y. Q. Qi, Preparation of micrometer-sized α-Al2O3 platelets by thermal decomposition of AACH, Powder Technol.,2010,201,273-276.
    3. P. V. Ananthapadmanabhan, T. K. Thiyagajan, K. P. Sereekumar, et al, Formation of nano-sized alumina by in-flight oxidation of aluminum powder in a thermal plasma reactor, Scripta Mater.,2004,50,143-147.
    4. Y. Q. Wu,Y. F. Zhang, X. X. Huang, et al, Preparation of platelike nano alpha alumina particles, Ceram. Int.,2001,27,265-268.
    5. K. Morinaga, T. Torikai, K. Nakagawa, et al., Fabrication of fine α-alumina powder by thermal decomposition of ammonium alumina carbonate hydroxide (AACH), Acta Mater.,2000,48,4735-4741.
    6. C. C. Ma, X. X. Zhou, X. Xu, et al, Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH), Mater. Chem. Phys.,2001,72, 374-379.
    7.张美鸽,高纯氧化铝制备技术的进展[J].功能材料,1994,24,187-191.
    8.李继光,孙旭东,碳酸铝钱热分解制备a-Al2O3超细粉,无机材料学报,1998,13,803-807.
    9.林元华,张中太,前驱体热解法制备高纯超细α-Al2O3粉体,硅酸盐学报,2000,28,268-271,
    10. Z. Wu, Y. Shen, Y. Dong, J. Jiang, Study on the morphology of α-Al2O3 precursor prepared by precipitation method, J. Alloys Compd.,2009,467,600-604.
    11. Y. H. Lin et al., Preparation of high pure ultrafine α-Al2O3 powder by means of pyrolytic reaction of precursor, J. Chin. Ceram. Soc.,2000,28,268-271.
    12. S. Kato, Preparation of ammonium alumina carbonate hydroxide, J. Jpn. Ceram. Soc.,1976,84,215-219.
    13.李继光,孙旭东等,湿化学法合成α-Al2O3纳米粉,材料研究学报,1998,12, 105-107.
    14. G. J.Yan et al., Preparation of high pure ultrafine alumina powder by means of pyrolytic process of ammonium aluminium carbonate, Diomand Abras. Eng.,2006, 156,781-785.
    15. K. Hayashi, S. Toyoda, K. Nakashima, K. Morinaga, Optimum synthetic conditions of ammonium aluminum carbonate hydroxide (AACH) as starting material for α-alumina fine powders. J. Ceram. Soc. Jpn.1990,98,444-449.
    16. P. Su, X. Y. Guo, S. J. Ji, Effects of multicomponent catalyzer on preparation of ultrafine α-Al2O3 at low sintering temperature. Adv. Powder Technol.,2009,20, 542-547.
    17. C. F. Chen, A. Wang, L. J. Fei, Effects of ultrasonic on preparation of alumina powder by wet chemical method, Adv. Set Lett.2011,4,1249-1253.
    18. Z. P. Xie, J. W. Lu, Influence of a-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide, Mater. Lett.,2003,57, 2501-2508.
    19. Y. Yoshizawa, K. Hirao, S. Kanzaki, Fabrication of low cost fine-grained alumina powders by seeding for high performance sintered bodies,J. Eur. Ceram. Soc.,2004, 24,325-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700