神经甾体硫化孕烯醇酮对大鼠前额叶皮层内侧区长时程增强的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化孕烯醇酮(pregnenolone sulfate,PREGS)是哺乳动物脑内含量最为丰富的神经甾体之一。PREGS在脑内分布相当广泛,参与各种生理或病理生理过程。许多研究表明PREGS对哺乳动物认知功能相关的生理和病理过程都具有明显的调节作用,但其具体机制还不甚清楚。前额叶皮层内侧区是动物脑内高级认知功能的核心区域,其与高级认知的处理及许多精神障碍密切相关。已有研究表明前额叶皮层内侧区的突触可塑性在永久记忆的形成、巩固和再现中起重要作用。而长时程增强(Long-term Potentiation,LTP)是突触可塑性的重要指标之一,被认为是学习记忆等认知功能的细胞分子基础。因此PREGS对前额叶皮层内侧区LTP可能有调节作用,但此假说仍需验证。
     本实验就采用离体脑片全细胞膜片钳技术,并结合电刺激和药理学方法,研究了PREGS对前额叶皮层内侧区LTP的作用和机制;进而用行为学方法探讨了其可能的整体功能意义。结果表明:在离体脑片实验中1μM PREGS对单刺激诱发的EPSCs的初始斜率无持续性抑制作用,但可以明显抑制前额叶皮层内侧区强直刺激诱导的LTP;其作用最低浓度为0.3μM,并且随着浓度的增加而增加,到1μM后逐渐达到一个作用平台。PREGS对LTP维持期无明显作用。再次给予强直刺激不能逆转PREGS对LTP的抑制作用。与此相反,1μM PREGS对海马CA1区的LTP无明显抑制作用,而0.3μM PREGS则可显著增强海马CA1区的LTP。这与已有的报道一致。为了阐明PREGS对前额叶皮层内侧区LTP作用的部位,我们研究了PREGS(1μM)对外源性施加NMDA诱发的NMDA电流的作用、以及对LTP诱导过程中双脉冲易化(PPF)的作用。结果表明PREGS对前额叶皮层内侧区外源性施加NMDA诱发的NMDA电流无明显作用,但可明显影响LTP诱导过程中PPF的变化,提示PREGS抑制前额叶皮层内侧区LTP的作用部位可能在突触前,而不在突触后。为了进一步阐明PREGS抑制前额叶皮层内侧区LTP的作用机制,我们研究了不同工具药对PREGS作用的影响。结果表明G_i蛋白抑制剂N-ethylmaleimide(NEM)可以全部取消PREGS对LTP的作用。D2受体拮抗剂haloperidol对PREGS作用无明显影响。而α_2受体拮抗剂yohombine可完全取消PREGS的作用,选择性α_2受体激动剂B-HT 933可完全模拟PREGS的作用。α_(2A)受体拮抗剂BRL-44408可完全逆转PREGS的作用。进一步给予腺苷酸环化酶(AC)抑制剂MDL-12,330A和蛋白激酶A(PKA)抑制剂H89均可全部取消PREGS对LTP的抑制作用。另外,有趣的是当电极内加入H89使其充分扩散到所记录的突触后细胞内,并未对PREGS对LTP的抑制作用产生任何影响,进一步确证了PREGS的作用部位并非突触后。整体行为学实验中,我们在前额叶皮层内侧区双侧局部注射PREGS,进而在水迷宫中检测与前额叶皮层内侧区相关的行为学指标,发现PREGS对大鼠游泳速度无明显影响,但可缩短大鼠寻找平台的时间和路程,从而促进了与前额叶皮层内侧区相关的认知功能。
     以上实验结果表明1μM PREGS可通过激活突触前与G_i蛋白偶联的α_(2A)受体,然后通过抑制AC和PKA信号通路,从而对大鼠前额叶皮层内侧区LTP的诱导产生抑制作用,进而对其相关的整体认知功能产生促进作用。
The effect and mechanism of neurosteroid pregnenolone sulfate on long-term potentiation in rat medial prefrontal cortex
     Pregnenolone sulfate (PREGS) is one of the most abundantly producedneurosteroids in the brain. PREGS has extensive distribution in the brain and isinvolved in many processes of physiology and pathology. Accumulated evidencesshow that PREGS could regulate many pathophysiological changes concerned withcognition, but the mechanism is not clear. The medial prefrontal cortex is the mainbrain region for higher cognition function, which is involved in the processes ofhigher cognition and many psychiatric disorders. The glutamatergic synaptic plasticityin the medial prefrontal cortex is thought to be important for the establishment,consolidation and retrieval of permanent memory. Long-term potentiation (LTP) isone of the important indications of synaptic plasiticity and regarded as the cellularmechanism of the learning and memory. So, PREGS might have effect on LTP inmedial prefrontal cortex, which needs to be determined by experiment.
     The present paper studies the effect and its mechanism of PREGS on LTP in thepyramidal cells of the layersⅤ-Ⅵof the medial prefrontal cortex using whole-cellpatch-clamp with electrical stimulus and pharmacological methods in slices, and thenwe also analyzed its possible function consequence using animal behavior. We foundthat, in brain slices, 1μM PREGS had no consistent effect on the basal slope of singlestimulation evoked EPSCs, but can inhibit distinctly tetanus evoked LTP in medialprefrontal cortex. The effect of PREGS was significant at concentration of 0.3μMand increased with an increase in concentrations and appeared to reach a plateau after1μM. PREGS had no effect on the maintenance of LTP. The second tetanusstimulation could not reverse its inhibitory effect. On the contrary, 1μM PREGS hadno significant influence on the induction of LTP in CA1 pyramidal neurons of thehippocampus, but 0.3μM PREGS enhanced distinctly the LTP. This result wasconsistent with others report. To determine the position of its effect, we studied theeffect of PREGS on the amplitude of NMDA evoked current, the paired-pulsefacilitation (PPF) during the LTP induction. We found that PREGS had no effect onthe amplitude of NMDA currents, but significantly occluded the PPF change duringthe LTP induction. These results indicated PREGS inhibited the induction of LTP inthe medial prefrontal cortex by presynaptic but not postsynaptic function.
     To further elucidate the mechanism of the inhibitory effect of PREGS on the induction of LTP, we studied the effect of inhibtors and agonists on the function ofPREGS. We found that the selective G_i protein inhibitor N-ethylmaleimide (NEM)canceled the effect of PREGS on LTP, theα_2 receptor antagonist yohombine andα_2Areceptor antagonist RBL-44408 can also canceled the effect of PREGS, but the D_2receptor antagonist haloperidol did not have influence on the effect of PREGS, theselectiveα_2 receptor agonist B-HT 933 could mimick the effect of PREGS. We alsostudied the downstream pathway of this effect by perfusing with adenylate cyclase(AC) inhibitor MDL-12,330A and protein kinase A (PKA) inhibitor H89. The resultsshown that could also cancel the effect of PREGS on LTP completely. It's interestingthat when we added H89 into the pipette solution and allowed it to be diffused into thepostsynapfic cell, we did not found any influence of H89 on the effect of PREGS onthe LTP. In animal behavior, local injection of PREGS into the medial prefrontalcortex to measure the response learning involved in the medial prefrontal cortex usingMorris Water Maze, we founded that PREGS does not have the effect on theswimming speed, but could decrease the eacape latency and pathway.
     In summary, PREGS inhibits the induction of LTP via activation ofα_2A receptorcoupled with G_i protein by presynaptic in rat medial prefrontal cortex. This effect isinvolved in AC-PKA signal pathway, and then may benefit cognition function in vivo.
引文
1. Jung-Testas I, Hu ZY, Baulieu E-E, Robel P. Steroid synthesis in rat brain cell cultures. J Steroid Biochem, 1989, 34 (1-6): 511-519.
    2. Kempen G. M. J. van. 181 pE Costa and M Paul, Neurosteroids and brain function: By Erminio Costa and Steven M. Paul (editors), Fidia Res. Found. sympser., vol. 8, 1992, Georg Thieme Verlag, Stuttgart/New York. J the Neurolo Sci, 1993, 116(2): 229.
    3. Warter JM. 181 pE Costa and M Paul, Neurosteroids and brain function. Vol 8, Fidia Research Foundation Symposium Series, Thieme, Basel Neurophysi Clini/Clini Neurophysi. 1993, 23 (4):382-383.
    4. Schwarz S and Pohl P. Steroids and opioid receptors. J Steroid Biochem and Molecular Biology, 1994, 48(4): 391-402.
    5. Luddens H and Korpi ER. Biological function of GABAA/benzodiazepine receptor heterogeneity.J Psychia Res, 1995, 29(2):77-94.
    6. Lambert JJ, Belelli D, Hill-Venning C and Peters JA. Neurosteroids and GABAA receptor function.Trends in Pharmac Sci, 1995, 16(9):295-303.
    7. Rupprecht R, Hauser CAE, Trapp T and Holsboer F. Neurosteroids: Molecular mechanisms of action and psychopharmacological significance. J Steroid Biochem and Mol Bio, 1996, 56(1-6):163-168.
    8. Paul SM Neuroactive steroids, Bio Psychia 1996, 39(7):502.
    9. Borodinsky LN, Pesce G, Pomata P and Fiszman ML. Neurosteroid modulation of GABAA receptors in the developing rat brain cortex, Neurochem International, 1997, 31(2):313-317.
    10. Jung-Testas I and Baulieu EE. Steroid hormone receptors and steroid action in rat glial cells of the central and peripheral nervous system.The J Steroid Biochem and Mol Bio, 1998, 65(1-6):243-251.
    11. Baulieu EE. NEUROSTEROIDS: A NOVEL FUNCTION OF THE BRAIN.Psychoneuroendocrinology, 1998, 23(8):963-987.
    12. Barbaccia M.L, Concas A, Serra M and Biggio G. Stress and neurosteroids in adult and aged rats,Exp Geronto, 1998,33(7-8):697-712.
    13. Herbert J. Neurosteroids, brain damage, and mental illness. Exp.Geront. 1998, 33(7-8):713-727.
    14. Pinto FT and Golombek DA. Neuroactive steroids alter the Crcadian system of the Syrian hamster in a phase-dependent manner, Life Sciences, 1999, 65(23): 2497-2504.
    15. Baulieu EE. Neurosteroids: a new function in the brain. Bio the Cell, 1991, 71(1-2): 3-10.
    16. Compagnone NA, Mellon SH. Neurosteroids: Biosynthesis and Function of These Novel Neuromodulators.Front.in Neuroendo, 2000, 21 (1): 1-56.
    17. Beyenburg S, Stoffel-Wagner B, Bauer J, Watzka M, Blumcke I, Bidlingmaier F and Elger CE. Neuroactive steroids and seizure susceptibility, Epilepsy Res, 2001, 44(2-3): 141-153.
    18. Borowicz KK, Zadro M, Swi(?)der M, Kowalska A, Kleinrok Z and Czuczwar SJ. Interaction of the neurosteroid alphaxalone with conventional antiepileptic drugs in different types of experimental seizures, Eur J Pharmaco, 2002, 449(1-2): 85-90.
    19. Grosso S, Luisi S, Mostardini R, Farnetani M, Cobellis L, Morgese G, Balestri P and Petraglia F. Inter-ictal and post-ictal circulating levels of allopregnanolone, an anticonvulsant metabolite of progesterone, in epileptic children, Epilepsy Res, 2003, 54(1):29-34.
    20. Stoffel-Wagner B, Watzka M, Steckelbroeck S, Ludwig M, Clusmann H, Bidlingmaier F, Casarosa E, Luisi S, Elger CE and Beyenburg S. Allopregnanolone serum levels and expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase isoforms in hippocampal and temporal cortex of patients with epilepsy, Epilepsy Res, 2003, 54(1): 11-19.
    21. Reddy DS. Role of neurosteroids in catamenial epilepsy, Epilepsy Res, 2004, 62(2-3):99-118.
    22. Baulieu EE. Steroid hormones in the brain: several mechanisms? in: K. Fuxe, J.A. Gustafsson, L. Weterberg (Eds.). Steroid Hormone Regulation of the Brain, Pergamon Press, Oxford, 1981, pp. 3-14.
    23. Gasior M., Carter RB, Witkin JM. Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol. Sci., 1999, 20: 107-112.
    24. Upprecht R., Koch M., Montkowski A, et al. Assessment of neuroleptic-like properties of progesterone. Psychopharmcology, 1999, 143: 29-38.
    25. Maayan R, Touati-Werner D, Ram E, Strous R, Keren O and Weizman A. The protective effect of frontal cortex dehydroepiandrosterone in anxiety and depressive models in mice, Pharmaco Biochem and Behav, 2006, 85(2):415-421.
    26. Reddy D. S. and Kulkarni S. K. The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice, Brain Res, 1998, 791(1-2): 108-116.
    27. Vallee M, Mayo W, Koob GF, and Moal M Le. Neurosteroids in learning and memory processes, Int Rev Neurobio, 2001, 46:273-32.
    28. Vallee M, Mayo W and Moal M Le. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging, Brain Res Rev, 2001, 7(1-3):301-312.
    29. Frisone DF, Frye CA. and Zimmerberg B. Social isolation stress during the third week of life has age-dependent effects on spatial learning in rats, Behav Brain Res, 2002, 128(2):153-160.
    30. Martin-Garcia E and Pallares M. The neurosteroid pregnenolone sulfate neutralized the learning impairment induced by intrahippocampal nicotine in alcohol-drinking rats, Neuroscience, 2005, 136(4): 1109-1119.
    31. Lapchak P.A. et al. Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model: possible involvement of GABA (A) receptors. Stroke, 2000, 31, 1953-1956.
    32. Kimonides, V.G. et al. Dehydroepiandrosterone (DHEA) and DHEAsulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 1852-1857.
    33. Stein, D.G. Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci, 2001, 24: 386-391.
    34. Frank, C. and Sagratella, S. Neuroprotective effects of allopregnenolone on hippocampal irreversible neurotoxicity in vitro. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2000, 24:1117-1126.
    35. Mayo, W. et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res., 1993,607: 324-328.
    36. Ladurelle, N. et al. Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res., 2000, 858: 371-379.
    37. Phan, V.L. et al. Modulation of steroidal levels by adrenalectomy/castration and inhibition of neurosteroid synthesis enzymes affect sigma1 receptor-mediated behaviour in mice. Eur. J. Neurosci., 1999, 11: 2385-2396.
    38. Reddy, D.S. and Kulkami, S.K. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res., 1998, 799: 215-229.
    39. Maurice, T. et al. Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav. Brain Res., 1997, 83: 159-164.
    40. Maurice, T. et al. Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35- amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience, 1998, 83, 413-428.
    41. Monique Vallee, et al. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Research Reviews, 2001, 37: 301-312.
    42. Willy Mayo, et al. Pregnenolone Sulfate and Aging of Cognitive Functions: Behavioral, Neurochemical, and Morphological Investigations. Hormones and Behavior, 2001, 40: 215-217.
    43. Willy Mayo, et al. Individual differences in cognitive aging: implication of pregnenolone sulfate. Progress in Neurobiology, 2003, 71: 43-48.
    44. Monique Vallee, et al. Neuroactive steroids: new biomarkers of cognitive aging. Journal of Steroid Biochemistry & Molecular Biology, 2003, 85, 329-335.
    45. Graham J.E, Rockwood K., Beattie B.L., Eastwood R., Gauthier S., Tuokko H., McDowell I.. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet, 1997, 349:1793-1796.
    46. Moal M. Le, Valle M, Darnaudery M, Pallares M., Simon H. and Mayo W. S.01.05 Memory and cognition: A role for neurosteroids, Eur Neuropsychopharmaco, 1997, 7(Supp 2): S80-S81.
    47. Doodipala S. Reddy and Shrinivas K. Kulkarni. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment, Brain Res, 1998, 799(2):215-229.
    48. Frye CA. and Lacey EH. The Neurosteroids DHEA and DHEAS May Influence Cognitive Performance by Altering Affective State, Physiology & Behavior, 1999, 66(1):85-92.
    49. Engel SR. and Grant KA. Neurosteroids and behavior, Int Rev Neurobio, 2001, 46:321-348.
    50. Mayo W, Moal M Le and Abrous DN. Pregnenolone Sulfate and Aging of Cognitive Functions: Behavioral, Neurochemical, and Morphological Investigations, Hormones and Behavior, 2001, 40(2):215-217.
    51. Birzniece V, Backstrom T, Johansson I-M, Lindblad C, Lundgren P, Lofgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, et al. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems, Brain Res Rev, 2006, 51 (2):212-239.
    52. Goldman-Rakic PS. Cellular basis of working memory, Neuron, 1995, 14: 477-485.
    53. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited, Cereb Cortex, 2000, 10:1078-1092.
    54. Weinberger DR, Berman KF, Illowsky BP. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Ⅲ. A new cohort and evidence for a monoaminergic mechanism, Arch Gen Psychiatry, 1988, 45:609-615.
    55. Berman KF, Illowsky BP, Weinberger DR. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Ⅳ. Further evidence for regional and behavioral specificity, Arch Gen Psychiatry, 1988, 45:616-622.
    56. Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Ⅰ. Regional cerebral blood flow evidence, Arch Gen Psychiatry, 1986, 43:114-124.
    57. Berman KF, Zec RF, Weinberger DR. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Ⅱ. Role of neuroleptic treatment, attention, and mental effort, Arch Gen Psychiatry, 1986, 43:126-135.
    58. Giacchino JL, Henriksen SJ. Opioid effects on activation of neurons in the medial prefrontal cortex, Prog Neuropsychopharmacol Biol Psychiatry, 1998, 22:1157-1178.
    59. Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van HR, Chiamulera C, Common neural substrates for the addictive properties of nicotine and cocaine, Science, 1997, 275:83-86.
    60. Miller.EK The prefrontal cortex and cognitive control, Nat Rev Neurosci, 2000, 1:59-65.
    61. Marek GJ, Aghajanian GK. The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis, Biol Psychiatry, 1998, 44:1118-1127.
    62. Marek GJ, Aghajanian GK. 5-HT2A receptor or alphal-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex, Eur J Pharmaco, 1999, 367: 197-206.
    63. Wang Z, Feng XQ, Zheng P. Activation of presynaptic D1 dopamine receptors by dopamine increases the frequency of spontaneous excitatory postsynaptic currents through protein kinase A and protein kinase C in pyramidal cells of rat prelimbic cortex, Neuroscience, 2002, 112: 499-508.
    64. Feng XQ, Dong Y, Fu YM, Zhu YH, Sun JL, Wang Z, Sun FY, Zheng P, Progesterone inhibition of dopamine-induced increase in frequency of spontaneous excitatory postsynaptic currents in rat prelimbic cortical neurons, Neuropharmacology, 2004, 46: 211-222.
    65. Dong Y, Fu YM, Sun JL, Zhu YH, Sun FY, Zheng P. Neurosteroid enhances glutamate release in rat prelimbic cortex via activation of alphal-adrenergic and sigmal receptors, Cell Mol Life Sci, 2005, 62:1003-1014.
    66. Dong LY, Cheng ZX, Fu YM, Wang ZM, Zhu YH, Sun JL, Dong Y, Zheng P. Neurosteroid dehydroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptor, Neuropharmacology, 2007, 52:966-974.
    67. Hu AQ, Wang ZM, Lan DM, Fu YM, Zhu YH, Dong Y, Zheng P. Inhibition of Evoked Glutamate Release by Neurosteroid Allopregnanolone Via Inhibition of L-Type Calcium Channels in Rat Medial Prefrontal Cortex, Neuropsychopharmacology, 2006, (in press).
    68. Sun JL, Dong YL, Fu YM, Zhu YH, Dong Y, Zheng P. Neurosteroid pregnenolone sulfate inhibits stimulus-evoked EPSC via presynaptic inhibition of protein kinase A in rat prelimbic cortical neurons, Neuropharmacology, 2005, 49:389-399.
    69. Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kang BK, Zhuo M, Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory, Neuron, 2005, 47:859-872.
    70. Auclair N, Otani S, Soubrie P, Crepel F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol, 2000, 83:3287-3293.
    71. Hirsch JC, Crepel F. Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. J Physiol, 1990, 427:31-49.
    72. Paxinos G, Watson C. The rat brain in stereotaxic coordinates (3nd Ed). San Diego: Academic Press, 1997.
    73. De Bruin J. P. C., Swinkels W. A. M., De Brabander J. M., Response learning of rats in a Morris water maze: Involvement of the medial prefrontal cortex. Behav Brain Res, 1997, 85, 47-55.
    74. Yang CR, Seamans JK, Gorelova N. Electrophysiological and morphological properties of layers Ⅴ-Ⅵ principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci, 1996, 16(5): 1904—1921.
    75. Cheng G, Rong XW, Feng TP. Block of induction and maintenance of calcium-induced LTP by inhibition of protein kinase C in postsynaptic neuron in hippocampal CA1 region. Brain Res. 1994; 646(2):230-4.
    76. Sliwinski A, Monnet FP, Schumacher M, Morin-Surun MP. Pregnenolone Sulfate enhances Long-Term Potentiation in CA1 in rat hippocampus slices through the modulation of N-Methyl-D-Aspartate receptors, J Neurosc Res, 2004, 78:691-701.
    77. Bear MF, Rittenhouse CD. Molecuar basis for induction of ocular dominance plasticity. J Neurobiol, 1999, 41:83-91.
    78. Bear MF, Kleinschmidt A, Gu QA, Singer W. Disruption of experience-epenent synaptic modifications in striate cortex byinfusion of an NMDA receptor antagonist, J Neurosci, 1990, 10:909-925.
    79. Jay TM, Buree F, Laroche S. Plasticity of the hippocampal-prefrontal cortexynapses. J Physiol Paris. 1996, 90:361-166.
    80. K Fox, H Sato, N Daw. The location and function of NMDA receptors in cat and kitten visual cortex. J Neurosci, 1989, 9:2443-2454.
    81. Zucher RS. Short-term synaptic plasticity. Anu Rev Neurosci, 1989, 12: 13—31.
    82. Martin, E.D., Buno W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurophysio, 2003, 89: 3029-3038.
    83. Clark, K.A., Randall AD, Collingridge G.L. A comparison of paired-pulsed facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus Experimental Brain Research., 1994, 101: 272-278.
    84. Creager R., Dunwiddie T., Lynch G. Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. The Journal of physiology, 1980, 299: 409-424.
    85. Kombian, S.B., Hirasawa, M., Mouginot, D., Pittman, Q.J. Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Progress in Brain Reserch, 2002, 139: 235-246.
    86. Huang, C.C., Lo, S.W., Hsu K.S. Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons [J]. The Journal of Physiology, 2001,532:731-748.
    87. Kawashima H, Izakib Y, Gracec AA., Takitaa M. Cooperativity between hippocampal-prefrontal short-term plasticity through associative long-term potentiation. Brain Res, 2006, 1109:37-44.
    88. Chen YL, Huang CC, Hsu KS. Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber-CA3 synapses. J Neurosci, 2001, 21(11):3705-3714.
    89. Riordan JF, Vallee BL. Reactions with N-ethyl maleimide and p-mercuribenzoate. Methods Enzymol, 1972, 25:449-56.
    90. TP Su. Delineating biochemical and functional properties of sigma receptors: Emerging concepts. Critical Reviews in Neurobiology, 1993, 7:187-203.
    91. Bowen WD, Moses EL, Tolentino PJ, Walker JM. Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. Eur J Pharmacol, 1990, 177:111-118.
    92. Saunders C, Limbird LE. Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol Therapeutics, 1999, 84:193-205.
    93. DeBock F, Kurz J, Azad SC, Parsons CG, Hapfelmeier G, Zieglgansberger W, Rammes G.α_2-Adrenoreceptors activation inhibits LTP and LTD in the basolateral amygdala: involvement of G_(i/o)-proteins-mediated modulation of Ca~(2+)-channels and inwardly rectifying K~+-channels in LTD. Eur J Neurosci, 2003, 17:1411-1424.
    94. Aoki C, Venkatesan C, Go CG, et al. Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex, 1998, 8: 269-277.
    95. Whishaw IQ. Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. Behavioral Neuroscience, 1985, 99: 979-1005.
    96. De Bruin JPC, Swinkels WAM, De Brabander JM. Response learning of rats in a Morris water maze: Involvement of the medial prefrontal cortex. Behavioural Brain Research, 1997, 85: 47-55.
    97. De Bruin JPC, Moita MP, De Brabander HM, Joosten RNJMA. Place and Response Learning of Rats in a Morris Water Maze: Differential Effects of Fimbria Fornix and Medial Prefrontal Cortex Lesions. Neurobiology of Learning and Memory, 2001, 75: 164-178.
    98. Sabeti J, Nelson TE, Purdy RH, Gruol DL. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: Role for L-type calcium channels and sigma-receptors. Hippocampus. 2007; [Epub ahead of print].
    99. Sliwinski A, Monnet FP, Schumacher M, Morin-Surun MP. Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors. J Neurosci Res, 2004; 78(5):691-701.
    100. Carta, M, Partridge, LD, Savage, DD, Valenzuela, CF. Neurosteroid modulation of glutamate release in hippocampal neurons: lack of an effect of a chronic prenatal ethanol exposure paradigm. Alcoholism: Clinical and Experimental Research, 2003, 27:1194-1198.
    101. Meyer DA., Carta M., Partridge LD, Covey DF, Valenzuela CF. Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigmal-like receptors. The Journal of Biological Chemistry, 2002, 277: 28725-28732.
    102. Takahashi T, Takata N, Kimoto T, Kawato S. Corticosterone prolonged NMDA-induced Ca2+ signaling in rat hippocampal neurons, in: M. Okamoto, Y. Ishimura, H. Nawata (Eds.), Molecular Steroidogenesis, Universal Academy Press, Tokyo, 1999, pp. 407-408.
    103. Abdrachmanova G., Chodounska H., Vyklicky LJ. Effects of steroids on NMDA receptors and excitatory synaptic transmission in neonatal motoneurons in rat spinal cord slices, European Journal of Neuroscience, 2001, 14: 495-502.
    104. Mameli M, Carta M, Partridge LD, Valenzuela CF. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci. 2005, 25(9):2285-94
    105. Maciejak P, Czlonkowska AI, Bidzinski A, Walkowiak J, Szyndler J, Lehner M, Skorzewska A, Turzynska D, Zienowicz M, Wislowska A, Taracha E, Krzascik P, Plaznik A. Pregnenolone sulfate potentiates the effects of NMDA on hippocampal alanine and dopamine. Pharmacol Biochem Behav. 2004; 78(4):781-6.
    106. Leskiewicz M, Budziszewska B, Jaworska-Feil L, Kajta M, Lason W. Effect of neurosteroids on glutamate binding sites and glutamate uptake in rat hippocampus. Pol J Pharmacol. 1998, 50(4-5):355-60.
    107. Shirakawa H, Katsuki H, Kume T, Kaneko S, Ito J, Akaike A. Regulation of N-methyl-D-aspartate cytotoxicity by neuroactive steroids in rat cortical neurons. Eur J Pharmacol, 2002, 454:165-175.
    108. Kuhnt U, Voronin LL. Interaction between paired-pulse facilitation and long-term potentiation in area cal of guinea-pig hippocampal slices: Application of quantal analysis. Neuroscience, 1994, 62(2):391-397.
    109. Elizabeth P. Bauer and Joseph E. LeDoux. Heterosynaptic Long-Term Potentiation of Inhibitory Intemeurons in the Lateral Amygdala, Journal of Neuroscience, 2004, 24(43):9507-9512.
    110. DeBock F, Kurz J, Azad SC, Parsons CG, Hapfelmeier G, Zieglgansberger W, Rammes G Alpha2-adrenoreceptor activation inhibits LTP and LTD in the basolateral amygdala: involvement of Gi/o-protein-mediated modulation of Ca2+-channels and inwardly rectifying K+-channels in LTD. Eur J Neurosci, 2003, 17:1411-1424.
    111. Pineda VV, Athos JI, Wang H, Celver J, Ippolito D, Boulay G, Bimbaumer L, Storm DR Removal of G(ialphal) constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron, 2004, 41:153-163.
    112. Wang NT and Richard CD. Precoupling of Gi/Go-linked receptors and its allosteric regulation by monovalent cations. Life Sciences, 1993, 52(24): 1899-1907.
    113. Young LY, Tsim ST, Wong YH. Stimulation of cAMP accumulation by the cloned Xenopus melatonin receptor through Gi and GZ protein. FEBS Lett. 1995, 372:99-102.
    114. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol. Rev. 1998, 78:189-225.
    115. Neve, K.A., Seamans, J.K., Trantham-Davidson, H. Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 2004, 24:165-205.
    116. Cannizzaro C, D'Amico M, Altobelli D, Preziosi P, Martire M. Neurosteroid modulation of the presynaptic NMDA receptors regulating hippocampal noradrenaline release in normal rats and those exposed prenatally to diazepam. Neurochem Int, 2003, 43:121-127.
    117. Monnet FP, Mahe V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H] norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocarnpus. Proc Natl Acad Sci U S A, 1995, 92:3774-3778.
    118. Happe HK, Byltmd DB, Murrin LC. Alpha (2)-adrenoceptor-stimulated GTP gamma S binding in rat brain: an autoradiographic study. Eur J Pharmacol, 2000, 399:17-27.
    119. Bowlby MR. Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol, 1993, 43:813-819.
    120. Monnet FP, Mahe V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H] norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus, Proc Natl Acad Sci U S A. 1995, 92(9):3774-8.
    121. Malayev A, Gibbs TT, Farb DH. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol, 2002, 135:901-909.
    122. Scannevin RH, Huganir RL. Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci, 2000, 1:133-141.
    123. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361:31-39.
    124. Laroche S, Bloch V, Doyere V, Redini DNC. The significance of long-term potentiation for learning and memory. In F. Morrell (Ed.), Kindling and Synaptic Plasticity: the Legacy of Graham Goddard, Birkhauser, Boston, MA, in press.
    125. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci U S A, 1992, 89:1567-1571.
    126. Vallee M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL. Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem, 2000, 287:153-166.
    127. Akwa Y, Ladurelle N, Covey DF, Baulieu EE. The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Natl Acad Sci U S A, 2001, 98:14033-14037.
    128. Mathis C, Paul SM, Crawley JN. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology (Berl), 1994, 116:201-206.
    129. Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A. The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice. Neuropharmacology, 1996, 35:1057-1064.
    130. Mayo W, George O, Darbra S, Bouyer JJ, Vallee M, Darnaudery M, Pallares M, Lemaire-Mayo V, Le MM, Piazza PV, Abrous N. Individual differences in cognitive aging: implication of pregnenolone sulfate. Prog Neurobiol, 2003, 71:43-48.
    131. Mayo W, Le MM, Abrous DN. Pregnenolone sulfate and aging of cognitive functions: behavioral, neurochemical, and morphological investigations. Horm Behav, 2001, 40: 215-217.
    132. Meziane H, Mathis C, Paul SM, Ungerer A. The neurosteroid pregnenolone sulfate reduces learning deficits induced by scopolamine and has promnestic effects in mice performing an appetitive learning task. Psychopharmacology (Berl), 1996, 126:323-330.
    133. Urani A, Privat A, Maurice T. The modulation by neurosteroids of the scopolamine-induced learning impairment in mice involves an interaction with sigma1 (sigma1) receptors. Brain Res, 1998, 799: 64-77.
    134. Strous RD, Maayan R, Weizman A. The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur Neuropsychopharmacol, 2006, 16:155-169.
    135. Noda Y, Kamei H, Kamei Y, Nagai T, Nishida M, Nabeshima T. Neurosteroids ameliorate conditioned fear stress: an association with sigma receptors. Neuropsychopharmacology, 2000, 23:276-284.
    136. Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the sigmal receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev, 2001, 37:116-132.
    137. Pineda VV, Athos JI, Wang H, Celver J, Ippolito D, Boulay G, Birnbaumer L, Storm DR. Removal of G(ialphal) constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron, 2004, 41:153-163.
    138. Collinson N, Kuenzi FN, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR., Dawson GR., Whiting PJ, Rosahl TW. Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the α5 Subunit of the GABA_A Receptor, The Journal of Neuroscience, 2002, 22(13):5572-5580.
    139. Swanson, LW. A direct projection from Ammon's horn to prefrontal cortex in the rat. Brain Res, 1981,217:150-154.
    140. Ferino, F., Thierry, A.M., Glowinski, J. Anatomical and electrophysiological evidence for a direct projection from Ammon's horn to the medial prefrontal cortex in the rat. Exp Brain Res. 1987.65:421-426.
    141. Gabbott, P., Headlam, A., Busby, S. Morphological evidence that CA1 (hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (Areas 25/32) of the rat. Brain Res. 2002.946:314-322.
    142. Degenetais, E., Thierry, A.M., Glowinski, J., Gioanni, Y. Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study.Cereb. Cortex, 2003,13:782-792.
    143. Jay TM, Glowinski J, Thierry AM. Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res, 1989, 505: 337-340.
    144. Doyere V, Burette F, Negro CR, Laroche S. Long-term potentiation of hippocampal afferents and efferents to prefrontal cortex: implications for associative learning. Neuropsychologia, 1993, 31 : 1031-1053.
    145. Collinson, N., Kuenzi, F.N., Jarolimek, W., Maubach, K.A., Cothliff R., Sur, C., Smith, A., Otu, F.M., Howell, O., Atack, J.R., McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW. Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the a5 Subunit of the GABAA Receptor. J. Neurosci, 2002, 22:5572-5580.
    146. Pineda, V.V., Athos, J.I., Wang, H., Celver, J. Ippolito, D. Boulay G., Birnbaumer, L., and Storm, D.R. Removal of Gial Constraints on Adenylyl Cyclase in the Hippocampus Enhances LTP and Impairs Memory Formation. Neuron, 2004, 41: 153-163.
    147. Barad, M, Bourtchuladze, R, Winder, DG, Golan, H, and Kandel, ER. Proc. Natl. Acad. Sci. USA, 1998, 95, 15020-15025.
    148. Guillou, JL, Rose, GM, and Cooper, DM. Differential Activation of Adenylyl Cyclases by Spatial and Procedural Learning J. Neurosci, 1999, 19:6183-6190.
    149. Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler S., Romashko, D., Scott, R., and Tully, T. A mouse model of Rubinstein-Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl. Acad.Sci. 2003, 100:10518-10522.
    150. Mons N., Guillou J.L., Decorte L, and Jaffard R. Spatial learning induce differential changes in calcium/calmodulin-stimulated (ACⅠ) and calcium-insensitive (ACⅡ) adenylyl cyclases in the mouse hippocampus. Neurobiol Learn. Mem, 2003, 79: 226-235.
    151. Reed TM, Repaske DR, Snyder GL, Greengard P, and Vorhees CV Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning. J Neurosci, 2002, 22: 5188-5197.
    152. Bowen W. D., Moses E. L., Tolentino P. J. and Walker J. M. Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. Eur. J.Pharmacol, 1990, 177:111-118.
    1. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992, 99: 195-231.
    2. Laroche S, Bloch V, Doyere V, Redini DNC. The significance of long-term potentiation for learning and memory. In F. Morrell (Ed.), Kindling and Synaptic Plasticity: the Legacy of Graham Goddard, Birkhauser, Boston, MA, in press.
    3. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci U S A, 1992, 89:1567-1571.
    4. Cajal YR. Histologie du Systeme Nerveux de l'Homme etdes Vertebras. Paris: Maloine, 1913.
    5. Hebb DO. The Organization of Behaviour. New York: Wiley, 1949
    6. Lomo T. Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand, 1966, Suppl 277: 128.
    7. Bliss TV and Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol, 1973, 232: 331-356.
    8. Bliss TV and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993,361:31-39.
    9. Adams JP and Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol, 2002, 42: 135-163.
    10. Diamond DM, Dunwiddie TV, and Rose GM. Characteristics of hippocampal primed burst potentiation in vitro and in the awaked rat. J Neurosci, 1988, 8: 4079-4088.
    11. Greenstein YJ, Pavlides C, and Winson J. Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Res, 1988, 438: 331-334.
    12. Larson J, Wong D, and Lynch G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal longterm potentiation. Brain Res, 1986, 368: 347-350.
    13. Rose GM and Dunwiddie TV. Induction of hippocampal longterm potentiation Using physiologically patterned stimulation. Neurosci Lett, 1986, 69: 244-248.
    14. Morris RG, Anderson E, Lynch GS, and Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 1986, 319: 774-776.
    15. Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H,and Kandel ER. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia.Neuron, 1997, 18:899-912.
    16. Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, Muglia LJ, and Storm DR. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron, 1999, 23: 787-798.
    17. Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, and Kuhl D. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci USA, 1995, 92: 5734-5738.
    18. Collingridge GL, Kehl SJ, and McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol, 1983, 334: 33-46.
    19. Ascher P and Nowak L. A patch-clamp study of excitatory amino acid activated channels. Adv Exp Med Biol, 1986, 203: 507-511.
    20. Bliss TV and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361: 31-39.
    21. Petersen CCH, Malenka RC, Nicoll RA, and Hopfield JJ. All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci USA, 1998, 95: 4732-4737.
    22. Collingridge GL, Kehl SJ, and McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol, 1983, 334: 33-46.
    23. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz M, and Roder J. Mice lacking metabotropic glutamate receptor 5show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci, 1997, 17: 5196-5205.
    24. Scoville RM and Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry, 1957, 20: 11-21.
    25. Squire LR, Cohen NJ, and Zouzounis JA. Preserved memory in retrograde amnesia: sparing of a recently acquired skill. Neuropsychologia, 1984, 22: 145-152.
    26. Orr WB and Berger TW. Hippocampectomy disrupts the topography of conditioned nictitating membrane responses during reversal learning. Behav Neurosci, 1985, 99: 35-45.
    27. Morris RG, Schenk F, Tweedie F, and Jarrard LE. Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci, 1990, 2: 1016-1028.
    28. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992, 99: 195-231.
    29. Squire LR, Amaral DG, and Press GA. Magnetic resonance imaging of the hippocampal formation and mammillary nuclei distinguish medial temporal lobe and diencephalic amnesia. J Neurosci, 1990, 10: 3106-3117.
    30. Morris RG, Garrud P, Rawlins JN, and O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982, 297: 681683.
    31. O'Keefe J. A review of the hippocampal place cells. Prog Neurobiol, 1979, 13: 419-439.
    32. Teng E and Squire LR. Memory for places learned long ago is intact after hippocampal damage. Nature, 1999, 400: 675-677.
    33. Cousens G and Otto T. Both pre- and posttraining excitotoxic lesions of the basolateral amygdala abolish the expression of olfactory and contextual fear conditioning. Behav Neurosci, 1998, 112: 1092-1103.
    34. Goosens KA and Maren S. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem, 2001, 8: 148-155.
    35. Nayak AS, Moore CI, and Browning MD. Ca~(2+) calmodulin-dependent protein kinase Ⅱ phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc Natl Acad Sci USA, 1996, 93: 15451-15456.
    36. Hamann SB, Ely TD, Grafton ST, and Kilts CD. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat Neurosci, 1999, 2: 289-293.
    37. McGaugh JL. Memory consolidation and the amygdala: a systems perspective. Trends Neurosci, 2002, 25: 456.
    38. McGaugh JL, Cahill L, and Roozendaal B. Involvement of the amygdala in memory storage: interaction with other brain systems.Proc Natl Acad Sci USA, 1996, 93: 13508-13514.
    39. Wilensky AE, Schafe GE, and LeDoux JE. The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J Neurosci, 2000, 20:7059-7066.
    40. Clugnet MC, Ledoux JE, and Morrison SF. Unit responses evoked in the amygdala and striatum by electrical stimulation of the medial geniculate body. J Neurosci, 1990, 10: 1055-1061.
    41. Rogan MT, Staubli UV, and LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 1997, 390: 604-607.
    42. Repa JC, Muller J, Apergis J, Desroches TM, Zhou Y, and LeDoux JE. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci, 2001, 4: 724-731.
    43. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, and Ledoux JE. Synaptic plasticity in the lateral amygdala: a cellular hypothesis for fear conditioning. Learn Mem, 2001, 8: 229-242.
    44. Nader K, Schafe GE, and Ledoux JE. The labile nature of consolidation theory. Nat Rev Neurosci, 2000, 1: 216-219.
    45. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, and Ledoux JE. Synaptic plasticity in the lateral amygdala: a cellular hypothesis for fear conditioning. Learn Mem, 2001, 8: 229-242.
    46. Pikkarainen M, Ronkko S, Savander V, Insausti R, and Pitkanen A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol, 1999, 403: 229-260.
    47. Akirav I and Richter-Levin G. Priming stimulation in the basolateral amygdala modulates synaptic plasticity in the rat dentate gyms. Neurosci Lett, 1999, 270: 83-86.
    48. Ikegaya Y, Saito H, and Abe K. Amygdala N-methyl-D-aspartate receptors participate in the induction of long-term potentiation in the dentate gyrus in vivo. Neurosci Lett, 1995, 192: 193-196.
    49. Frey S, Bergado-Rosado J, Seidenbecher T, Pape HC, and Frey JU. Reinforcement of early long-term potentiation (Early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late LTP. J Neurosci, 2001, 21:3697-3703.
    50. Hatfield T and McGaugh JL. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol Learn Mem, 1999, 71: 232-239.
    51. Packard MG, Cahill L, and McGaugh JL. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc Natl Acad Sci USA, 1994, 91: 8477-8481.
    52. Roozendaal B and McGaugh JL. Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J Neurosci, 1997, 9: 76-83.
    53. Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M,Tassoni G, and Brunelli M. Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning on the rat. Eur J Neurosci, 2002, 15: 143-150.
    54. Kim JJ, Lee HJ, Han JS, and Packard MG. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci, 2001, 21: 5222-5228.
    55. Roozendaal B, De Quervain DJ-F, Ferry B, Setlow B, and McGaugh JL. Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation.J Neurosci, 2001, 21: 2518-2525.
    56. Roozendaal B and McGaugh JL. Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J Neurosci, 1997, 9: 76-83.
    57. Roozendaal B, Portillo-Marquez G, and McGaugh JL. Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning. Behav Neurosci, 1996, 110: 1074-1083.
    58. Herry C and Garcia R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci, 2002, 22: 577-583.
    59. Doyere V, Burette F, Negro CR, and Laroche S. Long-term potentiation of hippocampal afferents and efferents to prefrontal cortex: implications for associative learning. Neuropsychologia, 1993, 31: 1031-1053.
    60. Laroche S, Davis S, and Jay TM. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus, 2000, 10: 438-446.
    61. Laroche S, Jay TM, and Thierry AM. Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neurosci Lett, 1990, 114: 184-190.
    62. Lavenex P and Amaral DG. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus, 2000, 10: 420-430.
    63. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992, 99: 195-231.
    64. Jay TM, Burette F, and Laroche S. Plasticity of the hippocampal-prefrontal cortex synapse. J Physiol Paris, 1996, 90: 361-366.
    65. Hirsch JC and Crepel F. Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. J Physiol, 1990, 427: 31-49.
    66. Vickery RM, Morris SH, and Bindman LJ. Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. J Neurophysiol, 1997, 78(6): 3039-3046.
    67. Haul S, Godecke A, Schrader J, Haas HL, and Luhmann HJ.Impairment of neocortical long-term potentiation in mice deficient of endothelial nitric oxide. J Neurophysiol, 1999, 81 : 494-497.
    68. Hensch TK, Gordon JA, Brandon EP, McKnight GS, Idzerda RL, and Stryker MP. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J Neurosci, 1998, 18: 2108-2117.
    69. Barbas H and Blatt GJ. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 1995, 5: 511-533.
    70. Amaral DG, Dolorfo C, and Alvarez-Royo P. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat.Hippocampus, 1991, 1: 415-435.
    71. Balleine BW and Dickinson A. The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J Neurosci, 2000, 20: 8954-8964.
    72. Funahashi S and Kubota K. Working memory and prefrontal cortex. Neurosci Res, 1994, 21: 1-11.
    73. Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, Tanaka K, Itohara S, and Mikoshiba K. Facilitation of NMDARindependent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron, 1999, 24: 701-713.
    74. Morris RG, Schenk F, Tweedie F, and Jarrard LE. Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci, 1990, 2: 1016-1028.
    75. Zola-Morgan S, Squire LR, Amaral DG, and Suzuki WA. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci, 1989, 9: 4355-4370.
    76. Suzuki WA, Zola-Morgan S, Squire LR, and Amaral DG. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci, 1993, 13: 2430-2451.
    77. Kokaia M. Long-term potentiation of single subicular neurons in mice. Hippocampus, 2000, 10: 684-692.
    78. Commins S, Gigg J, Anderson M, and O'Mara SM. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. Neuroreport, 1998; 9:4109-4113.
    79. Commins S, Gigg J, Anderson M, and O'Mara SM. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. Neuroreport, 1998, 9:4109-4113.
    80. Kokaia M. Long-term potentiation of single subicular neurons in mice. Hippocampus, 2000, 10: 684-692.
    81. O'Mara SM, Commins S, and Anderson M. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory. Hippocampus, 2000, 10: 447-456.
    82. O'Keefe J. A review of the hippocampal place cells. Prog Neurobiol, 1979, 13: 419-439.
    83. Sharp PE and Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J Neurosci, 1994, 14:2339-2356.
    84. Tsumoto T, Hagihara K, Sato H, and Hata Y. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature, 1987, 327: 513-514.
    85. Fox K, Sato H, and Daw N. The location and function of NMDA receptors in cat and kitten visual cortex. J Neurosci, 1989, 9: 2443-2454.
    86. Bear MF, Kleinschmidt A, Gu QA, and Singer W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J Neurosci, 1990, 10: 909-925.
    87. Bear MF and Rittenhouse CD. Molecular basis for induction of ocular dominance plasticity. J Neurobiol, 1999, 41: 83-91.
    88. Heynen AJ and Bear MF. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci, 2001, 21:9801-9813.
    89. Feldman De, Nicoll RA, and Malenka RC. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol, 1999, 41: 92-101.
    90. Schlagger BL, Fox K, and O'Leary DD. Postsynaptic control of plasticity on developing somatosensory cortex. Nature, 1993, 364: 623-626.
    91. Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y,Tonegawa S, Knopfel T, Erzurumlu RS, and Itohara S. Cortexrestricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 2000, 406: 726-731.
    92. Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, and Bear MF. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology, 2001, 41: 762-770.
    93. Lu HC, Gonzalez E, and Crair MC. Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Neuron, 2001, 32: 619-634.
    94. Lynch G, Larson J, Kelso S, Barrionuevo G, and Schottler F.Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature, 1983, 305: 719-721.
    95. Mulkey RM and Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 1992, 9: 967-975.
    96. Malenka RC, Kauer JA, Zucker RS, and Nicoll RA. Postsynaptic the calcium is sufficient for potentiation of hippocampal synaptic transmission. Science, 1988, 242: 81-84.
    97. Bliss TV and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361:31-39.
    98. Coan EJ and Collingridge GL. Characterization of an N-methyl-D-aspartate receptor component of synaptic transmission in rat hippocampal slices. Neuroscience, 1987, 22: 1-8.
    99. Collingridge GL, Kehl SJ, and McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol, 1983, 334: 33-46.
    100. Errington ML, Lynch MA, and Bliss TV. Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(-)amino phosphonovalerate. Neuroscience, 1987, 20: 279-284.
    101. Grover LM and Teyler TJ. Two components of long-term potentiation induced by different pattems of afferent activation. Nature, 1990, 347: 477-479.
    102. Kauer JA, Malenka RC, and Nicoll RA. NMDA application potentiates synaptic transmission in the hippocampus. Nature, 1988, 334:250-252.
    103. Bortolotto ZA and Collingridge GL. Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology, 1993, 32: 1-9.
    104. Morris RG, Anderson E, Lynch GS, and Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 1986, 319:774-776.
    105. Huerta PT, Sun LD, Wilson MA, and Tonegawa S. Formation of temporal memory require NMDA receptors within CA1 pyramidal neurons. Neuron, 2000, 25: 473-480.
    106. Rodrigues SM, Schafe GE, and LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci, 2001, 21: 6889-6896.
    107. Walker DL and Davis M. Involvement of NMDA receptors within the amygdala in short-versus long-term memory for fear conditioning as assessed with fear-potentiated startle. Behav Neurosci, 2000, 114:1019-1033.
    108. Maren S. Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci, 1999, 22: 561-567.
    109. Watanabe M, Inoue Y, Sakimura K, and Mishina M. Develop-mental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport, 1992, 3: 1138-1140.
    110. Seeburg PH. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci, 1993, 16: 359-365.
    111. Sakimura K, Kutsuwasle T, Ho I, Manabe T, Takayama C,Kushiya E, Yago T, Azawa S, Inouye Y, Suizyama H, and Mishina M. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor subunit. Nature, 1995, 373: 151-155.
    112. Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, and Mishina M. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilonl subunit. J Neurosci, 1998, 18: 6704-6712.
    113. Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T,Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Moil H, and Mishina M. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor 2subunit mutant mice. Neuron, 1996, 16: 333-344.
    114. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson JA, Mayford M, Kandel ER, and Tonegawa S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87: 1317-1326.
    115. Tsien JZ, Huerta PT, and Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87: 1327-1338.
    116. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, and Tsien JZ. Genetic enhancement of learning and memory in mice. Nature, 1999, 401: 63-69.
    117. Quinlan EM, Olstein DH, and Bear MF. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development.Proc Natl Acad Sci USA, 1999, 96: 12876-12880.
    118. Bear MF. A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci USA, 1996, 93: 13453-13459.
    119. Li Y, Erzurumlu RS, Chen C, Jhaveri S, and Tonegawa S.Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell, 1994, 76: 427-437.
    120. Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, and Mishina M. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilonl subunit. J Neurosci, 1998, 18: 6704-6712.
    121. Morris RG, Anderson E, Lynch GS, and Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, APS. Nature, 1986, 319:774-776.
    122. Tang YP, Wang H, Feng R, Kyin M, and Tsien JZ. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 2001, 41:779-790.
    123. Bannerman DM, Good MA, Butcher SP, Ramsay M, and Morris RG. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature, 1995, 378:182-186.
    124. Otnaess MK, Brun VH, Moser MB, and Moser EI. Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J Neurosci, 1999, 19:1-5.
    125. McGuinness N, Anwyl R, and Rowan M. Trans-ACPD enhance long-term potentiation in the hippocampus. Eur J Pharmacol, 1991, 197:231-232.
    126. Riedel G, Manahan-Vaughan D, Kozikowski AP, and Reymann KG. Metabotropic glutamate receptor agonist trans-azetidine-2, 4-dicarboxylic acid facilitates maintenance of LTP in the dentate gyrus in vivo. Neuropharmacology, 1995, 34: 1107-1109.
    127. Riedel G, Wetzel W, and Reymann KG. Metabotropic glutamate receptors in spatial and nonspatial learning in rats studied by means of agonist and antagonist application. Learn Mem, 1995, 2:243-265.
    128. Manahan-Vaughan D and Reymann KG. 1S, 3R-ACPD dose dependently induces a slow onset potentiation in the dentate gyrus in vivo. Eur J Pharmacol, 1995, 294:497-503.
    129. Manahan-Vaughan D. Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J Neurosci, 1997, 17:3303-3311.
    130. Chinestra P, Aniksztejn L, Diabara D, and Ben-Ari Y. (R,S)-amethyl-4-carboxyphenylglycine (MCPG) neither prevents induction of LTP nor antagonizes metabotropic glutamate receptors in CA1hippocampal neurons. J Neurophysiol, 1993, 70:2684-2689.
    131. Bortolotto ZA, Bashir ZI, Davies CH, and Collingridge GL. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature, 1994, 368:740-743.
    132. Bortolotto ZA and Collingridge GL. Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology, 1993, 32: 1-9.
    133. O'Connor J, Rowan MJ, and Anwyl R. Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current-investigations of the involvement of mGlu receptors. J Neurosci, 1995, 15:2013-2020.
    134. Bortolotto ZA and Collingridge GL. Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. Neuropharmacology, 1998, 37: 535-544.
    135. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev, 1999, 29:83-120.
    136. Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Conde F, and Collingridge GL. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 1994, 372:237-243.
    137. Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, and Tonegawa S. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell, 1994, 79:365-375.
    138. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz M, and Roder J. Mice lacking metabotropic glutamate receptor 5show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci, 1997, 17: 5196-5205.
    139. Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W, Wojtowicz JM, and Roder J. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem, 1998, 5:331-343.
    140. Jia Z, Lu YM, Agopyan N, and Roder J. Gene targeting reveals a role for the glutamate receptors mGluR5 and GluR2 in learning and memory. Physiol Behav, 2001, 73: 793-802.
    141. Hsia AY, Salin PA, Catillo PE, Abeliovich A, Tonegawa S, and Nicoll RA. Evidence against a role for metabotropic glutamate receptors in mossy fibre LTP: the use of mutant mice and pharmacological antagonists. Neuropharmacology, 1995, 34:1567-1572.
    142. Bordi F, Maroon C, Chiamulera C, and Reggiani A. Effects of metabotropic glutamate receptor antagonist MCPG on spatial and context-specific learning. Neuropharmacology, 1996, 35:1557-1565.
    143. Baskys A, Gerlai R, Pekhletski J, Roder JC, and Hampson DR.Physiological and behavioral studies of mice lacking type 4 mGluRs. Neuropharmacology, 1996, 35: A2.
    144. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz M, and Roder J. Mice lacking metabotropic glutamate receptor 5show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci, 1997, 17: 5196-5205.
    145. Richter-Levin G, Errington ML, Maegawa H, and Bliss TV.Activation of metabotropic glutamate receptors are necessary for long-term potentiation in the dentate gyrus and for spatial learning.Neuropharmacology, 1994, 33:853-857.
    146. Nielsen KS, Macphail EM, and Riedel G. Class Ⅰ mGlu receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid blocks contextual but not cue conditioning in rats. Eur J Pharmacol, 1997, 326: 105-108.
    147. Christoffersen GRJ, Christensen LH, Harrington NR, MacPhail EM, and Riedel G. Task-specific enhancement of shortterm, but not long-term, memory by class Ⅰ metabotropic glutamate receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid in rats. Behav Brain Res, 1999, 101: 215-226.
    148. Bianchin M, Da Silva RC, Schmitz PK, Medina JH, and Izquierdo I. Memory of inhibitory avoidance in the rat is regulated by glutamate metabotropic receptors in the hippocampus. Behav Pharmacol, 1994, 5:356-359.
    149. Frohardt RJ, Guarraci FA, and Young SL. Intrahippocampal infusions of a metabotropic glutamate receptor antagonist block the memory of context-specific but not tone-specific conditioned fear. Behav Neurosci, 1999, 113:222-227.
    150. Riedel G. Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci, 1996, 19:219-224.
    151. Thomas KL, Davis S, Hunt SO, and Laroche S. Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. Learning Memory, 1996, 3:197-208.
    152. Balschun D, Manahan-Vaughan D, Wagner T, Behnisch T, Reymann KG, and Wetzel W. A specific role for group I mGluRs in hippocampal LTP and hippocampus-dependent spatial learning Learn Mem, 1999, 6:138-152.
    153. Jia Z, Lu YM, Agopyan N, and Roder J. Gene targeting reveals a role for the glutamate receptors mGluR5 and GluR2 in learning and memory. Physiol Behav, 2001, 73:793-802.
    154. Reidel G, Casabonac G, Platta B, MacPhail EM, and Nicoletti F. Fear conditioning-induced time- and subregion-specific increase in expression of mGluR5 receptor protein in rat hippocampus Neuropharmacology, 2000, 39:1943-1951.
    155. Moser EI, Krobert KA, Moser MB, and Morris RG. Impaired spatial learning after saturation of long-term potentiation. Science, 1998, 281:2038-2042.
    156. McNaughton BL, Barnes CA, Rao G, Baldwin J, and Rasmussen M. Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. J Neurosci, 1986, 6:563-571.
    157. Jeffery KJ. LTP and spatial learning: where to next? Hippocampus, 1997, 7:95-110.
    158. Jeffery KJ and Morris RG. Cumulative long-term potentiation in the rat dentate gyms correlates with, but does not modify, performance in the water maze. Hippocampus, 1993, 3:133-140.
    159. Bliss TV and Richter-Levin G. Spatial learning and the saturation of long-term potentiation. Hippocampus, 1993, 3:123-125.
    160. Bames CA, Jung MW, McNaughton BL, Korol DL, Andreasson K, and Worley PF. LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci, 1994, 14:5793-5806,.
    161. Moser E, Mathiesen I, and Andersen P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science, 1993, 259:1324-1326.
    162. Xu L, Anwyl R, and Rowan MJ. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature, 1998, 394: 891-894.
    163. McGahon B, Holscher C, McGlinchey L, Rowan MJ, and Lynch MA. Training in the Morris Water Maze occludes the synergism between ACPD and arachidonic acid on glutamate release in synaptosomes prepared from rat hippocampus. Learn Mem, 1996, 3:296-304.
    164. Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H,Drake C, and Kandel ER. Some forms of cAMP-mediated longlasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron, 2001, 32:123-140.
    165. Gooney MA, Shaw K, Kelly A, O'Mara SM, and Lynch MA.Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal regulated kinase (ERK) in dentate gyrus: evidence for a role for brainderived neurotrophic factor. Behav Neurosci, 2002, 116: 455-463.
    166. Moser EI and Moser MB. Is learning blocked by saturation of synaptic weights in the hippocampus? Neurosci Biobehav Rev, 1999, 23:661-672.
    167. Otnaess MK, Brun VH, Moser MB, and Moser EI. Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J Neurosci, 1999, 19:1-5.
    168. Daniel Z, Rolf S, φivind H. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science, 1999,284:1805-1811.
    169. Yanghong Gu, Kellie L. McIlwain, Edwin J. Weeber, Takanori Yamagata, Bisong Xu,Barbara A. Antalffy Christine Reyes, Lisa Yuva-Paylor, Dawna Armstrong, Huda Zoghbi, J. David Sweatt,4Richard Paylor, and David L. Nelson. ImpairedConditioned Fear and Enhanced Long-Term Potentiation in Fmr2 Knock-Out Mice, The Journal of Neuroscience, 2002, 22(7):2753-2763.
    170. Marko Kaksonen, Pavlov, Vootele Vo~ ikar, Sari E. Lauri, Anni Hienola, Ruusu Riekki,Merja Lakso, Tomi Taira, and Heikki Rauvala. Syndecan-3-Deficient Mice Exhibit Enhanced LTP and Impaired Hippocampus-Dependent Memory. Molecular and Cellular Neuroscience, 2002, 21,158-172.
    171. Patrick R. Cox, Velia Fowler, Bisong Xu, J. David Sweatt, Richard Paylor, and Huda Y. Zoghbi. Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory, Molecular and Cellular Neuroscience, 2003, 23:1-12.
    172. Claudia Albert, Georg W. Mayr, Chang-Joong Lee and Hee-Sup Shin Kisun Jun, Gildon Choi, Sung-Gu Yang, Kwan Yong Choi, Hyun Kim, Guy C.K. Chan, Daniel R. Storm, Enhanced Hippocampal CA1 LTP but Normal Spatial Learning in Inositol 1,4,5-trisphosphate 3-kinase(A)-Deficient Mice. Learning and Memory, 1998, 5:317-330.
    173. Collinson, N., Kuenzi, F.N., Jarolimek, W., Maubach, K.A., Cothliff R., Sur, C., Smith, A., Otu, F.M., Howell, O., Atack, J.R., McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW. Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the α5 Subunit of the GABAA Receptor. J. Neurosci. 2002, 22:5572-5580.
    174. Pineda, V.V., Athos, J.I., Wang, H., Celver, J. Ippolito, D. Boulay G., Birnbaumer, L., and Storm, D.R. Removal of Giα1 Constraints on Adenylyl Cyclase in the Hippocampus Enhances LTP and Impairs Memory Formation. Neuron, 2004, 41: 153-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700