hBD3-BPI融合蛋白在巴斯德毕赤酵母系统中的表达及其产物的纯化和生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大面积烧伤后皮肤和粘膜组织常合并有感染,因继发感染导致的脓毒症是造成烧伤患者多脏器衰竭和死亡的主要原因之一。近年来,细菌耐药性菌株的不断出现,使得传统抗生素治疗面临着严峻的挑战,因感染而造成的烧伤病人死亡率一直居高不下。事实上,不仅是烧伤学科,整个医学界都在为细菌的耐药性问题所困扰,因此,寻找新型的、具有不同抗菌机制或无细菌耐药性的抗生素极其重要。近年研究发现,真核生物能够产生大量的抗微生物肽,广泛参与抵制和杀灭外源性致病微生物的侵袭,构成机体宿主防御的一个重要途径。由于这些蛋白在机体内天然存在,不产生耐药性,因此有希望开发为新型的抗生素,解决临床上因传统抗生素耐药而出现的被动局面。
     防御素是一类机体内广泛存在的抗微生物肽,对细菌、真菌等病原微生物具有广谱的杀伤作用,且不产生耐药性。其中人β-防御素3(human beta-defensin 3,hBD3)对革兰氏阴性、阳性细菌以及真菌等多种病原微生物具有杀伤作用,尤其是对包括金黄色葡萄球菌在内的革兰氏阳性菌作用最强。低浓度条件下,hBD3还有免疫调节作用。最新的研究表明,hBD3还具有抗病毒活性和肿瘤细胞杀伤毒性。此外,hBD3还具有热稳定性和酸碱环境稳定性,且在高盐条件下仍能保持很高的抗菌活性。hBD3的这些物理、化学和生物学活性特征均表明其具有广阔的开发和临床应用前景。另外,大肠杆菌表达的hBD3与天然的以及合成的hBD3蛋白具有相同的生物学活性,也进一步提示该蛋白有望开发成为一种新型的肽类抗生素,解决临床上常见而棘手的传统抗生素细菌耐药性问题。
     由于hBD3分子富含正电荷,因此既往的hBD3基因工程研究多采用与带负电荷的蛋白分子融合的方式来表达,以中和hBD3的正电荷,降低其宿主毒性。但由于采用原核表达系统,融合蛋白产物仍以包涵体形式存在,因而使得后续处理非常复杂,包括包涵体溶解、融合蛋白切割、纯化、复性、再纯化等,导致产量大大降低,难以满足开发需要。本研究借鉴以往在大肠杆菌表达系统表达hBD3和在酵母表达系统表达其他防御素的经验,将具有强烈的革兰氏阳性菌抗菌活性的hBD3和另一种具有强烈的革兰氏阴性菌抗菌活性的抗菌肽——细菌膜穿透增加蛋白(bactericidal/permeability increasing protein,BPI)成熟肽第35-211位氨基酸的活性区段串联起来,利用巴斯德毕赤酵母表达系统基因组容量大、分泌表达、产量高、容易纯化的特点,在该系统中进行融合表达。
     将hBD3基因与BPI基因串联后,克隆于巴斯德毕赤酵母表达载体pPICZαB中,电转导入X-33巴斯德毕赤酵母菌,经重组酵母基因组PCR和表型鉴定获得阳性克隆,对阳性克隆进行甲醇诱导表达,上清通过疏水层析和阳离子交换层析进行纯化。结果成功构建了pICZαB-hBD3-BPI酵母表达载体,重组X-33/pICZαB-hBD3-BPI克隆经甲醇诱导96小时后上清中有目的蛋白表达,Western blot分析表明重组蛋白抗人hBD3和BPI均阳性。rhBD3-BPI占表达上清总蛋白的15.6%,最终产量为5.48mg/L,回收率为68.5%,纯度为89%。
     生物学活性分析表明,rhBD3-BPI对革兰氏阳性和革兰氏阴性细菌,包括标准菌株和临床分离的多重耐药菌株均表现出强烈的抗菌活性,其最小抑菌浓度(Minimal Inhibitory Concentration,MIC)在1-8μg/ml之间,最小杀菌浓度(Minimal Bactehcide Concentration,MBC)在4-16μg/ml之间。同时,鲎试验结果显示rhBD3-BPI和BPI蛋白一样具有内毒素中和活性。此外,重组蛋白还表现出和天然hBD3一致的耐高盐能力,在150mmol/L-200mmol/L的高盐环境下仍能保持杀菌活性。
     本研究首次采用巴斯德毕赤酵母表达系统对hBD3进行了基因工程表达,产物以分泌形式进入培养基中,纯化后具有明显抗菌活性、高盐环境不敏感性和内毒素中和活性,表明应用毕赤酵母系统融合表达hBD3-BPI不仅是可行的,而且拓展了hBD3的抗菌谱和活性范围,提高了hBD3的应用潜能,为hBD3的基因工程开发和临床应用奠定了基础。
Infection is a common complication of massive burns and the sepsis arises from these infection is one of the major reasons for multi-organ failure or even death. In recent years, treatment of infections with traditional antibiotics has been challenged by the increasingly severe problem of antibiotic-resistant bacterial strains, which has, at least partly, resulted in a constantly high mortality in burned patients. In fact, the drug-resistant strains have entangled not only burns surgeons but literally the whole medical science. Thus, it's of great importance to find new type antibiotics that illicit no drug-resistance. Previous studies have demonstrated that antimicrobial peptides, as part of the host defense system, display extensive microorganism killing activities. Natural proteins and eliciting no drug-resistance, these peptides are potential candidate to be developed into new type antibiotics.
    Defensins are a cluster of antimicrobial peptides extensively present in our body with a broad spectrum of antimicrobial activities but will not cause drug-resistance. Amongst is human beta-defensin 3 (hBD3), which demonstrates antimicrobial activity against a vast variety of microorganisms like both Gram-positive and Gram-negative bacteria and even funges. It's especially potent to Gram-positive strains including Staphylococcus aureus. In addition to the well-recognized antimicrobial properties, recent reports picture this protein as potent immunomodulators, virus and tumor cell killer. In addition to high bioactivity stability like other β-defensins in high temperature and extreme pH environments, hBD3 is salt-insensitive. These favorable physical and chemical properties, together with its attractive biological activities, make hBD3 promising target for drug development. Finally, it's worth mention that gene-engineered hBD3 in E.coli shares the same biological activities with its natural or synthetic
    counterparts. This further indicates that hBD3 may carry great hope for development of a new type of antibiotic--peptide antibiotic, and provide a powerful solution for current bacterial antibiotic-resistance problem.
    Since hBD3 is positively charged, protein fusion strategy is very popular for engineering of hBD3 in previous reports. In this way scholars aim to to neutralize the positive charges and thus attenuate its host toxicity. However, in these studies, the expression systems are unexceptionally prokaryotic, and the fusion protein is produced in the form of inclusion bodies, which makes the subsequent processes more complicated. As a result, this will come to a low productivity, unable to meet to the cost-product balance for drug development.
    Based on our experience in hBD3 gene engineering in E.coli and other groups' experience in gene engineering of other defensins in yeast expression system, the present study adapts a new strategy for hBD3 gene engineering by fusing the potent Gram-positive bacteria killing peptide hBD3 with the bioactive 35-211 aa of a potent Gram-negative protein killing peptide, bactericidal/permeability increasing protein (BPI) , and express the fusion protein in pastoris picha yeast expression system. This system has a larger genome capacity and generally gives higher productivity. The foreign protein is more likely to be expressed in soluble form and secreted into the supernatants and thus facilitates the subsequent purification procedures.
    We successfully constructed the yeast expression vector pICZαB-hBD3-BPI, and the recombinant X-33/pICZαB-hBD3 -BPI clones demonstrated target fusion protein expression in supernatants after methanol induction for 96 hours. Western blot analysis confirmed that the recombinant hBD3-BPI (rhBD3-BPI) protein product was positive for both hBD3 and BPI. rhBD3-BPI accounts for 15.6% of the whole protein in supernatant. After purification by hydrophobic chromatography and cation exchange chromatography, the final productivity was 5.48mg/L, with a recollection rate of 68.5% and a purity of 89%.
    Bioactivity analysis indicates that rhBD3-BPI displayed potent antimicrobial activity against a wide spectrum of bacteria, including both Gram-positive and
    Gram-negative strains, despite of standard or clinically isolated wild-type, antibiotic-resistant or not. Its minimal inhibitory concentration(MIC )is l-8μg/ml, minimal bactericidal concentration (MBC ) is 4-16μg/ml. In the meanwhile, like BPI, the rhBD3-BPI protein can also neutralize LPS activity. Additionally, like hBD3, rhBD3-BPI is also salt-insensitive. No significant discont of antimicrobial activity was observed at 150mmol/L-200mmol/L NaCl concentrations.
    The present study for the first time expressed hBD3 in pastoris picha yeast expression system. And also for the first time, hBD3 was fused with BPI for fusion expression. The fusion protein was secreted into the supernatant after methanol induction culture and the purified rhBD3-BPI demonstrated potent antimicrobial activity against both Gram-positive and Gram-negative strains. It's also salt-insensitive and can neutralize LPS activity. So, in summary, the fusion expression of hBD3-BPI in pastoris picha yeast expression system is feasible and the fusion strategy has extended the biological activities in addition to antimicrobial spectrum, thus potentially increased the potential clinical applications and provided useful clues for gene engineering and drug development of hBD3.
引文
1. von Bubnoff A. Seeking new antibiotic in nature's backyard. Cell. 2006,127(5): 867-869.
    2. Raj PA, Dentino AR. Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett. 2002,206(1):9-18.
    3. Braff MH, Gallo RL. Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol. 2006,306:91-110.
    4. Agerberth B, Gudmundsson GH. Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol. 2006,306:67-90.
    5. Barak O, Treat JR, James WD. Antimicrobial peptides: effectors of innate immunity in the skin. Adv Dermatol. 2005,21:357-374.
    6. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005,6(6):551-557.
    7. Steinstraesser L, Oezdogan Y, Wang SC, et al. Host defense peptides in bums. Bums. 2004,30(7):619-627.
    8. Ganz T. Defensins and host defense. Science. 1999,286 (5439) :420~421.
    9. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999, 286(5439): 525-528.
    10. Solomon S, Hu J, Zhu Q, et al. Corticostatic peptides. J Steroid Biochem Mol Biol. 1991,40(1-3): 391-398.
    11. Vedvick TS. Gene expression in yeast: Pichia pastoris. Curr Opin Biotechnol. 1991,2(5): 742-5.
    12.陈丹,王玮.鲈鱼生长激素在甲醇酵母中的胞内表达.生物化学与生物物理进展.1998,25(2):140-143.
    13.庹晓晔,徐明达.人β-防御素-3基因的克隆和序列测定,第四军医大学学报.2002,23(8):701-702.
    14.Sambrook J,Ffitsch EF,Maniatis T.分子克隆实验指南.金冬雁,黎孟枫等 译,侯云德等校.科学出版社.1999.第二版:308-318.
    15.Sambrook J,Fritsch EF,Maniatis T.分子克隆实验指南.金冬雁,黎孟枫等译,侯云德等校.科学出版社.1999.第二版:42-49.
    16.Sambrook J,Ffitsch EF,Maniatis T.分子克隆实验指南.金冬雁,黎孟枫等译,侯云德等校.科学出版社.1999.第二版:49-56.
    17. Invitrogen Co. EasySelectTM Pichia Expression Kit Manual.
    18. Laemmli Uk. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature. 1970,227:680-68.
    19.Sambrook J,Fritsch EF,Maniatis T.分子克隆实验指南.金冬雁,黎孟枫等译,侯云德等 校.科学出版社.1999.第二版:888-897。
    20. von Bubnoff A. Seeking new antibiotic in nature's backyard. Cell. 2006,127(5): 867-869.
    21. Jenssen H, Hamill P, and Hancock REW. Peptide antimicrobial agents. Clin Microbio Rew. 2006,19(3): 491-511.
    22. Radtke AL, O'Riordan MX. Intracellular innate resistance to bacterial pathogens. Cell Microbiol. 2006,8(11): 1720-1729.
    23. Pereira HA. Novel therapies based on cationic antimicrobial peptides. Curr Pharm Biotechnol. 2006,7(4): 229-234.
    24. Ganz T. Defensins and host defense. Science. 1999, 286(5439):420~421.
    25.庹晓晔,徐明达.β-防御素—上皮组织天然的化学防御屏障.国外医学外科学分册.2002,29(2):72-75.
    26. Pazgiera M, Hooverb DM, Yangc D et al.Human β-defensins. Cell. Mol. Life Sci. 2006,63(11):1294-1313.
    27.冯兴军,王建华,单安山.抗菌肽基因工程研究及其表达策略.中国生物工程杂志.2006,26(3):63~67.
    28. Zasloff M. Antimicrobial pep tides of multicellular organisms. Nature. 2002,415 (6870): 389~395.
    29. Klotman ME and Chang TL. Defensins in innate antiviral immunity. Nature Rew. 2006,6(6): 447-456.
    30. Feng Z, Dubyak GR, Lederman MM, et al. Cutting edge: human beta-defensin 3 — a novel antagonist of the HIV-1 coreceptor CXCR4. J Immunol. 2006,177(2): 782-786.
    31. Levy 0. Therapeutic potential of the bactericidal/permeability -increasing protein. Expert Opin Investig Drugs. 2002,11(2): 159-167.
    32. van der Schaft DW, Wagstaff J, Mayo KH, et al. The antiangiogenic properties of bactericidal/permeability-increasing protein (BPI).Ann Med 2002,34(1): 19-27.
    33. Calafat J, Janssen H, Tool A, et al. The Bactericidal/Permeability -Increasing Protein (BPI) Is Present in Specific Granules of Human Eosinophils. Blood. 1998,91(12): 4770-4775.
    34. Levy O. A Neutrophil-Derived Anti-Infective Molecule: Bactericidal/ Permeability-Increasing Protein. Antimicrob Agents Chemother. 2000, 44(11): 2925-2931.
    35. Elsbach P, Weiss J. Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Inmmun. 1998,10(1): 45-49.
    36. Kellogg TA, Lazaron V, Wasiluk KR, et al. Binding specificity of polymyxin B, BPI, LALF, and anti-deep core/lipid a monoclonal antibody to lipopolysaccharide partial structures. Shock. 2001,15(2): 124-129.
    37. Wong HR, Doughty LA, Wedel N, et al. Plasma bactericidal /permeability-increasing protein concentrations in critically ill children with the sepsis syndrome. Infect Dis. 1995,14(2): 1087-1091.
    38. Tobias PS, Soldau K, Iovine NM, et al. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem. 1997,272(30): 18682-18685.
    39. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 2002,4(9):903-14.
    40. Iovine NM, Elsbach P, Weiss J. An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains. Pmc Natl Acad Sci U S A. 1997,94(20): 10973-10978.
    41. Harder J, Barrels J, Christophers E, et al. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001,276(8):5707-5713.
    42.庹晓晔,徐明达,柴家科等.人β-防御素3在大肠杆菌中的融合表达及其抗微生物活性的初步分析.军事医学院院刊.2004,28(2):114-116.
    43.肖干雄 主编.微生物学与微生物检验学.天津科学技术出版社.1989,第一版:481-482.
    44. Pazgiera M, Hooverb DM, Yang D, et al. Human β-defensins. Cell Mol Life Sci. 2006,63(11): 1294-1313.
    45. Dhople V, Krukemeyer A, Ramamoorthy A. The human beta -defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta. 2006,1758 (9): 1499-1512.
    46.彭海英,朱家勇.杀菌P通透性增加蛋白的研究现状及展望.医学综述.2006,12(1):1-3.
    47. Lehrer RI and Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002,14(1): 96-102.
    48. Zasloff M. Antimicrobial peptides in health and disease. N Engl J Med. 2002,347(15): 1199-1200.
    49. Ganz T and Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol. 1998,10(1): 41-44.
    50. Ciomei CD, Egesten A, Engstron M, et al. Bactericidal/permeability increasing protein inhibits endotoxin induced vascular nitricoxide synthesis. Acta Anaesthesiol Scand. 2002,46 (9): 1111-1118.
    51.姚咏明,柴家科,林洪远主编.现代脓毒症理论与实践.科学出版社.2005年,第一版:101-105.
    1. Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved betadefensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA. 2002,99(4): 2129-2133.
    2. Pazgiera M, Hooverb DM, Yangc D, et al. Human 13-defensins. Cell Mol Life Sci. 2006,63 (11): 1294-1313.
    3. Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993,268(9): 6641-6648.
    4. Tang YQ, Yuan J, Osapay G, el al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science. 1999,286(5439): 498-502.
    5. Nguyen TX, Cole AM and Lehrer RI. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides. 2003,24(11): 1647-1654.
    6. Cole AM, Wang W, Waring AJ, et al. Retrocyclins: using past as prologue. Curr Protein Pept Sci. 2004,5(5): 373-381.
    7. Selsted ME. Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins. Curr Protein Pept Sci. 2004,5(5): 365-371.
    8.王伯瑶,吴琦.内源性抗生素肽2天然免疫的重要介质.生命科学.1991,11(增刊):64-66.
    9. Mak P, Wojcik K, Thogersen IB, et al. Isolation, antimicrobial activities and primary structures of hamster neutrophil defensins. Infect Immun. 1996,64(11):4444-4449.
    10. Diamond G, ZaslofF M, Eck H, et al. Tracheal antimicrobial peptide, a novel cystein-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of cDNA. Proc Natl Acad Sci USA. 1991,88(9): 3952 -3956.
    11. Bensch KW, Raida M, Magert HJ, et al. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995,368(2):331-335.
    12. McCray PB Jr and Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol. 1997,16(3): 343-349.
    13. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998,101(8): 1633-1642.
    14. Goldman MJ, Anderson GM, Stolzenberg ED, et al. Human beta -defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997,88(4): 553-560.
    15. Zhao C, Wang I and Lehrer RI. Wide spread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996,396(2-3): 319-322.
    16. Fulton C, Anderson GM, Zasloff M, et al. Expression of natural peptide antibiotics in human skin. Lancet. 1997,350(9093): 1750-1751.
    17. Ali RS, Falconer A, Ikram M, et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol. 2001,117(1): 106-111.
    18. Duits LA, Ravensbergen B, Rademaker M, et al. Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology. 2002,106(4): 517-525.
    19. Feng Z, Jiang B, Chandra J, et al. Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res. 2005,84(5): 445-450.
    20. Joly S, Organ CC, Johnson GK, et al. Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol. 2005,42(9): 1073-1084.
    21. Sorensen OE, Thapa DR, Rosenthal A, et al. Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol. 2005,174(8): 4870-4879.
    22. Zhu BD, Feng Y, Huang N, et al. Mycobacterium bovis bacille Calmette-Guerin (BCG) enhances human beta-defensin-1 gene transcription in human pulmonary gland epithelial cells. Acta Pharmacol Sin. 2003,24(9): 907-912.
    23. Fang XM, Shu Q, Chen QX, et al. Differential expression of alpha- and beta-defensins in human peripheral blood. Eur J Clin Invest. 2003,33(1): 82-87.
    24. Harder J, Bartels J, Christophers HG, et al. A peptide antibiotic from human skin. Nature. 1997,387(6636): 861.
    25. Mizukawa N, Sawaki K, Yamachika E, et al. Presence of human beta-defensin-2 in oral squamous cell carcinoma. Anticancer Res. 2000,20(3B):2005~2007.
    26. Abiko Y, Mitamura J, Nishimura M, et al. Pattern of expression of beta-defensins in oral squamous cell carcinoma. Cancer Lett. 1999,143(1):37-43.
    27. Wada A, Mori N, Oishi K, et al. Induction of human beta-defensin-2 mRNA expressi on by Helicobacter pylori in human gastric cell line MKN45 cells on cag pathogenicity island. Biochem Biophys Res Commun. 1999,263(3):770-774.
    28. Jia HP, Schutte BC, Schudy A, et al. Discovery of new human βdefensins using a genomics-based approach. Gene. 2001,263( 122):211-218.
    29. Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001,276(8):5707-5713.
    30. Paulsen FP, Pufe T, Schaudig U, et al. Detection of natural peptide antibiotics in human nasolacrimal ducts. Invest Ophthalmol Vis Sci. 2001,42(10): 2157-2163.
    31. Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998,101(8): 1633-1642.
    32. Dunsche A, Acil Y, Dommisch H, et al. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci. 2002,110(2): 121-124.
    33. Garcia JR, Krause A, Schulz S, et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 2001,15(10): 1819-1821.
    34. Yanagi S, Ashitani J, Ishimoto H, et al. Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res. 2005,6(1): 130.
    35. Selsted ME and Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005,6(6): 551-557.
    36. Harder J, Meyer-Hoffert U, Wehkamp K, et al. Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol. 2004,123(3): 522-529.
    37. Harder J, Siebert R, Zhang Y, et al. Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics. 1997,46(3):472~475.
    38. Liu L, Wang L, Jia HP, et al. Structure and mapping of the human beta-defensin HBD-2 gene and its expression at sites of inflammation. Gene. 1998,222(2): 237-244.
    39. Hoover DM, Rajashankar KR, Blumenthal R, et al. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J Biol Chem. 2000,275(42): 32911-32918.
    40. Bals R, Wang X, Wu Z, et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest. 1998,102(5):874-880.
    41. Yenugu S, Hamil KG, Radhakrishnan Y, et al. The androgen-regulated epididymal spermbinding protein, human beta-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial beta-defensin. Endocrinology. 2004, 145(7): 3165-3173.
    42. Rodriguez-Jimenez FJ, Krause A, Schulz S, et al. Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics. 2003, 81(2): 175-183.
    43. Hoover DM, Chertov O and Lubkowski J. The structure of human P-defensin-1: new insights into structural properties of beta-defensins. J Biol Chem. 2001,276(42): 39021-39026.
    44. Sawai MV, Jia HP, Liu L, et al. The NMR structure of human betadefensin-2 reveals a novel alpha-helical segment. Biochemistry. 2001,40(13): 3810-3816.
    45. Schibli DJ, Hunter HN, Aseyev V, et al. The solution structures of the human P-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2002,277(10): 8279-8289.
    46. Bauer F, Schweimer K, Kluver E, et al. Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 2001,10(12): 2470-2479.
    47. Andreeva A, Howorth D, Brenner SE, et al. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 2004,32 (Database issue): D226-D229.
    48. Murzin A., Brenner SE, Hubbard T, et al SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995,247(4): 536-540.
    49. Crovella S, Antcheva N, Zelezetsky I, et al. Primate beta-defensins-structure, function and evolution. Curr. Protein Pept. Sci. 2005,6(1): 7-21.
    50. Sahl HG, Pag U, Bonness S, et al. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol. 2005,77(4): 466-475.
    51. Boniotto M, Antcheva N, Zelezetsky I, et al. A study of host defence peptide beta-defensin 3 in primates. Biochem J. 2003,374 (Pt 3): 707-714.
    52. Harder J and Schroder JM. Antimicrobial peptides in human skin. Chem. Immunol. Allergy. 2005,86: 22-41.
    53. Zasloff M. Antimicrobial peptides in health and disease. N Eng. J Med. 2002,347(15): 1199-1200.
    54. Ganz T, Oren A, Lehrer RI. Defensins: microbicidal and cytotoxic peptides of mammalian host defense cells. Med Microbiol Immunol. 1992, 181(2): 99-105.
    55. Zucht HD, Grabowsky J, Schrader M, et al. Human beta-defensin-1: a urinary peptide present in variant molecular forms and its putative functional implication. Eur J Med Res. 1998,3(7): 315-323.
    56. Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol. 1998,10(1): 41-44.
    57. Schulz A, Kluver E, Schulz-Maronde S, et al. Engineering disulfide bonds of the novel human betadefensins hBD-27 and hBD-28: differences in disulfide formation and biological activity among human beta-defensins. Biopolymers. 2005,80(1): 34-49.
    58. Garcia JR, Jaumann F, Schulz S, et al. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 2001,306(2): 257-264.
    59. Diamond G, Jones de, Bevins CL. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene.Proc Natl Acad Sci U S A. 1993,90(10):4596-4600.
    60. Ganz T. Defensins and host defense. Science. 1999,286(5439):420-421.
    61. Joly S, Maze C, McCray PB Jr, et al. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004,42(3): 1024-1029.
    62. Duits LA, Rademaker M, Ravensbergen B, et al. Inhibition of hBD3, but not hBD-1 and hBD-2, mRNA expression by corticosteroids. Biochem Biophys Res Commun. 2001,280(2): 522-525.
    63. Sun L, Finnegan CM, Kish-Catalone T, et al. Human β-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J Virol. 2005,79(22): 14318-14329.
    64. Quinones-Mateu ME, Lederman MM, Feng Z, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS. 2003,17(16): F39-F48.
    65. Chang TL, Klotman ME. Defensins: natural anti-HIV peptides. AIDS Rev. 2004,6(3): 161-168.
    66. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999,286(5439): 525-528.
    67. Becker MN, Diamond G, Verghese MW, et al. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem. 2000,275(38): 29731-29736.
    68. Solomon S, Hu J, Zhu Q, et al. Corticostatic peptides. J Steroid Biochem Mol Biol. 1991,40(1-3): 391-398.
    69. Hao HN, Zhao J,Lotoczky G, et al. Induction of human beta-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines. J Neurochem. 2001,77(4):1027-1035.
    70. Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci. 2005,62(7-8): 784-790.
    71. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003,3(9): 710-720.
    72. Quinones-Mateu ME, Lederman MM, Feng Z, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS. 2003,17(16): F39-F48.
    73. Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 1998,76(2-3):235-246.
    74. Kluver E, Schulz-Maronde S, Scheid S, et al. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 2005,44(28): 9804-9816.
    75. Abiko Y, Nishimura M, Kusano K, et al. Upregulated expression of human beta defensin-1 and -3 mRNA during differentiation of keratinocyte immortalized cell lines, HaCaT and PHK16-0b. J Dermatol Sci. 2003,31(3): 225-228.
    76. Shiba H, Mouri Y, Komatsuzawa H, et al. Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem Biophys Res Commun. 2003,306(4): 867-871.
    77. Donald CD, Sun CQ, Lim SD, et al. Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab Invest. 2003,83(4): 501-505.
    78. Young AN, Oliveira SPG, Lim SD, et al. Beta defensin-1, parvalbumin, and vimentin: a panel of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling studies using cDNA microarrays. Am J Surg Pathol. 2003,27(2): 199-205.
    79. Markeeva N, Lisovskiy I, Lyzogubov V, et al. Expression of beta-defensin-2 in human gastric tumors: a pilot study. Exp Oncol. 2005,27(2):130-135.
    80. Varoga D, Pufe T, Harder J, et al. Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis Rheum. 2005,52(6): 1736-1745.
    81. Yamaguchi Y, Nagase T, Makita R, et al. Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol. 2002,169(5): 2516-2523.
    82. Rodriguez-Jimenez FJ, Krause A, Schulz S, et al. Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics. 2003,81(2): 175-183.
    83. Dacheux JL, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech. 2003,61(1): 7-17.
    84. Zhou CX, Zhang YL, Xiao L, et al. An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol. 2004,6(5): 458-464.
    85. Liu Q, Hamil KG, Sivashanmugam P, et al. Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human. Endocrinology. 2001,142(10): 4529-4539.
    86. Radhakrishnan Y, Hamil KG, Yenugu S, et al. Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun. 2005,6(3): 203-210.
    87. Yudin AI, Generao SE, Tollner TL, et al. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol Reprod. 2005,73(6): 1243-52.
    88. Ganz T. Defensins and other antimicrobial peptides: a historical perspective and an update. Comb. Chem. High Throughput Screen. 2005,8(3): 209-217.
    89. Antcheva N, Boniotto M, Zelezetsky I, et al. Effects of positively selected sequence variations in human and Macaca fascicularis beta-defensins 2 on antimicrobial activity. Antimicrob. Agents Chemother. 2004,48(2): 685-688.
    90. Lay FT and Anderson MA. Defensins: components of the innate immune system in plants. Curr Protein Pept Sci. 2005,6(1): 85-101.
    91. Maemoto A, Qu X, Rosengren KJ, et al. Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem. 2004,279(42): 44188-44196.
    92. Semple CA, Rolfe M, Dorin JR. Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol. 2003,4(5): R31.
    93. Lehrer RI, Barton A, Daher KA. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989,84(2): 553-561.
    94. Kagan BL, Selsted ME, Ganz T, et al. Antimicrobial defensin peptides form voltage-dependent ionpermeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA. 1990,87(1): 210-214.
    95. Wimley WC, Selsted ME, White SH. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 1994,3(9): 1362-1373.
    96. Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem. 2005,280(11): 10378-10387.
    97. Brissette CA, Lukehart SA. Treponema denticola is resistant to human beta-defensins. Infect Immun. 2002,70(7): 3982-3984.
    98. Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 2002,10(4): 179-186.
    99. Xie C, Zeng P, Ericksen B, et al. Effects of the terminal charges in human neutrophil alpha defensin 2 on its bactericidal and membrane activity. Peptides. 2005,26(12): 2377-83.
    100.Tanabe H, Qu X, Weeks CS, et al. Structure-activity determinants in paneth cell alpha-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem. 2004,279(12): 11976-11983.
    101.Raj PA, Antonyraj KJ, Karunakaran T. Largescale synthesis and functional elements for the antimicrobial activity of defensins. Biochem. J. 2000,347(Pt 3): 633-641.
    102.Ouhara K, Komatsuzawa H, Yamada S, et al. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, β-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 2005,55(6): 888-896.
    103.Rausch JM, Wimley WC. A high-throughput screen for identifying transmembrane pore-forming peptides. Anal Biochem. 2001,293(2): 258-263.
    104.Fujii G, Selsted ME, Eisenberg D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 1993,2(8): 1301-1312.
    105.Zanich A, Pascall JC, Jones R. Secreted epididymal glycoprotein 2D6 that binds to the sperm's plasma membrane is a member of the beta-defensin superfamily of pore-forming glycopeptides. Biol Reprod. 2003,69(6): 1831-1842.
    106.Lohner K, Latal A, Lehrer RI, et al. Differential scanning microcalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems. Biochemistry. 1997,36(6): 1525-1531.
    107.Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 2000,55(1): 4-30.
    108.Oren Z and Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998,47(6): 451-463.
    109.Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta. 1998,1376(3): 391-400.
    110.Trabi M, Schirra HJ, Craik DJ. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry. 2001,40(14): 4211-4221.
    111. Hristova K, Selsted ME, White SH. Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry. 1996,35(36): 11888-11894.
    112.Cociancich S, Ghazi A, Hetru C, et al. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem. 1993,268(26): 19239-19245.
    113. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999(1-2), 1462:55-70.
    114. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005,3(3): 238-250.
    115. Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002,14(1): 96-102.
    116. Wu Z, Hoover DM, Yang D, et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA. 2003,100(15): 8880-8885.
    1l7. Cole AM, Ganz T. Human antimicrobial peptides: analysis and application. Biotechniques. 2000,29(4):822-826, 828, 830-831.
    1l8. Schmid P, Grenet O, Medina J, et al. An intrinsic antibiotic mechanism in wounds and tissue-engineered skin. J Invest Dermatol. 2001,116(3): 471-472.
    119. Kisich KO, Heifers L, Higgins M. et al. Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of mycobacterium tuberculosis. Infect Immun. 2001,69(4): 2692~2699.
    1.冯兴军,王建华,单安山.抗菌肽基因工程研究及其表达策略.中国生物工程杂志.2006,26(3):63-67.
    2. Yedery RD, Reddy KV. Antimicrobial peptides as microbicidal contraceptives: prophecies for prophylactics-a mini review. Eur J Contracept Reprod Health Care. 2005,10(1):32-42.
    3. Lange CF, Hancock RE, Samuel J, et al. In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic pep tide. J Pharm Sci. 2001,90(10): 1647-1657.
    4. Piers KL, Brown MH, Hancock REW. Recombinat DNA procedures for producing small antimcrobial cationic peptides in bacteria. Gene. 1993,134(1): 7-13.
    5. Zhang MC, Zheng GC. Expression of human defensin-I (HNP-I) in E. coli. Chin Biochem J. 1997,13: 264-269.
    6. Zhang L, Falla T, Wu M, et al. Determinants of Recombinant Production of Antimicrobial Cationic Peptides and Creation of Peptide Variants in Bacteria. Biochem Biophys Res Commun. 1998,247(3): 674-680.
    7. Lee JH, Minn II, Park CB, et al. Acidic Peptide-Mediated Expression of the Antimicrobial Peptide Buforin II as Tandem Repeats in Escherichia coli. Protein Exp Purif. 1998,12(1): 53-60.
    8. Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001,276(8): 5707-5713.
    9. Lee JH, Kim JH, Hwang SW, et al. High-Level Expression of Antimicrobial Peptide Mediated by a Fusion Partner Reinforcing Formation of Inclusion Bodies. Biochem Biophys Res Commun. 2000,277(3): 575-580.
    10. Gavit P, Better M. Production of antifungal recombinant peptides in Escherichia coli. Journal of Biotechnology. 2000,79(2): 127-136.
    11. Peng L, Xu Z, Fang X, et al. High-level expression of soluble human P-defensin-2 in Escherichia coli. Process Biochemistry. 2004,39(12): 2199-2205.
    12. Rao X, Hu J, Li S, et al. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli. Peptides. 2005, 26 (5) : 721-729.
    13. Moon JY, Henzler-Wildman KA, Ramamoorthy A. Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta. 2006,1758(9): 1351-1358.
    14. Vedvick TS. Gene expression in yeast: Pichia pastoris. Curr Opin Biotechnol. 1991,2(5):742-745.
    15. Kristensen AK, Brunstedt J, Nielsen LE, et a\. Processing, disulfide pattern, and biological activity of a sugar beet defensin, AX2, expressed in Pichia pastoris. Protein Expr Purif. 1999,16(3): 377-387.
    16. Almeida MS, Cabral KS, de Medeiros LN, et al. cDNA Cloning and Heterologous Expression of Functional Cysteine-Rich Antifungal Protein Psd1 in the Yeast Pichia pastoris. Arch Biochem Biophys. 2001,395(2): 199-207.
    17. Cabral KMS, Almeida MS, Valente AP, et al Production of the active antifungal Pisum sativum defensin 1 (Psdl) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif. 2003,31(1): 115-122.
    18. Chen JJ, Chen GH, Hsu HC, et al. Cloning and Functional Expression of a Mungbean Defensin VrDl in Pichia pastoris. J Agric Food Chem. 2004,52(8): 2256-2261.
    19. Burrowes OJ, Diamond G, Lee TC. Recombinant expression of pleurocidin cDNA using the Pichia pastoris expression system J Biomed Biotechnol. 2005,2005(4): 374-384.
    20. Hong IP, Lee SJ, Kim YS, et al. Recombinant expression of human cathelicidin (hCAP18/LL-37) in Pichia pastoris. Biotechnol Lett. 2007,29(1): 73-78.
    21. von Bubnoff A. Seeking New Antibiotics in Nature's Backyard. Cell. 2006,127(5):867-869.
    22. Li P, Chan H, He B, et al. An Antimicrobial Peptide Gene Found in the Male Reproductive System of Rats. Science. 2001,291(5509): 1783-1785.
    23. Chen H, Xu Z, Peng L, et al. Recent advances in the research and development of human defensins. Peptides. 2006,27(4): 931-940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700