应变PMOS器件阈值电压及其可靠性的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应变硅技术通过采用适当的工艺或材料在MOS器件的沟道中引入应力,改变硅的能带结构、电导有效质量以及载流子的散射概率,提高载流子的迁移率。由于在提高器件电学性能方面的卓越表现,应变技术一直是半导体技术研究的焦点,并逐渐得到了应用。目前,业界对应变硅器件的研究主要集中在应力的引入方式、工艺改进及新型器件结构开发等方面。
     近年来,业界也开始越来越多地关注应变对MOS器件电学参数模型的影响,以及应变硅器件的稳定性、可靠性问题。例如,SiGe衬底应变MOS器件的阈值电压模型,应变MOS器件的关态漏电流、栅诱导泄漏电流(GIDL),偏压温度不稳定性(BTI)退化等。随着沟道应力的增加,在载流子迁移率提高的同时,应变MOS器件的高掺杂浓度、薄栅氧化层厚度、短沟道长度会引起泄漏电流的增大,使器件稳定性受到严重影响。
     本文首先针对SiGe源漏应变PMOS器件,在分析Si/SiGe的能带、态密度和本征载流子浓度等参数与Ge组分的基础上,通过求解一维及二维泊松方程,探索了影响SiGe源漏PMOS器件阈值电压的因素,并通过TCAD工具Sentaurus进行了验证。其次,利用变分法得到了SiGe源漏PMOS短沟道效应与SiGe源漏中Ge组分的关系,讨论了Ge组分对器件稳定性的影响。结果表明,应变PMOS的阈值电压随Ge组分的增加而减小,沟道长度及漏源电压也是影响应变PMOS阈值电压的关键因素,而Ge组分对器件短沟道效应的影响并不大。
     根据Intel公司90 nm工艺下栅长50 nm的PMOS单轴应变硅器件工艺流程,采用Sentaurus Process进行了工艺模拟,并依据已有测试结果对Sentaurus Device电学模拟结果进行了修正,对应变PMOS的关态漏电流、GIDL电流进行了模拟研究。结果表明,随着SiGe源漏Ge组分的增加,沟道应力增大,空穴迁移率提高,SiGe/Si之间价带差亦随之增大,引起关态漏电流增大;而GIDL电流随着Ge组分的增大而减小,且漏源电压较大时更易产生GIDL电流。最后,对严重影响深亚微米MOS器件寿命的BTI退化进行了研究。结果表明,相较于体Si器件,应变PMOS的NBTI退化更严重,温度的增加,以及氢在氧化层中扩散速率的增加均会增加NBTI的退化。
Strained Si technology introduces stress to the channel of MOS devices by using appropriate process or materials. The band structure of Si, the conductivity effective mass and the carriers’scattering probability can be altered by stress, resulting in the favorable increase of carriers’mobility. Due to the good effeciency in improving the device performance, the strained Si technology has acquired focused research and successful applications in semiconductor industry. Current research efforts are more concentrated on the methods to introduce stress to the devices, process improvement, and developing novel device structures.
     Recently, wide attention has been paid to the effects of strain on electrical parameter models, as well as the stability and reliability of these novel devices, for example, the threshold voltage model of strained MOS with SiGe substrate, the off-state leakage current and the gate-induced drain leakage current (GIDL), the bias temperature instability (BTI). When the carriers’mobility increases with increasing channel stress, the high doping concentration, the thin gate oxide thickness and the short channel length of stained MOS devices may increase the leakage current, and deteriorate the stability of such devices.
     Based on the detailed analyses of Si/SiGe parameters, such as the band structure, density of states, intrinsic carrier concentration and Ge molar fraction, this thesis studies the factors influencing the threshold voltage of strained PMOS with SiGe source/drain (S/D) first by solving one-dimensional and two-dimensional Poisson’s equations. Results are also verified by the TCAD tool Sentaurus. Furthermore, the relation between the short channel effect and the Ge molar fraction is studied by solving the Poisson’s equation using the variation method. The effect of Ge molar fraction on the device stability is also discussed. Results indicate that the threshold voltage decreases with increasing Ge molar fraction. The channel length and the applied drain-source voltage of strained PMOS are also important influencing factors of the threshold voltage, while the Ge molar faction has a minor effect on the short channel effect.
     Moreover, the TCAD tool Sentaurus Process is applied to the process simulation of a uniaxial strained Si PMOS device with 50 nm gate length fabricated using Intel’s 90 nm processing technology. The original electrical simulation results from Sentaurus Device are calibrated according to the reported experimental data. The off-state leakage current and GIDL current are then studied by simulation. With increasing Ge molar fraction, the channel stress increases, resulting in the higher hole mobility and thus the larger valence band difference between SiGe and Si, and finally the increasing off-state leakage current. On the contrary, GIDL current decreases with increasing Ge molar fraction, and is easier to generate at higher applied drain-source voltage. Finally, the BTI degradation which has a severe effect on the life of deep sub-micron MOS devices is simulated. The results show that the NBTI degradation of strained PMOS is worse than that of bulk Si device. Increases of both the temperature and the diffusion rate of hydrogen in oxide can lead to severe NBTI degradation.
引文
1. Roup R R, Kilby J S. Electrical circuit elements[U]. United States Patent, 2841508, 1958-07-01
    2. Intel. Intel, micron introduce 25-nanometer NAND? The smallest. Most advanced process technology in the semiconductor industry[EB/OL]. http://www.intel.com/pressroom/ archive/releases/20100201comp.htm, 2010-08-26
    3. Mistry K, Allen C, Auth C, et al. A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging[C]. IEDM Tech. Dig. Washington DC, USA. 2007: 247-250
    4. Kedzierski J, Xuan P, Anderson E H, et al. Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime[C]. IEDM, San Francisco, USA. 2000:57-60
    5. Lim, P S Y, Lee R T P, Sinha M, et al. Effect of substitutional carbon concentration on Schottky-barrier height of nickel silicide formed on epitaxial silicon-carbon films[J]. Journal of Applied Physics,2009,106(4): 043703 - 043703-5
    6. Welser J, Hoyt J L, Gibbons, J F. NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures[C]. IEDM, San Francisco, USA. 1992: 1000-1002
    7. Ghani T, Armstrong M, Auth C, et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors[C]. IEDM, Washington D C, USA. 2003: 978-980
    8. Ito S, Namba H, Yamaguchi K,et al. Mechanical stress effect of etch stop nitride and its impact on deep micron transistor design[C]. IEDM, San Francisco, USA. 2000: 247-250
    9. Pretet J, Monfray S, Cristoloveanu S, et al. Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling[J]. IEEE Transactions on Electron Devices, 2004, 51(2): 240-246
    10. Chu M, Sun Y, Aghoram U, et al. Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs[J]. Annual Review of Materials Research, 2009, 39(1): 203-229
    11. Uchida K, Zednik R, Lu C, et al. Experimental study of biaxial and uniaxial strain effects on carrier mobility in bulk and UTB SOI MOSFETs[C]. IEDM, San Francisco, USA. 2004:1-4
    12. Verheyen P, Collaert N, Rooyackers R, et al. 25% drive current improvement for p-type multiple gate FET (MuGFET) devices by the introduction of recessed Si0.8Ge0.2 in the source and drain regions[C]. Symposium on VLSI Technology Digest of Technical Papers, Kyoto Japan. 2005:194-195
    13. Collaert N, Rooyachkers R, De Keersgieter A, et al. Stress hybridization for multigate devices fabricated on supercritical strained-SOI (SC-SSOI)[J]. IEEE Electron Device Letters, 2007,28(7): 646-648
    14. Liu Z H,Hu C M,Huang J H, et al. Threshold model for deep-submicron MOSFET’s[J]. IEEE Transactions on Electron Devices, 1993, 40(1): 86-95
    15. Yang L F, Watling J R, Wilking R C W, et al. Si/SiGe heterostructure parameters for device simulations[J]. Semiconductor Science and Technology, 2004,19(10):1174-1182
    16. Kumar M J, Venkataraman V, Nawal S. A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs[J]. IEEE Transactions on Electron Device, 2006, 53(10): 2500-2506
    17. Kim D, Krishnamohan T, Smith L, et al. Band to band tunneling study in high mobility materials:III-V,Si,Ge and strained SiGe[C]. 65th Annual Device Research Conference, South Bend, Indiana. 2007:57-58
    18. Tang T, Ramaswamy S, Nam J.An improved hydrodynamic transport model for silicon[J]. IEEE Transactions on Electron Devices,1993,40(8):1469-1477
    19.代月花,陈军宁,柯导明等.考虑量子化效应的MOSFET阈值电压解析模型[J].物理学报,2005,54(2):897-901
    20. Synopsys Inc.. Sentaurus Device User Guide, Version A-2006.6[DB/CD]. California: Synopsys, Inc., 2006
    21. Alam M A, Mahapatra S. A comprehensive model of PMOS NBTI degradation[J]. Microelectronics Reliability ,2005,45(1):71-81
    22. Bardeen J, Shockley W. Deformation potentials and mobilities in nonpolar crystals[J]. Physical Review, 1950, 80(1): 72-80
    23. Herring C, Vogt E. Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering[J]. Physical Review, 1956, 101(3): 944-961
    24. Hasegawa H. Theory of cyclotron resonance in strained silicon crystals[J]. Physical Review, 1963, 129 (3): 1029-1040
    25. Hensel J C, Feher G. Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials[J]. Physical Review, 1963, 129(3): 1041-1062
    26. Smith C S. Piezoresistance effect in germanium and silicon [J]. Physical Review, 1954, 94(1): 42-49
    27. Colman D, Bate R T, Mize J P. Mobility anisotropy and piezoresistance in silicon p-type inversion layers[J]. Journal of Applied Physics, 1968, 39(4): 1923-1931
    28. Nayak D K, Woo J C S, Park J S, et al. High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si[J]. Applied Physics Letters ,1993, 62(22): 2853-2855
    29. Rim K, Wesler J, Hoyt J L, et al. Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs[C]. IEDM, Washington D C, USA.1995, 517-520
    30. Rim K, Hoyt J, Gibbons J F. Transconductance enhancement in deep submicron strained-Si n-MOSFETs[C]. IEDM, San Francisco, USA. 1998:707-710
    31. Shimizu A, Hachimine K, Okhi N, et al. Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement[C]. IEDM, Washington D C, USA . 2001:433-436
    32. Gannavaram S, Pesovoic N, Ozturk M C. Low temperature recessed junction selective silicon germanium source/drain technology for sub70 nm CMOS[C]. IEDM, San Francisco, USA. 2000:437-440
    33. Thompson S, Anand N, Armstrong M, et al. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1μm2 SRAM cell[C]. IEDM, San Francisco, USA, 2002:61-64
    34. Jan C H, Bai P, Choi J, et al. A 65 nm ultra low power logic platform technology using uniaxially strained silicon transistors[C]. IEDM, Washington D C, USA. 2005:60-63
    35. Steegen A, Mo R, Mann R, et al. 65 nm CMOS technology for low power applications[C]. . IEDM, Washington D C, USA, 2005:64-67
    36. Chan V, Rengarajan R, Rovedo N, et al. High speed 45nm gate length CMOSFETs integrated into a 90 nm bulk technology incorporating strain engineering[C]. IEDM, Washington D C, USA. 2003:77-80
    37. Lim J S, Thompson S E, Fossum J G. Comparison of Threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs[J]. IEEE Electron Device Letters, 2004, 25(11):731-733
    38. Zhang W M, Fossum J G. On the threshold voltage of strained-Si-Si1-xGex MOSFETs[J]. IEEE Transactions on Electron Device, 2005, 52(2): 263-268
    39. Zainuddin A N M. Haque A. Threshold voltage reduction in strained-Si/SiGe MOS devices due to a difference in the dielectric constants of Si and Ge[J]. IEEE Transactions on Electron Device, 2005, 52(12): 2812-2814
    40. Venkataraman V, Nawal S, Kumar M J.Compact analytical threshold-voltage model of nanoscale fully depleted strained-Si on silicon–germanium-on-insulator (SGOI) MOSFETs[J]. IEEE Transactions on Electron Device, 2007, 54(3): 554-562
    41. Yan L, Olsen S H, Kanoun M, et al. Gate leakage mechanisms in strained Si devices[J]. Journal of Applied Physics, 2006, 100(10): 104507-1-104507-6
    42. Cheng C Y, Fang Y K, Hsieh J C,et al. Investigation and localization of the SiGe source/drain (S/D) strain-induced defects in PMOSFET with 45-nm CMOS technology[J]. IEEE Electron Device Letters, 2007, 28( 5): 408-411
    43. Wang T J, Ko C H, Chang S J, et al. The effects of mechanical uniaxial stress on junction leakage in nanoscale CMOSFETs[J]. IEEE Transactions on Electron Device, 2008, 55(2): 572-577
    44. Son S Y, Choi Y S, Kumar P, et al. Strain induced changes in gate leakage current and dielectric constant of nitrided Hf-silicate metal oxide semiconductor capacitors[J]. Applied Physics Letters, 2008,93(15): 153505-1-153505-3
    45. Gonzalez M B, Simoen E, Vissouvanadin B, et al. Impact of the Ge content on the bandgap-narrowing induced leakage current of recessed Si1-xGex source/drain junction[J]. IEEE Transactions on Electron Device, 2009, 56 (7): 1418-1423
    46. Chung, S S, Huang D C, Tsai, Y. J, et al. New observations on the uniaxial and biaxial strain-induced hot carrier and NBTI reliabilities for 65nm node CMOS devices and beyond[C]. IEDM, San Francisco, USA. 2006:1-4
    47. Irisawa T, Numata T, Toyoda E, et al. Physical understanding of strain effects on gate oxide reliability of MOSFETs [C]. 25Th IEEE Symposium on VLSI technology, Kyoto, Japan. 2007:36-37
    48. Islam A E, Lee J H, Wu W H, et al.University of interface trap generation and its impact on ID degradation in strained/unstrained PMOS transistor under NBTI stress[C].IEDM, San Francisco, USA. 2008:1-4
    49. Han I S, Ji H H, You O S, et al. New observation of mobility and reliability dependence on mechanical film stress in strained silicon CMOSFETs[J]. IEEE Transactions on Electron Devices, 2008, 55(6):1352-1358
    50. Teo Z Q. Ang D S, See K S, et al. Effect of mechanical strain on the NBTI of short-channel P-MOSFETs: role of impact ionization[C]. 2009 IEEE international Reliability Physics Symposium, California, USA. 2009:1019-1022
    51. Liu B, Tan K M, Yang M C, et al.NBTI reliability of P-channel transistors with diamond-like carbon liner having ultrahigh compressive stress[J]. IEEE Electron Device Letters, 2009, 30(8):867-869
    52. Liu B, Lim P S Y, Yeo Yee C. Effect of strain on negative bias temperature instability of germanium p-channel field effect transistor with high-k gate dielectric[C]. 2010 IEEE international Reliability Physics Symposium, Garden Grove, USA. 2010: 1055-1057
    53.梁仁荣,张侃,杨宗仁等.采用SiGe虚拟衬底高迁移率应变硅材料的制备和表征[J].半导体学报,2007,28(10):1518-1522
    54.李竞春,韩春,周谦等.240 nm Si0.8Ge0.2虚衬底的应变Si沟道PMOSFET[J].电子科技大学学报,2007,36(1):126-128
    55.戴显英,张鹤鸣,王伟等.应变Si1-xGex材料掺杂浓度的表征技术[J].半导体技术,2003,24(9):946-950
    56.曹艳荣,马晓华,郝跃等.90nm pMOSFETs NBTI退化模型及相关机理[J].半导体学报,2007,28(5):665-669
    57.张贺秋,毛凌锋,许铭真等.超薄氧化层中的中性陷阱对隧穿电流的影响和应变诱导漏电流[J].半导体学报,2002,23(4):367-372
    58. Sun Y, Thompson SE, Nishida T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2007, 101(10):104503-104522
    59. Levinstein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. London: World Scientific, 1999. 1-232
    60. Dhar S. Analytical Mobility Modeling for Strained Silicon-Based Devices [D]:[ PhD Thesis]. Wien: Vienna University of Science and Technology,2007
    61. Vogelsang T H, Hofmann K R. Electron mobilities and high-field drift velocities in strained silicon on silicon-germanium substrates[J]. Electron Devices, IEEE Transactions on,1992,39(11):2641-2642
    62. Vogelsang T H, Hofmann K R. Electron transport in strained Si layers on Si1-xGex substrates[J]. Applied Physics Letters,1993,63(2):186-188
    63. Bir G L, Pikus G E. Symmetry and strain-induced effects in semiconductors[M]. New York: John Wiley & Sons, 1974, 1-484
    64. Baslev I. Influence of uniaxial stress on the indirect absorption edge in silicon and germanium[J]. Physical Review, 1966,143(2): 636-647
    65. Hasegawa H. Theory of cyclotron resonance in strained silicon crystals[J]. Physical Review, 1963,129(3):1029–1040
    66. Sun, G Y Sun, Y K, Nishida, T K, et al. Hole mobility in silicon inversion layers: Stress and surface orientation[J]. Journal of Applied Physics, 2007,102(8):0485011-0485017
    67. Yu B, Chang L, Ahmed S, et al. FinFET scaling to 10 nm gate length[C]. IEDM, San Francisco, USA . 2002:251-254
    68. Kedzierski J, Ieong M, Nowak E, et al. Extension and source/drain design for high performance FinFET devices[J]. IEEE Transactions on Electron Devices, 2003,50(4): 952-958
    69. Kavalieros J, Doyel B, Datta S, et al. Tri-gate transistor architecture with high-k gatedielectrics, metal gates and strain engineering[C]. Symposium on VLSI Technology Digest of Technical Papers, Kyoto Japan. 2006:50-51
    70. Liow TY, Tan. K M., Lee R T P, et al. N-channel (110)-sidewall strained FinFETs with silicon-carbon source and drain stressors and tensile capping layer[J]. IEEE Electron Device Letters, 2007, 28(11): 1014-1017
    71. Tezuka T, Toyoda. E., Nakaharai S, et al. Observation of mobility enhancement in strained Si and SiGe tri-gate MOSFETs with multi-nanowire channels trimmed by hydrogen thermal etching[C].IEDM, Washington DC, USA. 2007:887-890
    72. Irisawa T, Numata T, Tezuka T, et al. Device design and electron transport properties of uniaxially strained-SOI tri-gate nMOSFETs[J]. IEEE Electron Device Letters, 2008,55(2): 649-654
    73. Xiang Q, Goo J, Pan J, et al. Strained silicon NMOS with nickel-silicide metal gate[C]. Symposium on VLSI Technology Digest of Technical Papers, Kyoto, Japan. 2003:101-102
    74. Suthram S, Hussain M M, Harris H R, et al. Comparison of uniaxial wafer bending and contact-etch-stop-liner stress induced performance enhancement on double-gate FinFETs[J] . IEEE Electron Device Letters, 2008,29(5):480-482
    75. Martin S C, Hitt L, Rosenberg J. p-channel germanium MOSFETs with high channel mobility[J]. IEEE Electron Device Letters, 198910(7): 325-326
    76. Sun G. Strain effects on hole mobility of silicon and germanium p-type metal-oxide-semiconductor field-effect transistors[D]:[PhD Thesis]. University of Florida, 2007
    77. Chau R, Datta S, Majumdar A. Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications[C]. IEEE Compound Semiconductor Integrated Circuit Symposium, California, USA. 2005:17-20
    78. Suthram S, Sun Y, Majhi P, et al. Strain additivity in III-V channels for CMOSFETs beyond 22 nm technology node[C].Symposium on VLSI Technology Digest of Technical Papers, Hawaii, USA. 2008:182-183
    79.胥传金,顾晓峰,于宗光.应变硅pMOS晶体管沟道应变的有限元研究[J].微电子学,2007,37(6): 815-818
    80. Lyutovich K, Kasper E. Properties of Silicon Germanium and SiGe-Carbon[M].5th. London: INSPEC The Institution of Electrical Engineers, 2000:140-141
    81. Weber J, Alonso M I. Near-band-gap photoluminescence of Si-Ge alloys[J]. Physical Review B,1989,40(8): 5683–5693
    82. Rieger M M, Vogl P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates[J]. Physical Review B, 1993, 48(19):14276–14287
    83. Ratnakumar K N, Meindl J D. Short-Channel MOST Threshold Voltage Model[J]. IEEE Journal of Solid-State Circuits, 1982, 17(5): 937-948
    84. Lee C Y, Lee K, Kim C K, et al. Variational formulation of Poisson's equation in semiconductor at quasi-equilibrium and its applications[J]. IEEE Transactions on Electron Devices, 1997, 44(9): 1507-1513
    85. Yuan Taur, Tak H. Ning. Fundamentals of modern VLSI devices[M]. New York: Cambridge University, 1998:94-221
    86. Schuegraf K, Hu C. Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation[J]. Electron Devices , IEEE Transactions on, 1994, 41(5):761–767
    87. Egley J L, Chidambarrao D. Strain effects on device characteristics: implementation in drift-diffusion simulators[J]. Solid-State Electronics, 1993, 36(12):1653-1664
    88.陈文松,田立松,李志坚.深亚微米MOSFET短沟效应的变分法分析[J].清华大学学报(自然科学版),1999,39(S1): 1-4
    89. Roy K, Mukhopadhyay S, Meimand H M. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits[J]. Proceedings of the IEEE, 2003, 91(2): 305-327
    90. Obradovic B, Mataqne P, Shifren L, et al. A physically-based analytic model for stress-induced hole mobility enhancement[C]. In 10th International Workshop on Computational Electronics, West Lafayette, USA. 2004:26-27
    91.陈海峰,马晓华,郝跃等. 90nm工艺下nMOS器件最大衬底电流应力特性[J].半导体学报, 2005,26 (12):2411-2415
    92.郝跃,刘红侠.微纳米MOS器件可靠性与失效机理[M].北京:科学出版社,2008.42-145
    93. Blat C E, Nicollianv E H, Poindexter E H. Mechanism of negative bias temperature instability[J].Journal of Applied Physics, 1991,69(3):1712 -1720
    94. Xu M Z, Tan C H, Rong D X. Current induced subthreshold trap generation, degradation, and breskdown in the thin oxide[C]. 6th International Conference on Solid State Integrated Circuit, Shanghai, China. 2001:932-935
    95. Harari E. Conduction and trapping of electrons in highly stressed ultrathin-films of thermal SiO2[J]. Applied Physics Letters, 1977, 30(4): 601-603
    96. Chen I C, Holland S E, Hu C M. Electrical breakdown in thin gate and tunneling oxides[J]. IEEE Transactions on Electron Devices, 1985,32(2): 413-422
    97. Crook D L .Method of determining reliability screens for time dependent breakdown[C]. 1979 IEEE international Reliability Physics Symposium, San Diego, USA.1979:1-7
    98.马晓华,郝跃,陈海峰等.电应力下超薄栅氧化层n-MOSFET的击穿特性[J].物理学报,2006,55(11):6118-6122
    99. Huard V, Monsieur F, Ribes G, et al. Evidence for hydrogen-related defects during NBTI stress in p-MOSFETs[C]. 41th IEEE International Reliability Physics Symposium Proceedings, Dallas, USA. 2003,178-182
    100.Tan S S, Chen T P. Nitrogen-enhanced negative bias temperature instability: an insight by experiment and first-principle calculations[J]. Applied Physics Letters, 2003, 82(12): 1881-1883
    101.Liao M H. Optimal stress design in p-MOSFET with superior performance[J]. IEEE Transactions on Electron Devices,2008,55(12): 3615-3618
    102.Momose H S, Ohguro T, Kojima K, et al. 1.5-nm Gate Oxide CMOS on (110) Surface-Oriented Si Substrate[J]. IEEE Trans Electron Devices, 2003, 50(4): 1001-1008
    103.Irie H, Kita K, Kyuno K, et al. In-Plane Mobility Anisotropy and Universality Under Uni-axial Strains in n- and p-MOS Inversion Layers on (100), (110), and (111) Si[C]. IEDM Tech. Dig. San Francisco, CA, USA. 2004, 225-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700