基质辅助激光解吸离子化飞行时间质谱的新基质及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DIOS-MS技术在低分子量范围内克服了有机基质离子信号的干扰,实现了对小分子化合物和肽段的分析。大多数酶的底物都为小分子化合物,采用DIOS-MS技术检测酶催化底物生成的产物,可以监测酶的催化活性。胰蛋白酶修饰的多孔硅晶片对蛋白的原位酶解和原位肽谱分析提供了一个快速的和灵敏的工具。在对蛋白细胞色素C和牛血清白蛋白的鉴定上,取得了良好的序列覆盖度。
     亚胺二乙酸衍生的多孔硅表面可以对含有干扰物如尿素和表面活性剂的蛋白质样品进行预处理,通过清洗其表面,从而实现对蛋白质分子的MALDI质谱分析。此外,衍生化的多孔硅表面还可以转化为铁离子衍生的多孔硅表面,能从磷酸化蛋白酶解产物特异性地和选择性地纯化和富集磷酸化肽段。
     我们筛选出应用于MALDI分析的新基质3, 4-二氨基苯基苯甲酮,新基质对样品溶液中的污染物如盐酸胍和尿素表现出相对较好的抗干扰能力。此外, 3, 4-二氨基苯基苯甲酮在MALDI质谱分析中能有效抑制金属离子的加和现象。
     通过电弧法制备的多壁碳纳米管首次用作MALDI基质,用于代替有机基质检测样品分子,发展了碳纳米管上的解吸离子化飞行时间质谱技术分析小分子化合物。在脉冲激光的照射下,碳纳米管充当有机基质吸收能量,然后传递给样品分子,成功实现了对小肽,药物,糖类化合物和核苷类小分子化合物的分析。该方法为MALDI质谱在小分子化合物分析中的应用提供了新的途径。
Because DIOS mass spectrometry presents little interference for the analysis of small molecules in the low-mass range, it is easy to monitor the digestion product formation of substrate with enzymatic reaction, and thereby to measure activity of the immobilized enzyme. Furthermore, a method for peptide mapping analysis by in-situ digestion of proteins on the porous silicon surface modified by enzyme trypsin, combined with matrix-assisted laser desorptio/ionization time-of-flight mass spectrometry has been developed. Good sequence coverage could be obtained for proteins of cytochrome C and BSA.
     Iminodiacetic acid (IDA)-1, 2-epoxy-9-decene modified porous silicon surface allows the removal of the contaminants in samples prior to MALDI mass spectrum analysis by simply washing the porous silicon surface. The carboxylic end groups on porous silicon can be used to selectively bind and concentrate target species in the sample solutions. Furthermore, the IDA-derivatized porous silicon can be transferred to Fe3+-IDA-derivatized porous silicon when needed, and the obtained porous silicon surface can specifically trap and effectively concentrate phosphopeptides from the tryptic digest of phosphoprotein and further analyzed by MALDI MS.
     Herein, a new MALDI matrix, 3, 4-diaminobenzophone (DABP), has been foundwith high tolerance against contaminants in sample solution for MALDI MS analysis. Furthermore, it has been found that this matrix can also effectively suppress the cation ion adduction of the peptides in the presence of high concentrations of metal ions in sample solution.
     Analysis of low molecular weight compounds with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) has been developed by using carbon nanotube obtained from coal by arc discharge as matrix. The carbon nanotube matrix functions as substrate to trap analytes of peptides, organic compounds andβ-cyclodextrin deposited on its surface. It has been found that carbon nanotube can transfer energy to analytes under laser irradiation, which makes analytes to be well desorbed/ionized. It is believed that this work will open a new field for applications of carbon nanotubes.
引文
1. Vastola, F. J., Mumma, R. O., Pirone, A. J., and Meuzelaar, H. L. C. Analysis of organic salts by laser ionization Org. Mass Spectrom. 1970, 3, 101-104
    2. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1987, 2, 151-153
    3. Karas, M., and Hillencamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons Anal. Chem. 1988, 60, 2299-2301
    4. 安登魁. 药物分析 济南人民出版社 1992, 261-261
    5. Vertes, A., and Gijbels, R. Sublimation versus fragmentation in matrix-assisted laser desorption Chem. Phys. Lett. 1990, 64, 284-290
    6. Hillenkamp, F., Karas, M., Beavis, R. C., and Chait, B. T. Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions Anal. Chem. 1991, 63, 1193-1200
    7. Beavis, R. C. Matrix-assisted ultraviolet laser desorption: evolution and principles Org. Mass Spectrom. 1992, 27, 653-659
    8. Karas, M., Bahr, U., and Giessmann, U. Matrix-assisted laser desorption ionization mass spectrometry Mass Spectrom. Rev. 1991, 10, 335-357
    9. Beavis, R. C., Chaudhary, T., and Chait, B. T. α-Cyano-4- hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass spectromtry Org. Mass Spectrom. 1992, 27, 156-158
    10. Karas, M., Bahe, U., Ingendoh, A., Nordhoff, E., Stahl, B., Strupat, K., and Hillenkamp, F. Principles and applications of matrix-assisted UV-laser desorption/ionization mass spectrometry Anal. Chim. Acta 1990, 241, 175-185
    11. Wu, K. J., Steding, A., and Becker, C. H. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix Rapid Commun. Mass Spectrom. 1993, 17, 142-146
    12. Koster, C., Castoro, J. A., and Wilkins, C. L. High-resolution matrix-assisted laser desorption/ionization of biomolecules by Fourier transform mass spectrometry J. Am. Chem. Soc. 1992, 114, 7572-7574
    13. Gusev, A. I., Wilkinson, W. R., Proctor, A., and Hercules, D. M. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis Anal. Chem. 1995, 67, 1034-1041
    14. Pieles, U., Zürcher, W., Sch?r, M., and Moser, H. E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural andmodified oligonucleotides Nucleic Acids Res. 1993, 21, 3191-3196
    15. Evason, D. J., Claydon, M. A., and Gordon, D. B. Effects of ion mode and matrix additives in the identification of bacteria by intact cell mass spectrometry Rapid Commun. Mass Spectrom. 2000, 14, 669-672
    16. Chait, B. T., Wang, R., Beavis, R. C., and Kent, S. B. Protein ladder sequencing Science 1993, 262, 89-92
    17. Kaufmann, R., and Kirsch, D. Sequenching of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI) Int. J. Mass Spectrom. Ion Proc. 1994, 131, 355-385
    18. Wu, J., Gage, D. A., and Watson, J. T. A strategy to locate cysteine residues in proteins by specific chemical cleavage followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Anal. Biochem. 1996, 235, 161-174
    19. Patterson, D. H., George, E. T., Regnier, F. E., and Martin, S. A. C-Terminal ladder sequencing via matrix-assisted laser desorption/ionization mass spectrometry coupled with carboxypeptidase Y time-dependent and concentration-dependent digestions Anal. Chem. 1995, 67, 3971-3978
    20. Yan, J., Packer, N., Gooley, A., and Williams, K. Protein phosphorylation: technologies for the identification of phosphoamino acids J. Chromatogr. A 1998, 808, 23-41
    21. Kjellstorm, S., and Jensen, O. N. Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides andphosphoproteins Anal. Chem. 2004, 76, 5109-5117
    22. Schroeder, M. J., Shabanowitz, J., Schwartz, J. C., Hunt, D. F., and Coon, J. J. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spctrometry Anal. Chem. 2004, 76, 3590-3598
    23. Yang, X., Wu, H., Kobayashi, T., Solaro, R. J., and van Breemen, R. B. Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry Anal. Chem. 2004, 76, 1532-1536
    24. Zhu, Y. F., Chung, C. N., Taranenko, N. I., Allman, S. L., Martin, S. A., Haff, L., and Chen, C. H. The study of 2, 3, 4-trihydroxyacetophenone and 2, 4, 6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 383-388
    25. Stensballe, A., Andersen, S., and Jensen, O. N. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis Proteomics 2001, 1, 207-222
    26. Yip, T. T., and Hutchens, T. W. Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry FEBS Lett 1992, 308, 149-153
    27. Liao, P. C., Leykam, J., Andrews, P. C., Gage, D. A., and Allison, J. An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation withmatrix-assisted laser desorption/ionization mass spectrometry Anal. Biochem. 1994, 219, 9-20
    28. Amankwa, L. N., Harder, K., Jirik, F., and Aebersold, R. High-sensitivity determination of tyrosine-phosphorylated peptides by on-line enzyme reactor and electrospray ionization mass spectrometry Protein Sci. 1995, 4, 113-125
    29. Raska, C. S., Parker, C. E., Dominski, Z., Marzluff, W. F., Glish, G. L., Pope, R. M., and Borchers, C. H. Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads. Anal. Chem. 2002, 74, 3429-3433
    30. Hart, S. R., Waterfield, M. D., Burlingame, A. L., and Cramer, R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS J. Am. Soc. Mass Spectrom. 2002, 13, 1042-1051
    31. Posewitz, M. C., and Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides Anal. Chem. 1999, 71, 2883-2892
    32. Chen, C.-T., and Chen, Y.-C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry Anal. Chem. 2005, 77, 5912-5919
    33. Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T., and Oda, Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis Anal. Chem. 2005, 77, 5144-5154
    34. Guo, B. Mass spectrometry in DNA analysis Anal. Chem. 1999, 71, 333-337
    35. Murray, K. K. DNA sequencing by mass spectrometry J. Mass Spectrom. 2002, 31, 1203-1215
    36. Hunter, J. M., Lin, H., and Becker, C. H. Cryogenic frozen solution matrixes for analysis of DNA by time-of-flight mass spectrometry Anal. Chem. 1997, 69, 3608-3612
    37. Monforte, J. A., and Becker, C. H. High-throughput DNA analysis by time-of-flight mass spectrometry Nature Med. 1997, 3, 360-362
    38. Kong, X., Huang, L. C. L., Liau, S.-C. V., Han, C.-C., and Chang, H.-C. Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides Anal. Chem. 2005, 77, 4273-4277
    39. Schriemer, D. C., and Li, L. Detection of high molecular weight narrow polydisperse polymers up to 1.5 million daltons by MALDI mass spectrometry Anal. Chem. 1996, 68, 2721-2725
    40. 袁湘林. 中科院大连化学物理研究所博士学位论文 1999,
    41. Hensel, R. R., King, R. C., and Owens, K. G. Electrospray sample preparation for improved quantitation in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1997, 11, 1785-1793
    42. Nelson, R. W., McLean, M. A., and Vestal, M. L. Proc. 40th ASMS Conf. Mass Spectrom. Allied Topics 1992, (1919)
    43. Gusev, A. I., Wilkinson, W. R., Proctor, A., Sharkey, A. G., Hercules, D. M., Tata, P., and Venkataramanan, R. A quantitative study of invitro hepatic metabolism of tacrolimus (FK506) using secondary ion and matrix-assisted laser desorption/ionization mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 1215-1218
    44. 袁湘林, 张玉奎, 邹汉法. 基体辅助激光解吸电离飞行时间质谱用 于人参皂甙 Rg3 的定量分析 分析化学 2001, 29, 11-16
    45. Oda, Y., Huang, K., Cross, F. R., Cowburn, D., and Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation Proc. Natl. Acad. Sci. USA 1999, 96, 6951-6596
    46. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags Nature Biotech. 1999, 17, 994-999
    47. Boyd, R. K. Quantitative trace analysis by combined chromatography and mass spectrometry using external and internal standards Rapid Commun. Mass Spectrom. 1993, 7, 257-271
    48. Houston, C. T., Taylor, W. P., Widlanski, T. S., and Reilly, J. P. Investigation of enzyme kinetics using quench-flow techniques with MALDI-TOF mass spectrometry Anal. Chem. 2000, 72, 3311-3319
    49. Preisler, J., Hu, P., Rejtar, T., and Karger, B. L. Capillary electrophoresis-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a vacuum deposition interface Anal. Chem. 2000, 72, 4785-4795
    50. Liu, J., Tseng, K., Garcia, B., Lebrilla, C. B., Mukerjee, E., Collins, S. D., and Smith, R. L. Electrophoresis separation in open microchannels: a method for coupling electrophoresis with MALDI-MS Anal. Chem. 2001, (73), 2147 - 2151
    51. Gusev, A. I. Interfacing matrix-assisted laser desorption/ionization mass spectrometry with column and planar separations Fres. J. Anal. Chem 2000, (366), 691-700
    52. Ericsson, D., Ekstr?m, S., Nilsson, J., Bergquist, J., Marko-Varga, G., and Laurell, T. Downsizing proteolytic digestion and analysis using dispenser-aided sample handling and nanovial matrix-assisted laser/desorption ionization-target arrays Proteomics 2001, 1, 1072-1081
    53. Tomer, K. Separations combined with mass spectrometry Chem. Rev. 2001, 101, 297-328
    54. Karas, M., Bahr, U., Ingendoh, A., and Hillenkamp, F. Laser desorption/ionization mass spectrometry of proteins of mass 100 000 to 250 000 Dalton Angew. Chem. Int. Ed. 1989, 28, 760-761
    55. Strupat, K., Karas, M., and Hillenkamp, F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption/onization mass spectrometry Int. J. Mass Spectrom. Ion Proc. 1991, 111, 89-102
    56. Stahl, B., Steup, M., Karas, M., and Hillenkamp, F. Analysis of neutral oligosaccharides by matrix-assisted laser desorption ionization mass spectrometry Anal. Chem. 1991, 63, 1463-1466
    57. Overburg, A., Hassemburger, A., and Hillenkamp, F. In gross ML(ed) mass spectrometry in the biological science: a tutorial. Kluwer Academic Publishers, Amsterdam, 1992, 181-186
    58. Bahr, U., Deppe, A., Karas, M., hillenkamp, F., and Giessmann, U. Mass spectrometry of synthetic polymers by UV-matrix-assisted laser desorption/ionization Anal. Chem. 1992, 64, 2866-2869
    59. Danis, P. O., Karr, D. E., Mayer, F., Holle, A., and Watson, C. H. The analysis of water-soluble polymers by matrix-assisted laser desorption time-of-flight mass spectrometry Org. Mass. Spectrom. 1992, 27, 843-846
    60. Zhan, Q., Wright, S. J., and Zenobi, R. Laser desorption substrate effects J. Am. Soc. Mass Spectrom. 1997, 8, 525-531
    61. Hrubowchak, D. M., Ervin, M. H., Wood, M. C., and Winograd, N. Detection of biomolecules on surfaces using ion-beam-induced desorption and multiphoton resonance ionization Anal. Chem. 1991, (63), 1947-1953
    62. Posthumus, M. A., Kistemaker, P. G., Meuzelaar, H. L. C., and Ten Noever de Brauw, M. C. Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules Anal. Chem. 1978, 50, 985-991
    63. Wei, J., Buriak, J. M., and Siuzdak, G. Desorption/ionization on porous silicon Nature 1999, 399, 243~246
    64. Lidgard, R., and Duncan, M. W. Utility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of low molecular weight compounds Rapid Commun. Mass Spectrom. 1995, 9, 128-132
    65. Knochenmuss, R., Dubois, F., Dale, M. J., and Zenobi, R. The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization Rapid Commun. Mass Spectrom. 1996, 10, 871-877
    66. Canham, L. T. Silicon quantum wire array fabrication byelectrochemical and chemical dissolution of wafers Appl. Phys. Lett. 1990, 57, 1046-1048
    67. Canham, L. T. Properties of porous silicon The Institution of Electrical Engineers 1997, 83-83
    68. Warntjes, M., and Ozanam, C. F. Electrochemical methoxylation of porous silicon surface J. Electrochem. Soc 1995, 142, 4138-4142
    69. Jung, K. H., Shih, S., and Kwong, D. L. Developments in luminescent porous silicon J. Electrochem. Soc. 1993, 140, 3046-3048
    70. Kidder, J. N., Williams, J. P. S., and Pearsall, T. P. Comparison of light emission from stain-etch and anodic-etch silicon films Appl. Phys. Lett. 1992, 61(2896-2898)
    71. Ono, H., Gomyou, H., Morisaki, H., Nozaki, S., Show, Y., Shimasaki, M., Iwase, M., and Izumi, T. Effects of anodization temperature on photoluminescence from porous silicon J. Electrochem. Soc. 1993, 140, L180-182
    72. Vincent, V. D., Reginald, M. P., and Michael, J. S. Enhanced photoemission from short-wavelength photochemically etched porous silicon J. Phys. Chem. 1993, 97, 4505-4508
    73. Nakagawa, T., Koyama, H., and Koshida, N. Control of structure and optical anisotropy in porous Si by magnetic-field assisted anodization Appl. Phys. Lett. 1996, 69, 3206-3208
    74. Hou, X., Fan, H., Xu, L., Zhang, F., Li, M., Yu, M., and Wang, X. Pulsed anodic etching: an effective method of preparing light-emitting porous silicon Appl. Phys. Lett. 1996, 68, 2323-2325
    75. Cullis, A. G., Canham, L. T., and Calcott, P. D. J. The structural and luminescence properties of porous silicon J. Appl. Phys. 1997, 82, 909-965
    76. Anderson, O. K., Frello, T., and Veje, E. Photoinduced synthesis of porous silicon without anodization J. Appl. Phys. 1995, 78, 6189-6192
    77. Hummel, R. E., and Chang, S. S. Novel technique for preparing porous silicon Appl. Phys. Lett. 1992, 61, 1965-1967
    78. 陈乾旺, 李新建, 朱警生 水热腐蚀制备多孔硅的研究 电子显微学报 1997, 16, 493
    79. Beale, M. I. J., Benjamin, J. D., Uren, M. J., Chew, N. G., and Cullis, A. G. An experimental and theoretical study of the formation and microstructure of porous silicon J. Crystal Growth 1985, 73, 622-636
    80. Lehmann, V., and Gosele, U. Porous silicon formation: a quantum wire effect Appl. Phys. Lett. 1991, 58, 856-858
    81. 钱必东, 蔡生民, 侯永田 物理化学学报 1992, 8, 433
    82. Xu, Z. Y., Gal, M., and Gross, M. Photoluminescence studies on porous silicon Appl. Phys. Lett. 1992, 60, 1375-1377
    83. Anderson, R. C., Muller, R. S., and Tobias, C. W. Investigations of the electrical properties of porous silicon J. Electrochem. Soc. 1991, 138, 3406-3411
    84. Labunov, V., and Bondarenko, V. Heat treatment effect on porous silicon Thin Solid. Films 1986, 137, 123-134
    85. Hereno, R., Perio, A., and Barlia, K. Microstructure of poroussilicon and its evolution with temperature Mater. Lett. 1984, 2, 519-523
    86. Lin, V. S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J., and Ghadiri, M. R. A porous silicon-based optical interferometric biosensor Science 1997, 278, 840-843
    87. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F., and Lehmann, V. Rapid-thermal-oxidized porous Si: the superior photoluminescent Si Appl. Phys. Lett. 1992, 61, 943-945
    88. Nakajima, A., Itakura, T., Watanabe, S., and Nakayama, N. Photoluminescence of porous Si, oxidized then deoxidized chemically Appl. Phys. Lett. 1992, 61, 46-48
    89. Glass, J. A., Wovchko, E. A., and Yates, J. T. Reaction of methanol with porous silicon Surf. Sci. 1995, 338, 125-137
    90. Li, K. H., Tsai, C., Campbell, J. C., Kovar, M., and White, J. M. The effect of surface species on the photoluminescence of porous silicon J. Electron. Mater. 1994, 23, 409-412
    91. Warntjes, M., Vieillard, C., Ozanam, F., and Chazalviel, J. N. Electrochemical methoxylation of porous silicon surface J. Electrochem. Soc. 1995, 142(12), 4138-4142
    92. Green, W. H., Lee, E. J., Lauerhaas, J. M., Bitner, T. W., and Sailor, M. J. Electrochemiluminescence from porous silicon in formic acid liquid-junction cells Appl. Phys. Lett. 1995, 67, 1468-1472
    93. Lee, E. J., Bitner, T. W., Ha, J. S., and Shane, M. J. Light-induced reactions of porous and single-crystal Si surfaces with carboxylic acids J. Am. Chem. Soc. 1996, 118, 5375-5382
    94. Lee, E. J., Ha, J. S., and Sailor, M. J. Photoderivatization of the surface of luminescent porous silicon with formic acid J. Am. Chem. Soc. 1995, 117, 8295-8296
    95. Wojtyk, J. T. C., Morin, K. A., Boukherroub, R., and Wayner, D. D. M. Modification of porous silicon surfaces with activated ester monolayers Langmuir 2002, 18, 6081-6087
    96. Stewart, M. P., and Buriak, J. M. Photopatterned hydrosilylation on porous silicon Angew. Chem. Int. Ed. 1998, 37, 3257-3259
    97. Linford, M. R., Fenter, P., Eiserberger, P. M., and Chidsey, C. E. D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon J. Am. Chem. Soc. 1995, 117, 3145-3155
    98. Linford, M. R., and Chidesey, C. E. D. Alkyl monolayers covalently bonded to silicon surfaces J. Am. Chem. Soc. 1993, 115, 12631-12632
    99. Buriak, J. M., and Allen, M. J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes J. Am. Chem. Soc. 1998, 120, 1339-1340
    100. Salor, M. J., and Lee, E. J. Surface chemistry of luminescent silicon nanocrystallites Adv. Mater. 1997, 9, 783-793
    101. Janshoff, A., Dancil, K. P. S., Steinem, C., Greiner, D. P., Lin, V. S. Y., Gurtner, C., Motesharei, K., Sailor, M. J., and Ghadiri, M. R. Macroporous p-type silicon fabry-perot layers: fabrication, characterization, and applications in biosensing J. Am. chem. Soc. 1998, 120, 12108-12116
    102. Phosthumus, M. A., Kistermaker, P. G., and Meuzelaar, H. L. C. Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules Anal. Chem. 1978, 50, 985-991
    103. Lewis, W. G., Shen, Z. X., Finn, M. G., and Siuzdak, G. Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications Inter. J. Mass Spectrom. 2003, 226, 107-116
    104. Kruse, R. A., Li, X. L., Bohn, P. W., and Sweedler, J. V. Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon Anal. Chem. 2001, 73, 3639-3645
    105. Górecka-Drzazga, A., Bargiel, S., Walczak, R., Dziuban, J. A., Kraj, A., Dyl, T., and Silberring, J. Desorption/ionization mass spectrometry on porous silicon dioxide Sens. Actuators B 2004, 103, 206-211
    106. Linford, M. R., Fenter, P., Eisenberger, P. M., and Chidsey, C. E. D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon J. Am. Chem. Soc. 1995, 117, 3145-3155
    107. Zhang, Q., Zou, H., Guo, Z., Zhang, Q., Chen, X., and Ni, J. Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix Rapid Commu. Mass Spectrom. 2001, 15, 217-223
    108. Kruse, R. A., Rubakhin, S. S., Romanova, E. V., and Sweedler, J. V. Direct assay of aplysia tissues and cells with laserdesorption/ionization mass spectrometry on porous silicon J. Mass Spectrom. 2001, 36, 1317-1322
    109. Laiko, V. V., Taranenko, N. I., Berkout, V. D., Musselman, B. D., and Doroshenko, V. M. Atmospheric pressure laser desorption/ionization on porous silicon Rapid Commun. Mass Spectrom. 2001, 16, 1737-1742
    110. Thomas, J. J., Shen, Z. X., Blackledge, R., and Siuzdak, G. Desorption/ionization on silicon mass spectrometry: an application in forensics Anal. Chim. Acta 2001, 442, 183-190
    111. Li, Q., Ricardo, A., Benner, S. A., Winefordner, J. D., and Powell, D. H. Desorption/ionization on porous silicon mass spectrometry studies on pentose-borate complexes Anal. Chem. 2005, 77, 4503-4508
    112. Okuno, S., Nakano, M., Matsubayashi, G., Arakawa, R., and Wada, Y. Reduction of organic dyes in matrix-assisted laser desorption/ionization and desorption/ionization on porous silicon Rapid Commun. Mass Spectrom. 2004, 18, 2811-2817
    113. Kinumi, T., Shimomae, Y., Arakawa, R., Tatsu, Y., Yumoto, N., and Niki, E. Effective detection of peptides containing cysteinesulfonic acid using matrix-assisted laser desorption/ionization and laser desorption/ionization on poroussilicon mass spectrometry J. Mass Spectrom. 2006, 41, 103-112
    114. Nordstro, A., Apon, J. V., Uritboonthai, W., Go, E. P., and Siuzdak, G. Surfactant-enhanced desorption/ionization on silicon mass spectrometry Anal. Chem. 2006, 78, 272-278
    115. Zou, H., Zhang, Q., Guo, Z., Guo, B., Zhang, Q., and Chen, X. A mass spectrometry based direct-binding assay for screening binding partners of proteins Angew. Chem. 2002, 114, 668-670
    116. Mengistu, T. Z., DeSouza, L., and Morin, S. Functionalized porous silicon surfaces as MALDI-MS substrates for protein identification studies Chem. Commun. 2005, 5659-5661
    117. Namavar, F., Maruska, H. P., and Kalkhoram, N. M. Visible electroluminescence from porous silicon Appl. Phys. Lett. 1992, 60, 347-349
    118. Laurell, T., Drott, J., Rosegren, K., and Lindstrm, K. The theory of operation of piezoelectric quartz crystal sensors for biochemical application Sens. Actuators A 1996, 31, 159-163
    119. Drott, J., Rosegren, K., and Lindstorm, T. Pore morphology influence on catalytic turn-over for enzyme activated porous silicon matrices Thin Solid. Films 1998, 330, 161-166
    120. Bayliss, S. C., and Buckberry, L. D. A material for melding humans and machines Mater. World 1999, 7, 212-215
    121. Bayliss, S. C., Buckberry, L. D., and Harris, P. J. Nanostructured semiconductors: compatibility with biomaterials Thin Solid. Films 1997, 297, 308-310
    122. Marko-Varga, G., and Fehniger, T. E. Proteomics and disease: the challenges for technology and discovery J. Proteome Res. 2004, 3, 167-178
    123. Ekstrom, S., Wallman, L., Malm, J., Becker, C., and Marko-Varga, G. Integrated selective enrichment target - a microtechnology platform for matrix-assisted laser desorption/ionization-mass spectrometry applied on protein biomarkers in prostate diseases Electrophoresis 2004, 25, 3769-3777
    1. Wei, J., Buriak, J. M., and Siuzdak, G. Desorption/ionization on porous silicon Nature 1999, 399, 243-246
    2. Lewis, W. G., Shen, Z. X., Finn, M. G., and Siuzdak, G. Desorption-ionization on silicon (DIOS) mass spectrometry: background and applications Inter. J. Mass Spectrom. 2003, 226, 107-116
    3. Tomoya, K., Takumi, S., Mitsuo, T., and Haruki, N. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis J. Mass Spectrom. 2000, 35, 417-419
    4. Zhang, Q., Zou, H., Guo, Z., Zhang, Q., Chen, X., and Ni, J. Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix Rapid Commun. Mass Spectrom. 2001, 15, 217-223
    5. Shen, Z., Thomas, J., Averbuj, C., Broo, K., Engelhard, M., Crowell, J., Finn, M. G., and Siuzdak, G. Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry Anal. Chem. 2001, 73, 612-619
    6. Meng, J., Averbuj, C., Lewis, W., Siuzdak, G., and Finn, M. G. Cleavable linkers for porous silicon-based mass spectrometry Angew. Chem. Int. Ed. 2004, 43, 1255-1260
    7. Thomas, J., Shen, Z., Crowell, J. E., Finn, M. G., and Siuzdak, G.Desorption/ionization on silicon (DIOS): A diverse mass spectrometry platform for protein characterization Proc. Natl. Acad. Sci. 2001, 98, 4932-4937
    8. Buriak, J. M., and Allen, M. J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes J. Am. Chem. Soc. 1998, 120, 1339-1340
    9. O ? Donnell, M. J., Tang, K., Koster, H., and Smith, C. L. High-density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry Anal. Chem. 1997, 69, 2438-2443
    10. Zou, H., Zhang, Q., Guo, Z., Guo, B., Zhang, Q., and Chen, X. A mass spectrometry based direct-binding assay for screening binding partners of proteins Angew. Chem. Int. Ed. 2002, 41, 646-648
    11. Martin, B., Simon, E., Gyorgy, M., and Thomas, L. Improved performance in silicon enzyme microreactors obtained by homogeneous porous silicon carrier matrix Talanta 2002, 56, 341-353
    12. Gevaert, K., and Vandekerckhove, J. Protein identification methods in proteomics Electrophoresis 2000, 21, 1145-1154
    13. Bothner, B., Chavez, R., Wei, J., Strupp, C., Phung, Q., Schneeman, A., and Siuzdak, G. Monitoring enzyme catalysis with mass spectrometry J. Biol. Chem. 2000, 275, 13455-13459
    14. Pandley, A., and Yates, J. Proteomics to study genes and genomes Nature 2000, 405, 837-846
    15. Lottapeich, F. Proteome analysis: a pathway to the functional analysis of proteins Angew. Chem. Int. Ed. 1999, 38, 2476-2492
    16. Kussmann, M., Nordhoff, R., Rahek-Nieisen, H., Haebel, S.,Rossel-Larsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll-kristensen, A., Palm, L., and Roepstorff, P. Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes J. Mass Spectrom. 1997, 32, 593-601
    17. Guo, Z., Xu, S., Lei, Z., and Guo, B. Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ ionization-time of flight-mass spectrometry Electrophoresis 2003, 24, 3633-3639
    18. Houston, C. T., Taylor, W. P., Widlanski, T. S., and Reilly, J. P. Investigation of enzyme kinetics using quench-flow techniques with MALDI-TOF mass spectrometry Anal. Chem. 2000, 72, 3311-3319
    19. Williams, C. Biotechnology match making: screening orphan. ligands and receptors Curr. Opin. Biotech. 2000, 11, 42-46
    20. Bieri, C., Ernst, O. P., Heyse, S., Hofmann, K. P., and Vogel, H. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation Nat. Biotech. 1999, 17, 1105-1108
    21. Hezel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimely, C., and Watanabe, C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases Proc. Natl. Acad. Sci. 1993, 90, 5011-5014
    22. Yates, J., Speicher, S., Griffin, P. R., and Hunkapiller, T. Peptide mass maps: a highly informative approach to protein identification Anal. Biochem. 1993, 214, 397-408
    23. Krogh, T. N., Berg, T., and Hojrup, P. Protein analysis using enzymesimmobilized to paramagnetic beads Anal. Biochem. 1999, 274, 153-162
    24. Karas, M., and Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons Anal. Chem. 1988, 60, 2299-2301
    25. Xu, Y. D., Watson, T., and Bruening, M. L. Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS Anal. Chem. 2003, 75, 185-190
    26. Hutchens T. W., and Yip, T. T. New desorption strategies for the mass spectrometric analysis of macromolecules Rapid Commun. Mass Spectrom. 1993, 7, 576-580
    27. Nelson, R. W., Krone, J. R., Bieber, A. L., and Williams, P. Mass spectrometric immunoassay Anal. Chem. 1995, 67, 1153-1158
    28. Liang, X., Lubman, D. M., Rossi, D. T., Nordblom, G. D., and Barksdale, C. M. On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry Anal. Chem. 1998, 70, 498-503
    29. Tang, N., Tornatore, P., and Weiberger, S. R. Current developments in SELDI affinity technology Mass Spectrom. Rev. 2004, 23, 34-44
    30. Kong, X. L., Huang, C. L., Hsu, C.-M., W.-H., C., Han, C.-C., and H.-C., C. High-affinity aapture of proteins by diamond nanoparticles for mass spectrometric analysis Anal. Chem. 2005, 77, 259-265
    31. Shiea, J., Huang, J.-P., Teng, C.-G., Jeng, J., Wang, L. Y., and Chiang, L. Y. Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions Anal. Chem. 2003, 75, 3587-3595
    32. Bai, J., Liu, Y.-H., Cain, T. C., and Lubman, D. M. Matrix-assisted laserdesorption/ionization using an active perfluorosulfonated ionomer film substrate Anal. Chem. 1994, 66, 3423-3430
    33. Brochman, A. H., Shah, N. N., and Orlando, R. Fast atom bombardment-mass spectrometry of carbohydrates contaminated with inorganic salts using crown ethers J. Mass Spectrom. 1998, 33, 1141- 1147
    34. Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., and Nordhoff, E. α-Cyano-4-hydroxycinnamic acid affinity sample preparation. a protocol for MALDI-MS peptide analysis in proteomics Anal. Chem. 2001, 73, 434-438
    35. Hung, K. C., Rashidzadeh, H., Wang, Y., and Guo, B. Use of paraffin wax film in MALDI-TOF analysis of DNA Anal. Chem. 1998, 70, 3088-3093
    36. Worrall, T. A., Cotter, R. J., and Woods, A. S. Purification of contaminated peptides and proteins on synthetic membrane surfaces for matrix-assisted laser desorption/ionization mass spectrometry Anal. Chem. 1998, 70, 750-756
    37. Zhang, L., and Orlando, R. Solid-phase extraction/MALDI-MS: extended ion-pairing surfaces for the on-target cleanup of protein samples Anal. Chem. 1999, 71, 4753-4757
    38. Xu, Y., Bruening, M. L., and Watson, J. T. Non-specific, on-probe cleanup methods for MALDI-MS samples Mass Spectrom. Rev. 2003, 22, 429-440
    39. Teng, C.-H., Ho, K.-C., Lin, Y.-S., and Chen, Y.-C. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis Anal. Chem. 2004, 76, 4337-4342
    40. Blackledge, J. A., and Alexander, A. J. Polyethylene membrane as asample support for direct matrix-assisted laser desorption/ionization mass spectrometric analysis of high mass proteins Anal. Chem. 1995, 67, 843-848
    41. Weinberger, S.R., Dalmasso, E.A., and Fung, E.T., Current achievements using ProteinChip? Array technology Curr. Opin. Chem. Biol. 2002, 6, 86-91
    42. Weinberger, S. R., Morris, T. S., and Pawlak, M. Recent trends in protein biochip technology Pharmacogenomics 2000, 1, 395-416
    43. Merchant, M., and Weinberger, S. R. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry Electrophoresis 2000, 21, 1164-1177
    44. Liotta, L. A., Kohn, E. C., and Petricoin, E. F. Clinical proteomics: personalized molecular medicine J. Am. Med. Assoc. 2001, 286, 2211-2214
    45. Bandera, C. A., Ye, B., and Mok, S. C. New technologies for the identification of markers for early detection of ovarian cancer Curr. Opin. Obstet. Gynecol. 2003, 15, 51-55
    46. Brockman, A. H., and Orlando, R. Probe-immobilized affinity chromatography/mass spectrometry Anal. Chem. 1995, 67, 4581-4585
    47. Lehmann, V., and Gosele, U. Porous silicon formation: a quantum wire effect Appl. Phys. Lett. 1991, 58(8), 856-858
    48. Ressine, A., Ekstrom, S., Marko-Varga, G., and Laurell, T. Macro-/nanoporous silicon as a support for high-performance protein microarrays Anal. Chem. 2003, 75, 6968-6974
    49. Stewart, M. P., and Buriak, J. M. Photopatterned hydrosilylation on poroussilicon Angew. Chem. Int. Ed. 1998, 37, 3257-3261
    50. Drott, J., Rosengren, L., Lindstrom, K., and Laurell, T. Pore morphology influence on catalytic turn-over for enzyme activated porous silicon matrices Thin Solid Films 1998, 330, 161-166
    51. Drott, J., Rosengren, L., Lindstrom, K., and Laurell, T. Porous silicon carrier matrices in micro enzyme reactors-influence of matrix depth J. Chromatogr. A 1999, 131, 115-120
    52. Xu, S. Y., Pan, C. S., Hu, L., G., Zhang, Y., Guo, Z., Li, X., and Zou, H. F. Enzymatic reaction of the immobilized enzyme on porous silicon studied by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry Electrophoresis 2004, 25, 3669-3676
    53. Guo, Z., Xu, S. Y., Lei, Z. D., Zou, H. F., and Guo, B. C. Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ ionization-time of flight-mass spectrometry Electrophoresis 2003, 24, 3633-3639
    54. Trauger, S. A., Go, E. P., Shen, Z. X., Apon, J. V., Compton, B. J., Bouvier, E. S. P., Finn, M. G., and Siuzdak, G. High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon Anal. Chem. 2004, 76, 4484-4489
    55. James, T. C., Wojtyk, K. A. M., Rabah, B., and Daniao, D. M. W. Modification of porous silicon surfaces with activated ester monolayers Langmuir 2002, 18, 6081-6087
    56. Xu, S. Y., Li, Y. F., Zou, H. F., Qiu, J. S., Guo, Z., and Guo, B. C. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry Anal. Chem. 2003, 5, 6191-6195
    57. Chen, F., and Tusak, A. Characterization of food proteins by capillary electrophoresis J. Chromatogr. A 1994, 685, 331-337
    58. Luo, Q. Z., Zou, H. F., Xiao, X. Z., Guo, Z., Kong, L., and Mao, X. Q. Chromatographic separation of proteins on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous poly(glycidyl methacrylate co-ethylene dimethacrylate) J. Chromatogr. A. 2001, 926, 255-264
    59. Neubauer, G., and Mann, M. Mapping of hosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations Anal. Chem. 1999, 71, 235-242
    60. Annan, R. S., and Carr, S. A. Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry Anal. chem. 1996, 68, 3413-3421
    61. Pawson, T. Protein modules and signalling networks Nature 1995, 373, 573-580
    62. Hunter, T. Protein kinases and phosphatases: protein phosphorylation and signaling Cell 1995, 80, 225-236
    63. Krebs, E. G. The growth of research on protein phosphorylation Trends Biochem. Sci. 1994, 19(11), 439
    64. Hhubbard, M. J., and Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation Trends Biochem. Sci. 1993, 18, 172-177
    65. Andersson, L., and Porath, J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography Anal. Biochem. 1986, 154, 250-254
    66. Neville, D. C., Rozanas, C. R., Price, E. M., Gruis, D. B., Verkman, A. S.,and Townsend, R. R. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry Protein Sci. 1997, 6(11), 2436-2445
    67. Watts, J. D., Affolter, M., Krebs, D. L., Wange, R. L., Samelson, L. E., and Aebersold, R. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70 J. Biol. Chem. 1994, 269(47), 29520-29529
    68. Figeys, D., Gygi, S. P., Zhang, Y., Watts, J., Gu, M., and Aebersold, R. Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes Electrophoresis 1998, 19(10), 1811-1818
    69. Zhou, W., Merrick, B. A., Khaledi, M. G., and Tomer, K. B. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry J. Am. Soc. Mass Spectrom. 2000, 11(4), 273-282
    70. Posewitz, M. C., and Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides Anal. Chem. 1999, 71(14), 2883-2892
    71. Spapac, D. I., Hoyes, J., and Tomer, K. B. Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry Protein Sci. 1994, 3(9), 1485-1492
    72. Chaga, G., Andersson, L., and Porath, J. Purification and determination of the binding site of lactate dehydrogenase from chicken breast muscle onimmobilized ferric ions J. Chromatogr. 1992, 627(1-2), 163-172
    73. Shoemaker, M. T., and Haley, B. E. Identification of a guanine binding domain peptide of the GTP binding site of glutamate dehydrogenase: isolation with metal-chelate affinity chromatography Biochemistry 1993, 32(7), 1883-1890
    74. Zaika, A., Mozzherin, D. J., Tan, C. K., Downey, K. M., and Fisher, P. A. A two-dimensional support for selective binding of polyhistidine-tagged proteins: identification of a proliferating cell nuclear antigen point mutant with altered function in vitro Anal. Biochem. 1999, 268(2), 193-200
    75. Stensballe, A., and Jensen, O. N. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides Rapid Commun. Mass Spectrom. 2004, 18(15), 1721-1730
    1. Fenselau, C., and Demirev, P. A. Characterization of intact microorganisms by MALDI mass spectrometry Mass Spectrom. Rev. 2001, 20, 157-171
    2. Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates Mass Spectrom. Rev. 1999, 18, 349-450
    3. Aebersold, R., and Mann, M. Mass spectrometry-based proteomics Nature 2003, 422, 198-207
    4. Strupat, K., Karas, M., and Hillenkamp, F. 2, 5-Dihydroxybenzoic acid: a new matrix for laser desorption/ionization mass spectrometry Int. J. Mass Spectrom. Ion Proc. 1991, 111, 89-102
    5. Beavis, R. C., Chaudhary, T., and Chait, B. T. α-Cyano-4- hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass spectromtry Org. Mass Spectrom. 1992, 27, 156-159
    6. Fitzgerald, M. C., Parr, G. R., and Smith, L. M. Basic matrixes for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides Anal. Chem. 1993, 65, 3204-3211
    7. Distler, A. M., and Allison, J. 5-methoxysalicylic acid and spermine: a new matrix for the matrix-assisted laser desorption/ionization mass spectrometry analysis of oligonucleotides J. Am. Soc. Mass Spectrom. 2001, 12, 456-462
    8. Bai, J., Liang, X. L., Liu, Y.-H., Zhu, Y. D., and Lubman, D. M. Characterization of two new matrices for matrix-assisted laser desorption/ionization mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 839-844
    9. Krause, J., Stoeckli, M., and Schlunegger, U. P. Studies on the selection of new matrices for ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 1927-1933
    10. Vermillion-Salsbury, R. L., and Hercules, D. M. 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization Rapid Commun. Mass Spectrom. 2002, 16, 1575-1581
    11. Eskinja, M., Zollner, P., and Schmid, E. R. Determination of mercapturic acids using 1,4-dihydroxynaphthalene, a new matrix for matrix-assisted UV laser desorption/ionization mass spectrometry Eur. Mass Spectrom. 1998, 4(3), 157-162
    12. Tang, X., Dreifuss, P. A., and Vertes, A. New matrices and accelerating voltage effects in matrix-assisted laser desorption/ionization of synthetic polymers Rapid Commun. Mass Spectrom. 1995, 9, 1141-1147
    13. Kolli, V. S. K., and Orlando, R. A new matrix for matrix-assisted laser desorption/ionization on magnetic sector instruments with point detectors Rapid Commun. Mass Spectrom. 1996, 10, 923-926
    14. Wei, J., Buriak, J. M., and Siuzdak, G. Desorption/ionization mass spectrometry on porous silicon Nature 1999, 399, 243-246
    15. Chen, Y.-C., Shiea, J., and Sunner, J. Thin-layer chromatography-mass spectrometry using activated carbon, surface-assisted laser desorption/ionization J. Chromatogr. A 1998, 826, 77-86
    16. Sunner, J., Dratz, E., and Chen, Y.-C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions Anal. Chem. 1995, 67, 4335-4342
    17. Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., and Guo, B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry Anal. Chem. 2003, 75, 6191-6195
    18. Pan, C. S., Xu, S. Y., Hu, L. G., Zhang, Y., Guo, Z., and Guo, B. C. Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS J. Am. Soc. Mass Spectrom. 2005, 16, 883-892
    19. Zou, H. F., Zhang, Q. C., Guo, Z., Guo, B. C., Zhang, Q., and Chen, X. A mass spectrometry based direct-binding assay for screening binding partners of proteins Angew. Chem. Int. Ed. 2002, 41, 646-648
    20. Kallweit, U., Boernsen, K. O., Kresbach, G. M., and Widmer, H. M. Matrix compatible buffers for analysis of proteins with matrix-assisted laser desorption/ionization mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 845-849
    21. Bornsen, K. O. Influence of salts, buffers, detergents,solvents, and matrices on MALDI-MS protein analysis in complex mixtures Methods Mol. Biol. 2000, 146, 387-404
    22. Ikeguchi, M. Protein denaturation and roles of denaturants Seibutsu Butsuri 2002, 42, 72-74
    23. Qi, J., Isupov, M. N., Littlechid, J., and Anderson, L. Conformational diversity versus nucleic acid triplex stability, a combinatorial study J. Biol. Chem. 2001, 276, 35247-35252
    24. Bagshaw, R. D., Callahan, J. W., and Mahuran, D. J. Desalting of in-gel-digested protein sample with mini-C18 columns for matrix-assisted laser desorption ionization time of flight peptide mass fingerprinting Anal. Biochem. 2000, 284, 432-435
    25. Ekstrom, S., Malmstorm, J., Wallman, L., Lofgren, M., Nisson, J., Laurell, T., and Marko-varga, G. On-chip microextraction for proteomic sample preparation of in-gel digests Proteomics 2002, 2, 413-421
    26. Zhang, L., and Oriando, R. Solid-phase extraction/MALDI-MS: extended ion-pairing surfaces for the on-target cleanup of protein samples Anal. Chem. 1999, 71, 4753-4757
    27. Vorm, O., and Mann, M. Improved mass accuracy in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides J. Am. Soc. Mass Spectrom. 1994, 5, 955-958
    28. Xiang, F., and Beavis, R. C. A method to increase contaminant tolerance in protein matrix-assisted laser desorption/ionization by the fabrication of thin protein-doped polycrystalline films Rapid Commun. Mass Spectrom. 1994, 8, 199-204
    29. Blackledge, J. A., and Alexander, A. J. Polyethylene membrane as a sample support for direct matrix-assisted laser desorption/ionization mass spectrometric analysis of high mass proteins Anal. Chem. 1995, 67, 843-848
    30. Worrall, T. A., Cotter, R. J., and Woods, A. S. Purification of contaminated peptides and proteins on synthetic membrane surfaces for matrix-assisted laser desorption/ionization mass spectrometry Anal. Chem. 1998, 70, 750-756
    31. Vestling, M. M., and Fenselau, C. Poly(vinylidene difluoride) membranes as the interface between laser desorption mass spectrometry, gel electrophoresis, and in situ proteolysis Anal. Chem. 1994, 66, 471-477
    32. Xu, Y. D., Watson, T., and Bruening, M. L. Patterned monolayer/polymerfilms for analysis of dilute or salt-contaminated protein samples by MALDI-MS Anal. Chem. 2003, 75, 185-190
    33. Xu, Y. D., Bruening, M. L., and Watson, J. T. Non-specific, on-probe cleanup methods for MALDI-MS samples Mass Spectrom. Rev. 2003, 22, 429-440
    34. Tannu, N. S., Wu, J., Rao, V. K., Gadgil, H. S., Pabst, M. J., Gerling, I. C., and Raghow, R. Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting Anal. Biochem. 2004, 327, 222-232
    35. Zhu, Y. F., Chung, C. N., Taranenko, N. I., Allman, S. L., Martin, S. A., Haff, L., and Chen, C. H. The study of 2, 3, 4-trihydroxyacetophenone and
    2, 4, 6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1996, 10, 383-388
    36. Yang, X. F., H.P., W., Kobayashi, T., Solaro, R. J., and Breemen, R. B. Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry Anal. Chem. 2004, 76, 1532-1536
    37. Simmons, T. A., and Limbach, P. A. Influence of co-matrix proton affinity on oligonucleotide ion stability in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry J. Am. Soc. Mass Spectrom. 1998, 9, 668-675
    38. Asara, J. M., and Allison, J. Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive Anal. Chem. 1999, 71, 2866-2870
    39. Vandell, V. E., and Limbach, P. A. Polyamine co-matrices for matrix-assisted laser desorption/Ionization mass spectrometry of oligonucleotides Rapid Commun. Mass Spectrom. 1999, 13, 2014-2021
    40. Zhu, X. P., and Papayannopoulos, I. A. Improvement in the detection of low concentration protein digests on a MALDI TOF/TOF workstation by reducing α-cyano-4-hydroxycinnamic acid adduct ions J. Biomol. Tech. 2003, 14, 298-307
    41. Cohen, P. The regulation of protein function by multisite phosphorylation Trends Biochem. Sci. 2000, 25, 596-601
    42. Hunter, T., and Plowman, G. D. The protein kinases of budding yeast: six score and more Trends Biochem. Sci. 1997, 22, 18-22
    43. Adams, M. D., Cleniker, S. E., Holt, R. A., and Evans, C. A. The genome sequence of drosophila melanogaster Science 2000, 287, 2185-2195
    44. Bennett, K. L., Stensballe, A., Podtelejnikov, A. V., Moniatte, M., and Jensen, O. N. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry J. Mass Spectrom. 2002, 37, 179-190
    45. Xu, Y. D., Bruening, M. L., and Watson, J. T. Use of polymer-modified MALDI-MS probes to improve analyses of protein digests and DNA Anal. Chem. 2004, 76, 3106-3111
    1. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1988, 2, 151-154
    2. Karas, M., and Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons Anal. Chem. 1988, 60, 2299-2301
    3. Kinumi, T., Saisu, T., Takayama, M., and Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis J. Mass Spectrom. 2000, 35, 417-422
    4. Sunner, J., Dratz, E., and Chen, Y.-C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions Anal. Chem. 1995, 67, 4335-4342
    5. Chen, Y.-C., and Tsai, M. F. Using surfactants to enhance the analyte signals in activated carbon, surface-assisted laser desorption/ionization (SALDI) mass spectrometry J. Mass Spectrom. 2000, 35, 1278-1284
    6. Chen, Y.-C., Shies, J., and Sunner, J. Thin-layer chromatography-mass spectrometry using activated carbon, surface-assisted laser desorption/ionization J. Chromatogr. A 1998, 826, 77
    7. Chen, Y.-C. In situ determination of organic reaction products by combining thin layer chromatography with surface-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun.Mass Spectrom. 1999, 13, 821
    8. Ayoirinde, F. O., Hambright, P., Porter, T. N., and Keith, Q. L. Use of meso- tetrakis(pentafluorophenyl)porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ ionization time-of-flight mass spectrometry Rapid Commun. Mass Spectrom. 1999, 13, 2474-2479
    9. Wei, J., Buriak, J. M., and Siuzdak, G. Desorption/ionization mass spectrometry on silicon Nature 1999, 399, 243~246
    10. Kruse, R. A., Rubakhin, S. S., Romanova, E. V., and Sweedler, J. V. Direct assay of aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon J. Mass Spectrom. 2001, 36, 1317-1322
    11. Zou, H., Zhang, Q., Guo, Z., Guo, B., Zhang, Q., and Chen, X. A mass spectrometry based direct-binding assay for screening binding partners of proteins Angew. Chem. Int. Ed. 2002, 41, 646-648
    12. Mengistu, T. Z., DeSouzaab, A. L., and Morina, S. Functionalized porous silicon surfaces as MALDI-MS substrates for protein identification studies Chem. Commun. 2005, 5659-5661
    13. Guo, Z., Zhang, Q., Zou, H., Guo, B., and Ni, J. A method for the analysis of low mass molecules by MALDI-TOF mass spectrometry Anal. Chem. 2002, 74, 1637-1641
    14. Zhang, Q., Zou, H., Guo, Z., Zhang, Q., Chen, X., and Ni, J. Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix Rapid Commun. Mass Spectrom. 2001, 15, 217-223
    15. Luo, H., Shi, Z., Li, N., Gu, Z., and Zhang, Q. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode Anal. Chem. 2001, 73, 915-920

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700