Caspase-3、IL-1 β及c-fos在颈椎病模型大鼠颈脊髓和胃的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:(1)解剖基础①Luschka、关节囊、颈椎小关节、颈椎后纵韧带、颈椎间盘纤
    维环后部、脊神经背根神经节(DRG)神经元的周围以及椎动脉均有交感神经的分布,外来
    的其他神经纤维可通过非突触的形式与DRG神经元的胞体发生相互作用。②胃肠道是机体
    内唯一由中枢神经系统、肠神经系统和自主神经系统共同支配的系统,既有感觉又有运动。
    ③需要成功的建立颈椎病模型。
     (2)新进展1999年罗马Ⅱ体系增加了神经胃肠病学新概念,核心是胃肠功能紊乱的
    致病机制和临床表现及行为的生物-社会-心理概念的形成。2002年2月世界胃肠病大会
    曼谷新分类,提出神经胃肠病学是研究消化道的功能及功能紊乱、脑和脊髓的功能及功能
    紊乱、结构异常和消化道的交感、副交感、肠自主神经支配以及中枢神经与支配消化道的
    神经之间相互作用的学科,是动力性疾病的神经病学。
     (3)实验依据IL-1β是炎症形成发展的关键因子,Caspase-3是IL-1β转化酶家族的
    重要成员之一,被认为是细胞凋亡过程的关键酶之一。无论是急性的损伤,还是慢性退变,
    IL-1β均是通过激活Caspase-3途径诱导神经系统的神经元发生凋亡。受IL-1β调控,
    c-fos被认为是一种第三信使调控靶基因的表达。
    目的:通过破坏大鼠颈部肌力的平衡和后柱的稳定建立两组颈椎病模型,即:肌力失衡与
Study Background: (1)Anatomic foundation (1)sympathetic nerve is distributed in Luschka , articular capsule, cervical miniarticular, posterior longitudinal ligament, posterior annulus fibrosus of intervertebral disk, neuronal periphery of dorsal root ganglion and arteriae vertebralis. Other enthetic nerves interreact with dorsal root ganglion by non-synapsis. (2)Both with sensation and movement, gastrointestinal tract is the only organ dominanted by central nervous system, enteric nervous system and autonomic nerve system.(3) Need successful models ofcervical spondylosis.(2)Advancement Neurogastroenterology was proposed in Rome II system in 1999,the core was pathogenic mechanism of gastrointestinal dysfunction, clinical manifestation and ethological formation of living being-society- psychology. The new classification of the World Gastroenteropathy Meeting in Bangkok in February 2002, Neurogastroenterology is neurology of motive disease, researching function and dysfunction of digestive tract, function and dysfunction and structural abnomalities of brain and cord, domination of sympathesis, parasympathesis and autonomic nerve of intestine and the interaction between centrol nerve system and nerves of digestive tract.(3) Experiment foundation IL-1 β is an important inflammatory cytokine. Caspase-3 is one of key members of interleukin 1β convertiny enzyme family. Not only in acute injury and but also in chronic degeneration, IL-1β induced neuron apoptosis of centrol nerve system through activating Caspase-3, and Caspase-3 is a potential mediator in apoptosis. Regulated by IL-1 β , c-fos is expressed as third messenger control ing target gene.Objective: To establish cervical spondylosis of muscle imbalance and posterior
    column instability in rats, then study expression of Caspase-3, IL-1β and c-fos in cervical cord and stomach of the rats with cervical spondylosis, and the co-expression of them in cervical cord and stomach. Analyze the relationship among them and study the mechanism of neck-stomach syndrome, desire to explain the unknown pathogenesy of functional dyspepsia (FD) and irritable bowel syndrome( IBS) from spondylotic speciality.Methods: Sixty SD rats (four months old) were randomly divided into control, muscle imbalance and posterior column instability groups which were subdivided into groups of 2 and 4 months, ten rats in each group. The X-ray films and motion function of oblique board test were evaluated. C3-7 discs were collected, dealt with decalcification and dehydration, then with paraffin imbedding, sagittal microtome section and HE dyeing. Study morphologic changes of disc according to Miyanmoto methods. Other 96 SD rats were destroyed the stability of cervical posterior column and established cervical spondylosis models, the cord segments C_4-6 and stomaches were collected 3 months and 5 months after the operation. Rats with sham operation were used as controls. Determined the expression of Caspase-3 and IL—1 in cervical cord by immunohistochemistry and Western Blot methods, Countered the positive cells under microscope of 200 times at random with 10 fields, then the data were analyzed statistically. The results of densitometry readings of gel bands were expressed as arbitrary units. The changes of c-fos expression in cord andgastric myenteric plexus were analyzed by immunohistochemistry methods. Results: In the control group, the J-ray films showed nature curve, normal vertebralclearance, no osteosis spur and ossify in Luschka joint and joint process. But in muscle imbalance and posterior column instability groups, showed disappeared or stiff nature curve, stenosis vertebral clearance, osteosis spur formed, ossify or sclerosis emerged in Luschka joint and joint process. Annulus fibrosus aligns acceptable in degenerated normally discs, light hyaline degeneration in it under microscope, there was significant difference in the grade score according to Miyanmoto standard. Compared with control group in oblique board test, the muscle force decreased in muscle imbalance and posterior column instability groups. There
    was no statistic significant difference between control groups of 2 months and 4 months, and also in muscle imbalance and posterior column instability groups, but there was significant difference in muscle imbalance and posterior column groups of 2 months, 4 months. The expression of Caspase-3 and IL-1P determined by immunohistochemistry methods in spinal cord, there was significant difference in control and model groups, and also in 3 months and 5 months model groups (P < 0. 05). The expression of Caspase-3 and IL-1 P determined by immunohistochemistry methods in stomach, there was significant difference in control and model groups (P < 0. 05 ) , and no significant difference in 3 month and 5 month model groups (P > 0.05) . Western Blot analysis showed time-dependent changes of Caspase-3 and IL-1 {3 protein in the cervical cord of rats with cervical spondylosis. Sample from control and model cords were prepared for Western Blotting at 3 months and 5 months. There was no significant expression of Caspase-3 and IL-13 protein in the control groups of 3 months and 5 months after sham operation. However, there was significant different expression between rats kept for 3 months and those for 5 months in the model groups (P < 0.05 ). There were a little c-fos positive neurons in cervical cord and gastric myenteric plexus by immunocytochemical analysis in control groups, More importantly, there was significant difference in c-fos coexpression between rats followed up for 3 months and those for 5 months in the model group ( cervical cord: 11.20 + 2.26, vs 27.68 + 4.36, P < 0. 05 ) ; and gastric antrum: 11.3 + 2.3, vs. 29.3 + 4.6, P < 0.05 ). There was no significant difference between rats followed up for 3 months and those for 5 months in the control group.Conclusion: In this study, Cervical posterior column instability and muscle imbalance can all result in cervical spondylosis, both muscle force balance and posterior column were important in maintaining cervical stability. We regarded c-fos regulated by IL-1 3 in vivo and confirmed that the simultaneous c-fos expressions in cervical spinal cord and gastric myenteric plexus were significantly different in the cervical spondylosis groups at 3 months and 5 months after operation. Therefore, there is a relationship between the neck and stomach, and
    the gastrointestinal function may be affected by cervical spondylosis, if this hypothesis is confirmed by further studies, functional gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome could be explained by neurogastroenterology.
引文
[1].施祀.要重视对颈椎病研究.中国中医骨伤科杂志,1999,7 (2):1-3.
    [2]. McCormack BM, WeinsteinPR. Cervical Spondylosis: An Update. West J Med, 1996, 165: 43, 51.
    [3].吴毅文.颈椎病的流行病学调查.安徽医科大学学报,1990,25:79.
    [4].王拥军,施祀,彭宝淦.颈椎病危险因素的病例对照研究.中国中医骨伤科杂志,1997,5 (6):11-15.
    [5]. Lob A, Holm C. Die zusammenhonge zwischen den verletzungen der handscheiben and der spondylosis deformans im tierversuch. Dtsch Ztschr Chr, 1933, 240:421-440.
    [6]. Silberberg R, Aufdermaur M, Adler JH. Degeneration of the intervetebral disks and spondylosis in aging sand rats. Arch Pathol Lab Med, 1979, 103:231-235.
    [7]. Sakamaki T, Sairyo K, Katoh S, et al. The Pathogenesis of Slippage and Deformity in the Pediatric Lumbar Spine: A Radiographic and Histologic Study using a New Rat In Vivo Model. Spine. 2003, 28(7): 645-50.
    [8]. Wilson C, Brown D, Najarian K, et al. Computer Aided Vertebral Visualization and Analysis: A Methodology Using the Sand Rat, a Small Animal Model of Disc Degeneration. BMC Musculoskelet Disord, 2003, 4(1): 4.
    [9].王拥军,施杞,沈培芝,等.动静力失衡性大鼠颈椎间盘退变模型的动态观察.中国中西医结合杂志,2001,21(3):199-202.
    [10]. Hukuda. S, Wilson. B. Experimental cervical myelopathy: effects Of compression and is chemia On the canine cervical cord. Jneurosurg, 1972, 37: 631-652.
    [11].戎利民,李佛保,蔡道章.脊髓型颈椎病模型的初步建立.解剖学研究,2001,23(4):313-315.
    [12].赵定麟,陈德玉,沈强,等,实验性颈椎模型的设计。中华外科杂志,1993;31 (3):453.
    [13].朱双明,郑重,黄勇。注射硬化剂法制作家兔颈椎病模型.成都中医药大学学报, 2000,23(3):42.
    [14].郑清波,施杞。大鼠脊髓 受压后 血管通透性的变化和益气化瘀利水方药的作用.中国中医骨伤杂志,1999,7(2):3.
    [15].余家阔,吴毅文,戴先进,等.颈椎病生物力学发病机制与实验研究.安徽医科大学学报,1990,25(1):47-50.
    [16].陈立,詹红生,成航,等.长时间异常应力负荷下兔椎间盘的组织病理学观察.中国骨伤,2003,16(6):374.
    [17].郑祖根,沈忆新,董天华.实验性椎动脉闭塞及外科治疗.中华外科杂志,1989,2(12):732.
    [18].施杞,郝永强,彭宝淦.动静力平衡失调与颈椎病——颈椎病动物模型的实验研究.上海中医药大学,1999,13(1):53-56.
    [19].宋沛松,孔抗美,齐伟力等.肌力失衡和后柱失稳大鼠颈椎病模型的比较研究.汕头大学医学院学报,2004,17 (2):71-72.
    [20].张军,孙树椿.神经根型颈椎病(急性型)动物模型的建立.中国中医骨伤科杂志,2000,8(1):12.
    [21].施杞,王拥军.颈椎病病理模型的建立及颈椎间盘退变机理的探讨.洛阳:新世纪骨伤科论坛暨第六届平乐正骨学术研讨会论文集.2001,301.
    [22].蒋戈利,李坚将,夏喜云,等.三步针罐疗法治疗颈胃综合征的临床观察.新中医,2002,34(4):49-50.
    [23]. Kummer W, Gibbins IL, Stefan P, et al. Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res, 1990, 261: 595-606.
    [24]. Utzschneider D, Kocsis J, Devor M. Mutual excitation among dorsal root ganglion neurons in the rat. Neurosci Lett, 1992, 146: 53-6.
    [25].于泽生,马庆军,刘忠军.交感型颈椎病的临床表现、诊断和鉴别诊断.中国全科医学,2001,4 (7):512-513.
    [26].罗金燕,牛春燕.功能性胃肠病和胃肠动力疾病的新概念.中华消化杂志,2002,(22) 9:554-8.
    [27]. Dai.F, Gong J, Zhang R, et al. Assessment of duodenogastric reflux by combined continuous intragastric pH and bilirubin monitoring. World J Gastroenterol, 2002, 8: 382-4.
    [28]. He CL, Burgart, Wang L, et al. Decreased intestinal cell of Cajal volume in patients with slow transit constipation. Gastroenterology, 2000,118:14-21.
    [29]. Champion MC, Orr WC. The future of gastrointestinal motility. In: Champion MC, Orr WC, Evolving concepts in gastrointestinal motility. London: Blackwell Science Ltd, 1996, 324-337.
    [30]. Bonapace ES, Maurer AH, Davidoff S, et al. Whole gut transit scintigraphy in the clinical evaluation of patients with upper and lower gastrointestinal symptoms. Am J Gastroenterol, 2000, 95: 2838-47.
    [31]. Wingate D, Hongo M, Kellow J, et al. Working party report - disorders of gastrointestinal motility: towards a new classification. JGastroenterol Hepatol, 2002, 17 (Suppl): S1-S14.
    [32]. Gilby KL, Armstrong JN, Curre RW, et al. The effects of hypocia-ischemia on expression of c-fos, c-jun and Hsp70 in the young rat hippocampus. Molecular Brain Research, 1997, 48:87.
    [33].章菲菲,莫剑忠.C-fos在胃肠道刺激信号传入研究中的应用.国外医学.消化系疾病分册,2004,24 (1):35-37.
    [34]. Hayashi M, Ueyama T, Nemoto K, et al. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrama, 2000, 17(3): 203-18.
    [35]. Pan JN, Ni L, Sodhi A, et al. Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J Neurosci Res, 2002, 68 (3): 315-22.
    [36]. Yang L, Blumbergs PC, Jones NR, et al. Early expression and cellular localization of proinflammatory cytokines interleukin-lbeta, interleukin-5, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine, 2004; 29(9): 966-71.
    [37]. Fankhauser C, Friedlander RM, Gagliardini V. Prevention of nuclear localization, of activated caspases correlates with inhibition of apoptosis. Apoptosis, 2000, 5(2): 117-32.
    [38]. Fridlander RM, Gagliardini V, Rotello RJ, et al. Functional role of Interleukin-beta (IL-lbeta) in IL-Ibeta converting enzyme-mediated apoptosis. J Exp Med, 1996, 184 (2): 717-24.
    [39]. Ehilich LC, Peterson PK, Hu S. Interleukin (IL)-1beta - mediated apoptosis of human astrocytes. Neuroreport, 1999, 10 (9): 1849-52.
    [40]. Takahashi JL, Giuliiani F, Power C, et al. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol, 2003; 53(5): 588-95.
    [41]. Ferreira SH, Lorenzetti BB, Bristow AF, et al. Interleuk in-1β as a potent hyperalgesic agent by a tripeptid analogue. Nature, 1998,334:698-700.
    [42]. Yasundo Yamasaki , Naosuke Matsuura , Hidetaka Shozuhara , et al. Interleukin—1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke, 1995, 4 (26): 676.
    [43]. Sarah A L, Ma L, Peter B B, et al. Endogenous interleukin—1 receptor antagonist is neuroprotective. Biochem Biophys Res Commun, 1997, 234: 211.
    [44]. Morgan J , Curran T. Stimulus2trinscription coupling in the nervous system: Involvement of the inducible proto2oncogenes fos and jun. Annu Rev Neurosci, 1991, 14: 421.
    [45].时晶,田金洲,朱爱华,等.健脑安对血管性痴呆大鼠海马区IL—1β诱导的c—fos蛋白表达的影响.中国中药杂志,2004,(29)6:570-4.
    [46]. Sasaki C, Kitagawa H, Zhang WR, et al. Temporal profile of cytochromec and caspase 3 immunoreactivities and TUNEL staining after permanent middle cerebralartery occlusion in rats. Neurol Res, 2000,22:223-228.
    [47]. Li M, Ona VO, then M, et al. Functional role and therapeutic implication of neuronal Caspase-1 and - 3 in a mouse model of traumatic spinal cord injury. Neuroscience, 2000,99:333-42.
    [48]. Springer JE, Azbill RD, Knapp PE. Activation of the Caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med. 1999,5:943-6.
    [49]. Nesic O, Xu GY, McAdoo D, et al. IL-1 receptor antagonist prevents apoptosis and Caspase-3 activation after spinal cord injury. J Neurotrauma. 2001,18:947-56.
    [50]. Fankhauser C, Friedlander RM, Gagliardini V. Prevention of nuclear localization of activated Caspases correlates with inhibition of apoptosis, Apoptosis. 2000,5:117-32.
    [51]. Lynch AM, Lynch MA. The age-related increase in IL-1 type Ⅰ receptor in rat hippocampus is coupled with an increase in Caspase-3 activation. Eur J Neurosci. 2002,15:1779-88.
    [52]. Rivlin AS, Talor CH. Objective clinical assment of motor function after experimental spinal cord injury in the rat. J Neurosury, 1977, 47: 4755-57.
    [53]. Miyanmoto S, Yoneenobu K, Keiro O. Experimental cervical spondylosis in the mouse. Spine, 1991,15(510):495-500.
    [54]. Holst MC, Powley TL. Cuprolinic blue (quinolinic phthalocyanine) counterstaining of enteric neurons for peroxidase immunocytochemistry. J Neurosci Methods, 1995; 62: 121-7.
    [55]. Hsu SM, Raine L, Fanger H. The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol, 1981; 75: 816-21.
    [56]. McCormack BM, WeinsteinPR. Cervical Spondylosis: An Update. West J Med, 1996,165:43,51.
    [57]. Hukuda S, Wilson B. Experimental cervical myelopathy: effects Of compression and is chemia On the canine cervical cord. Jneurosurg, 1972,37:631-652.
    [58].赵定麟,陈德玉,沈强,等,实验性颈椎模型的设计.中华外科杂志,1993,31 (3):453.
    [59].朱双明,郑重,黄勇.注射硬化剂法制作家兔颈椎病模型.成都中医药大学学报,2000,23 (3):42.
    [60].陈立,詹红生,成航,等.长时间异常应力负荷下兔椎间盘的组织病理学观察.中国骨伤,2003,16 (6):374.
    [61].郑祖根,沈忆新,董天华.实验性椎动脉闭塞及外科治疗.中华外科杂志,1989:2 (12):732.
    [62].邵宣,许兢斌,史可任,等。实用颈腰背痛学,第一版,北京.人民军医出版 社,1994:77-85.
    [63]. Denis F. The three colum spine and its significance in the classification of acute spinal trauma. Spine, 1983, 8:817.
    [64].傅强,侯铁胜,鲁凯伍,等.大鼠胸段损伤后后肢运动功能不同评价标准的比较.中国脊柱脊髓杂志,2001,(11) 5:278-281.
    [65].陈和木,吴毅文,黄雨初.颈椎前软组织内交感神经分布的实验研究.颈腰痛杂志,1998,(19) 3:170-174.
    [66]. Asamoto K, Tamamaki N, Nojyo Y. Distribution of preganglionic terminals in the cervical sympathetic ganglia detected by the expression of c-Fos like protein after electric stimulation of the ventral root. Kaibogaku Zasshi, 2001, 76: 303-11.
    [67]. Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res, 2001, 907: 117-24.
    [68]. King VM, Apps R. Somatotopical organization of fos-like immunoreactivity in rat cervical spinal cord following noxious stimulation of the forelimb. Neuroscience, 2000,101:179-88.
    [69]. Liu WG, Song JR Lin JJ. Effect of bFGF on c-fos mRNA expression in rats after spinal cord injury. Orthop J Chin, 2000, 7: 1178-1180.
    [70]. Schuligoi R, Jocic M, Heinemann A, et al. Gastric acid-evoked c-fos messenger RNA expression in rat brainstem is signaled by capsaicin-resistant vagal afferents. Gastroenterology, 1998,115: 649-60.
    [71]. Traub RJ, Sengupta JN, Gebhart GF. Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience, 1996, 74: 873-84.
    [72]. Xiong JX, LI HD, Gong FY, et al. Effect of severe burn on expressions of c-fos and somatostatin in brain and their relationship with brain edema in rats. Acta Acaodemiae Medicinae Militaris Tertiae, 2002, 24: 760-763.
    [73]. Presley RW, Menetrey D, Levine JD, Basbaum AI. Systemic morphine suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord. J Neurosci, 1990,10: 323-35.
    [74]. Zheng H, Patterson LM, Berthoud HR. CART in the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake. Brain Res, 2002, 957: 298-310.
    [75].Tolonen J, Gronblad M, Virri J, et al. Oncoprotein c-Fos and c-Jun immunopositive cells and cell clusters in herniated intervertebral disc tissue. Eur Spine J, 2002, 11: 452-8.
    [76]. Kominato Y, Tachibana T, Dai Y, et al. Changes in phosphorylation of ERK and Fos expression in dorsal horn neurons following noxious stimulation in a rat model of neuritis of the nerve root. Brain Res, 2003, 967: 89-97.
    [77]. Sugimoto T, Hara T, Shirai H, et al. c-fos induction in the subnucleus caudalis following noxious mechanical stimulation of the oral mucous membrane. Exp Neurol, 1994, 129:251-6.
    [78].Ueyama T, Saika M, Senba E. Distinct gene expression in the stomach following stress and alcohol exposure. Kaibogaku Zasshi, 2001, 76: 435-41..
    [79]. Ruter J, Kobelt P, Tebbe JJ, et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res, 2003, 991: 26-33.
    [80].Tada H, Fujita M, Harris M, et al. Neural mechanism of acupuncture-induced gastric relaxations in rats. Dig Dis Sci, 2003, 48: 59-68.
    [81].Schicho R, Schemann M, Pabst MA, et al. Capsaicin-sensitive extrinsic afferents are involved in acid-induced activation of distinct myenteric neurons in the rat stomach. Neurogastroenterol Motil, 2003, 15: 33-44.
    [82]. Berthoud HR, Patterson LM, Zheng H. Vagal-enteric interface: vagal activation-induced expression of c-Fos and p-CREB in neurons of the upper gastrointestinal tract and pancreas. Anat Rec, 2001, 262: 29-40.
    [83].Emond M, Schwartz GJ, Moran TH. Meal-related stimuli differentially induce c-Fos activation in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol, 2001,280: R1315-R1321.
    [84]. LI GZ, Han DR, Chu CP, et al. Gastrointestinal tract noxious stimulation-induced fos expression in nucleus of solitary tract, supraoptic nucleus and paraventricular nucleus in rat. Chn J anat, 1998, 21: 317-320.
    [85]. Yakabi K, Iwabuchi H, Nakamura T, et al. Neuronal expression of Fos protein in the brain after intravenous injection of gastrin in rats. Neurosci Lett, 2002, 317: 57-60.
    [86]. Hara BF, Wattson FL, Andretic R, et al. Daily vartion of CNS gene expression in nactural vs diurnal rodentsand in the developing rat brain. Molecular Brain Research. 1997;48:73.
    [87]. Oliveira CLD, Guimaraes FS, Bel EAD. C-junmRNA expression in the hippocampal formation induced by restrain stress. Brain Res. 1997;753:202.
    [88]. Li GL, Brodin G, Farooqu M, et al. Apoptosis andexpression of Bcl-2 after compress trauma to rat spinal cord. J neuropathol Exp Neurol, 1996,55(3):280-289.
    [89]. Li GL, Brodin G, Farooqu M, Olsson Y, et al. Change of Fas and Fasligand immunoreactivity after compression trauma to rat spinal cord. Acta Neuropathol, 2000,100(1):75-81.
    [90]. Crowe MJ, Bresnahan JC, Shuman SL, et al. Apopsis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med, 1997, 3(1): 73-76.
    [91]. Emery E, Aldana P, Bunge MB, et al. Apopsis after trauma tichuman spinal cord injury. J Neurosurg, 1998,89(6):911-920.
    [92].雪亮,杨树源.人脑创伤后神经元凋亡及调节机制观察[J].中华创伤杂志,2003,19(3):160-163.
    [93]. Springer JE, Azbill RD, Knapp PE. Activeion of the Caspase 3 apoptotic cascade in traumatic spinal cord injury. Nat Med, 1999,5(8):943-946.
    [94]. Lisa RL. Molecular biology of thermoregulation invited reviw: cytokine regulation of fever : studies using gene knockout mice. J Appl Physiol, 2002, 92 (6): 2648-2655.
    [95]. NJ Rothwell. Cytokines-killers in the brain. J Physiol, 1999,514 (1): 3-17.
    [96]. Simon C, Pellicer A , Polan ML. Interleukin-1 system crosstalk between embryo and endometrium in implantation. Human Report, 1995, 10 (suppl 2): 43-54.
    [97]. Dinarellot CA. Interleukin-1 Cytokine Growth Factor Reviews, 1997, 8(4):253-265.
    [98]. Lanny J, Rosenwasser MD, Denver Colo. Biologic activites of IL-1 and its role in human disease. J Allergy Clin Immunol, 1998, 102(3): 344-350.
    [99]. Givene FS, Takhsh E, Blakemroe A, et al. Single base polymorphism at 511 in the human interleukin-1β gene. Hum Mol, Genet, 1992, 1 (6): 450.
    [100]. Pociot F, Molving J, Wogensen L, et al. A Taq I polymorphism in the human interleukin-1β gene correlates with IL-1β secretion in vitro. Eur J Clin Invest, 1992, 22(6): 396-402.
    [101]. Cantagrel A, Navaux F, Loubet2Lesscoulie P, et al. Interleukin-1. Interleukin-1 receptor antagonist, interleukin-4, and Interleukin-10 gene polymorphisms. Arthritis Rheum, 1999, 42(6): 1093-1100.
    [102]. Crilly A, Maiden N, Capell HA, et al. Predictive value of interleukin-1 gene polymorphisms for surgery. Ann Rheum Dis, 2000 , 59(9): 695-699.
    [103]. Peolindki GR, Tsung K, Meko JB, et al. In vivo gene therapy of a murine pancreas tumor with recombinant vaccinia virus encoding human interleukin-1 beta. Surgery, 1995, 118 (2): 185-190.
    [104].黄忠,李铁,于言人,等.IL-1 β对大鼠应激性溃疡的胃黏膜损伤的保护作用,生理学报,1995,47(4):313-319.
    [105].杨小玉,朱庆三,赵立君,等。脊髓再灌注损伤后细胞间黏附分子-1和白细胞介素-1β mRNA的表达.中国临床康复,2003,7(20):2669-2774.
    [106]. Wang CX, Olschowka JA, Wrathall JR. Increase Of Interleukin - 1beta mRNA And Protein In The Spinal Cord Following Experimental Traumatic Injury In The Rat. Brain Res, 1997, 759 (2): 190-6.
    [107]. Pan JN, Ni L, Sodhi A, et al. Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J Neurosci Res, 2002, 68 (3): 315-22.
    [108]. Fridlander RM, Gagliardini V, Rotello RJ, et al. Functional role of Interleukin-beta in IL-1 beta converting enzyme-mediated apoptosis. J Exp Med 1996, 184 (2): 717-24.
    [109].庞智玲 李兰英 魏佼,等IL-6、IL-1 β、TNF α对人胎大脑神经细胞c-fos、 c-jun的表达调控 中国免疫学杂志,2000,(16):669—671.
    [110]. Bennett EJ, Evans P, Scott AM, et al. Psychological and sex features of delayed gut transit in functional gastrointestinal disorders, Gut, 2000,46:83-7.
    [111]. Traub RJ, Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain, 2002, 95: 93-102.
    [112]. Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec, 2001, 262: 79-90.
    [113]. Lu Y, Westlund KN. Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res, 2001, 889.
    [114]. Koch KL. A noxious trio: nausea, gastric dysrhythmias and vaso pressin. Neurogastroenterol Motil, 1997, 9: 141-142.
    [115].周吕.胃肠功能性动力疾病发病机制中的生理与病理生理.中国实用内科杂志,2001,21 (10):577-9.
    [116]. Roman C, Gonella T. Extrinsic control of digestive tract motility. [J]. Physiology of the Gastrointestinal Tract. 1981,1:289
    [117]. Woods SC, Taboraky GH Jr, Parte D Jr. Central nervous system control of nutrient homestasis. In: Mount castle VB ed. Handbookof physiology(aection 1, vol Ⅳ). Bethesda: waverly Press, 1986, 365-411
    [118]. Sanders KM.A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996, 111(2): 492-515.
    [119]. Takayama I, Horiguchi K, Daigo Y, Mine T, Fujino MA, Ohno S. The interstitial cells of Cajal and a gastroenteric pacemaker system. Arch Histol Cytol, 2002,65(1):1-26.
    [120]. Burns AJ, Herbert TM, Ward SM, Sanders KM. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 1997,290(1):11-20.
    [121]. Hagger R, Finlayson C, Jeffrey I, Kumar D. Role of the interstitial cells of Cajal in the control of gut motility. Br J Surg. 1997,84(4):445-450.
    [122].Tougas G, Hunt RH, Fitzpatrick D, Upton AR. Evidence of impaired afferent vagal function in patients with diabetes gastroparesis. Pacing Clin Electrophysiol. 1992, 15:1597-1602.
    [123].Camilleri M, Malagelada JR.Abnormal intestinal motility in diabetics with the gastroparesis syndrome.Eur J Clin Invest. 1984, 14:420-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700