空泡流现象的非平衡分子动力学模拟和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体中物体超高速运动的微观机理是现代科技最前沿的研究领域之一,无论在军事还是在民用技术中都具有极高的应用价值,特别是超空泡现象的研究,对水下航行体的减阻效应和超高速鱼雷的设计至关重要,有着重要的科学价值。因此本工作得到了国家自然科学基金项目《超高速流体的汽液相变与界面现象研究》(20473073)的资助。
     本论文运用非平衡分子动力学模拟方法,研究了微观体系条件下流体分子与固体壁面高速相对运动过程中流体流粒子的分布规律、状态性质、界面现象和摩擦情况等,特别是对开放体系超空泡现象的计算机模拟的实现,对超空泡流动中分子运动规律的观察和微观机理的探讨,为真实环境中物体超高速运动的研究提供了重要的基础数据。
     为了逐步深入研究不同体系不同条件下的流动,我们模拟了从简单窄孔到开放体系,从简单分子到甲烷和水等真实流体,从单系统到复合系统等模型,应用NEMD方法计算了流体压力、密度、速度、界面张力、摩擦系数等物理化学性质,通过对流场细节的观察,提出了一系列有关高速流动现象的形成机理,并与宏观流体力学理论进行了关联。
     为了验证分子动力学模拟程序和所建分子模型,本工作首先利用所建立的NEMD模型,代入平衡流动条件,模拟了宏量条件下甲烷的PVT关系,模拟结果与实验测量值或文献模拟值都能较好地吻合,说明本工作的模拟方法和设置基本正确。随后,对微孔无阻碍流进行了非平衡模拟,获得了符合宏观水动力学的模拟结果,验证了模拟程序与模型在非平衡流动模拟中的可行性。
     在上述研究的基础上,通过设定阻碍物模型,模拟计算了受限于窄缝孔中甲烷流体在160K温度、不同力场作用以及不同阻碍物条件下的阻碍流流场细节。模拟结果发现在高速条件下阻碍流会在流经阻碍物时形成高密区和低密区,同时引发相应的压力变化。流速对低密区形成有重要影响;阻碍物前端形态会影响流体两相形成和前端压力梯度,因此钝头阻碍物与其他流线形阻碍物相比将受到更大的压差阻力,但对两相界面表面张力影响不大;增加阻碍物长度或外力场强度会增大两相间表面张力。同时流动中观察到的摆动波现象符合Rayleigh-Taylor理论,表明该模型可以作为数值模拟的补充,研究宏观现象的微观机理。
     为了将流体模型应用到更有实际意义的超空泡流动模拟中,本工作引入了新的开放体系模型。通过将EMD模拟体系与NEMD模拟体系结合,模拟系统由硅酸盐狭缝孔扩展到开放体系,壁面限制作用被消除,外加力场改为恒流速流动,使得流体更为贴近真实流动状念。通过引入局部空化数σ_l概念,模拟体系被划分为多个独立方格,以观察超空泡的形成过程以及不同因素对超空泡现象的影响。模拟结果表明,微观条件下,空泡流的传统判据空化数σ<0.1仍然成立。产生低局部空化数的σ_l区域与实际上的空泡发生区域在空间上并不重叠;低σ_l区域可以引起微小气泡的形成,虽然并不足以成为气化核,但也能给流体带来周期性的密度降;当低σ_l区域在运动速度方向上的尺度达到2流体分子直径时,可以在其后方形成稳定的超空泡;水下物体运动速度是引起超空泡的决定因素。
     在以上模拟工作成功的基础上,进行了水分子的超空泡模拟,试图进一步挖掘该模型的实用价值。应用SPC/E水分子模型,模拟并研究了不同空化器设置和不同运动速度下,超空泡流动的密度分布、局部空化数分布、空泡含气百分比和表面摩擦系数,并于数值模拟结果进行了对比。统计结果表明,平头空化器在相同流速条件下较为容易产生优良超空泡,空泡内含气百分比较高,能进一步降低壁面摩擦力。空化器外形对减阻效应有很大影响;超空泡现象可以降低航行体50%-90%的表面摩擦力。同时通过与数值模拟结果的对比,验证了模型的可行性。
     本论文完成了既定的研究目标,为日后进一步研究更加复杂和更加实际的空泡流体系,以及为研究流体复杂流动状态的微观机理提供了有力的研究工具。
This work is financially supported by National Natural Science Foundation of China Project 20473073. This project was aimed to study high-velocity flow mechanism in molecular scale, which was very important in both industrial and military application. One of the most important phenomena was supercavitation, which directly affect the research progress on high-velocity torpedo. The traditional experiment and numerical simulation were unable to provide insight for molecular scale flow, so we involve Non-equilibrium Molecular Dynamics simulation to study these phenomena.
     In this work, we studied multiple flows in micro scale system and their molecular distribution, physical and chemical properties and interfacial behaviors. Particularly the simulations for open system supercavitation studied molecular scale mechanism and behavior of this phenomena, provided valuable data for supercavitation study in real system.
     In order to study flow in different systems and conditions, our simulation configuration varied from simple slitpore to open system, from simple LJ particle to real molecule like methane and water, from simple system to dual systems coupling. NEMD methods were applied to calculate fluid properties like pressure, density, velocity, interfacial tensor and friction coefficient. By studying detail data in flow field, several mechanism about high-velocity flow were found and associated with macro scale fluid dynamics.
     In order to verify the simulation model and NEMD program, methane fluid was studied in macro volume system using Equilibrium Molecular Dynamics conditions for its PVT relation. The result agreed with previous literature. Also force field driven flows in slitpore were studied using NEMD, the results were agreeable with hydrodynamics theory, showing the program was able to reproduce and predict flow phenomena in molecular scale.
     With verified model, we simulated different obstructed methane flows in slitpore, under 160K. Different driving force fields and shape of obstacles were applied to investigate their effect on flow field detail. Simulation results showed that under high-velocity, obstructed flow would form high-density and low-density area around obstacle, causing corresponding reaction on pressure. Flow velocity was the critical factor on the formation of low-density area, which can be treated as a diluted phase. Front shape of obstacle would affect the formation of diluted phase and frontal pressure gradient but has less effect on interfacial tensor. Thus flat-head obstacle was receiving more frontal drag force from press gradient. Increasing the length of obstacle or driving force field intensity would greatly increasing the system press, preventing gas phase to form. Oscillation wave was predicted in the simulation and agreed with Rayleigh-Taylor criterion, provided a molecule scale insight for macro scale flow phenomena.
     Since supercavitation drag reduction was very important for both industrial and military application, we introduced open system model to expand our simulation from slitpore. By coupling EMD simulation with NEMD simulation, confine effect of wall boundary was removed, and constant flow velocity could be used instead of driving force field, making the whole simulation system better reflect flow in real circumstance. By introducing local cavity numberσ_l, simulation cell was divided into multiple bins in order to study the formation of cavitation. Simulation results showed that the conversional cavity criterionσ<0.1 was applicable in molecule scale. Lowσ_l area was spatially separated with actually cavity, and generating micro bubble that was quickly filled with surrounding fluids. These bubbles were not able to nucleate for gas phase but still causing periodical density drop. When lowσ_l area developed beyond 2 fluid molecular diameter, stable supercavitation would like to form. Velocity of underwater object was the critical factor for supercavitation.
     With valid model for supercavitation simulation, we carried out cavity flow for water. By applying SPC/E water molecular model, different cavitators and object velocities were simulated. Local density profile, local cavity number profile, gas volume percentage of cavity and skin friction coefficient was recorded and compared with numerical simulation result. Results showed that flat-head cavitator was easer to generate cavity with high gas percentage, hence further lowing friction under similar σthan other streamline cavitators. Drag reduction of supercavitation can range from 50% to 90% depending on different shapes of cavitator.
     In this work, we have reached our aim to create a theory tool for studying flow mechanism in molecular scale. This work will benefit consequent works, which can focus on more complicated cavitation flow setup.
引文
1.Levi-Civita,T.,Scie eleggi di resistenzia,Rend.Circ.Mat.Palermo,1907,18,1-37.
    2.Villat,H.,Sur la validitedes solutions de certains problemes d'hydrodynamique,J.Math.,Pures Appl.,1914,10,231-290.
    3.Riabouchinsky,D.,On steady flow motions with free surfaces,Proc.London Math.Soc.,1920,19,206-215.
    4.Kreisel,G.,Cavitation with finite cavitation numbers,Admirally Res.Lab.Rep.,R1/H/36,1946.
    5.Joukowshy,N.E.,I.A modification of Kirchhoff's method of determining a two-dimensional motion of a fluid given a constant velocity along an unknown streamline,Ⅱ.Determination of the motion of a fluid for any condition given on a streamline,Mat.Sbornik(Rec.Math.),1890,15,121-278.
    6.Wu,T.Y.,A wake model for free streamline theory,part 1:Fully and partially developed wakeflows and cavity flows past an oblique flat plate,J.Fluid Mech.,1962,13,161-181.
    7.Apelt,D.J.,Some studies of fluid flow at low Reynolds numbers,Thesis,Oxford Univ.,1957.
    8.Tulin,M.P.,Supercavitating flows-small perturbation theory,J.Ship Res.,1964,7,16-37.
    9.Nesteruk,I.;Influence of the flow unsteadiness,compressibility and capillarity on long axisymmetric cavities,Fifth International Symposium on Cavitation,Osaka,Japan,2003
    10.Silberman,E.;Song,C.S.Instability of ventilated cavities,J.Ship.Res.,1961,6,13-33
    11.Kubota,A.;Kato,H.;Yamaguchi,H.;Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique,J.Fluids Eng.,1989,111,204-210
    12.Stutz,B.;Reboud,J.L.,Two-phase flow structure of sheet cavitation,J.Phys.Fluids,1996,9,3678-3686
    13.Oba,R.;Ikohagi,T.;Yasu,S;Supercavitating cavity observations by means of laser velocimeter,J.Fluids Eng.,1980,102,433-439
    14.Vrghese,A.N.;Uhlman,J.S.;Kirsehner,I.N.;Axisymmetrie slender body analysis of supercavitating high-speed bodies in subsonic Flow,Proceeding of the Third International symposium on Performance enhancement for marine applications,T.Gieseke,editor,NewPort,RI.1997
    15.Chou,Y.S,Axisymmetrie cavity flows past slender bodies of revolution,J.Hydronautiea, 1974,12,76-89
    16.Vladimir V.;Some models of predietion supercavitation flows based on slender body approximation,Cav2001.Session B3.001,2001
    17.Krsehner,I.N.;Uhlman,J.S.;Varghese,J.S.;Kuria,I.M.Super-caviting projectiles in axisymmetric Subsonic Liquid Flows,Proceeding of the ASME&JSME Fluids Engineering Annual Conference & Exhibition,Cavitation and Multi Phase Flow Forum,FED210,Katz and Y.Matsumoto,editors,Hilton Head Island,SC.1995
    18.Uhalman,J.S.;The surface singularity method applied to partially cavitating hydrofoils,J.Ship Res.,1987,37,23-36
    19.Uhlman,J.S.;The surface singularity or boundary integral method applied to supercavitating hydrofoils,J.ship Res.,1989,31,51-65
    20.Kinnas,S.A;Fine,N.E.Nolinear analysis of the flow around partially and Super-cavitating hydrofoils by a potential based panel method,Proeeeding of the IAMBEM-90 symposium,International for boundary element methods,Rome,Italy.1990
    21.Rankine,W.J.,On the mathematical theory of streamlines especially those with four foci andupwards,Phil.Trans.,1871,161,267-304.
    22.Reichardt,H.;Munzner,H.,Rotationally symmetric source-sink bodies with predominantly constant pressure distributions,Arm.Res.Est.Trans.,1950.
    23.Doctors,L.J.,Effects of a finite froude number on a supercavitating hydrofoil,J.Ship Res.,1986,30,1-11.
    24.Lee,C.S.;Kim,Y.G.;Lee,J.T.,A potential-based panel method for the analysis of atwo-dimensional super-or partially-cavitating hydrofoil,J.Ship Res.,1992,36,,168-181.
    25.Kawanami,Y.;Kato,H.;Yamaguchi,H.;Tanimura,M.;Tagaya,Y.;Mechanism and control of cloud cavitation,J.Fluids Eng.,1997,119,788-794.
    26.Senocak,I.;Shyy,W.,A pressure-based method for turbulent cavitating flow computations.31st AIAA Fluid Dynamics Conference and Exhibit,AIAA 2001-2907.2001
    27.Senocak,I.;Shyy,W.;Numerical simulation of turbulent flows with sheet cavitation.CAV2001,Proceedings of the Forth International Symposium on Cavitation,Paper No.CAV2001A7.0022001,California Institute of Technology,Pasadena,CA,USA.June 20-23,2001
    28.Venkateswaran,S.;Lindau J.W.;Kunz R.F.;Merkle C.L.;Preconditioning algorithms for the computation of multiphase mixture flows.AIAA 39th Aerospace Sciences Meeting and Exhibit,Paper No.2001-0125,2001.
    29.Kunz,R.F.;Chyczewski,T.S.;Boger D.A.;Stinebring,D.R.;Gibeling,H.J.,Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies.ASME Paper FEDSM99-7364,Proceedings of the Third ASME/ JSME Joints Fluids Engineering Conference,1999.
    30.Kunz,R.F.;Boger,D.A.;Stinebring,D.R.;Chyczewski,T.S.;Lindau,J.W.;Gibeling,H.J.;Venkateswaran,S.;Govindan,T.R.;A preconditioned Navier-Stokes method for twophase flows with application to cavitation prediction.Comput.Fluids,2000,29,849-875.
    31.Ahuja,V.;Cavallo,PA.;Hosangadi,A.,Multi-phase flow modeling on adaptive unstructured meshes.AIAA Fluids 2000 and Exhibit,Paper No.AIAA-2000-2662,Denver,Colorado,2000.
    32.Kinnas,S.A.;Fine,N.E.,A numerical non-linear analysis of the flow around two-and three-dimensional partially cavitating hydrofoils,J.Fluid Mech.,1993,254,151-181.
    33.Kinnas,S.A.;Mishima,S.;Villeneuve,R.,A viscous/inviscid analysis method for cavitating flows on two and three Dimensions,CAV'95 International Conference,Deauville,France,1995
    34.Nishiyama,H.;Nishiyama,T.,Dynamic transfer characteristics of partially cavitated hydrofoil cascade,Organ.Comm.,1980,1,243-254.
    35.Nishiyama,H.;Nishiyama,T.,Dynamic responses of partially cavitated hydrofoil cascade to axial gust in bubbly water,J.Fluids Eng.,1984,106,312-318.
    36.Efremov,I.I.;Semenenko,V.N.,Calculation of the unsteady-state hydrodynamic characteristics of a thin-airfoil cascade in a gas flow,Gidromekhanika,1975,31,3-14.
    37.Semenenko,V.N.,Instability of a plane ventilated supercavity in an infinite stream,Fluid Mech.Res.,1996,23,134-143.
    38.Semenenko,V.N.,Computer modeling of pulsations of ventilated supercavities,International Journal of Fluid Mechanics Research,1996,23,302-312.
    39.Semenenko,V.N.,Instability and oscillation of gas-filled supercavities,Third International Symposium on Cavitation,Grenoble,France,1998
    40.Boulon,O.;Chahine,G.L.,Numerical simulation of unsteady cavitation on 3D hydrofoil, Third International Symposium on Cavitation,Grenoble France.1998.
    41.Berntsen,G.S.;Kjeldsen,M.;Arndt,R-E.A.,Numerical modeling of sheet and tip vortex cavitation with Fluent 5,Fourth International Symposium on Cavitation:session B5.006,2001.
    42.董世汤,“有厚度水翼局部空泡流的理论解”,中国造船,1983,15-27.
    43.赵键,汪鸿振,朱物华,“关于空泡动力学方程精确度的分析”,中山大学学报(自然科学版),1994,33,13-18.
    44.Yang,Z.M.;Ding,Y.J.,Comparison of results on cavitation inception for checking the scale effects,Journal of Hydrodynamics,2004,16,308-311.
    45.朱小敏,颜开,江汉明,“空泡及分离尾流对细长回转体附加质量影响的试验研究”,船舶力学,1998,2(5),28-34.
    46.谢正桐,何友声,朱世权,“零攻角和小攻角下带空泡轴对称细长体的水动力计算”,水动力学研究与进展,A,1996,11(6),681-689.
    47.谢正桐,何友声,“小攻角下轴对称细长体的充气肩空泡试验研究”,实验力学,1999,14,(3),279-287.
    48.谢正桐,何友声,朱世权,“小攻角带空泡细长体的试验研究”,水动力学研究与进展,A辑,2001,16,374-381.
    49.Feng X.M.;Lu C.J.;Hu T.Q.,Experimental research on a supercavitating slender body of revolution with ventilation,J.Hydrodynamics,Ser.B,2002,14(2),17-23.
    50.颜开,史淦君,薛晓中等,“用Mackey方法计算鱼雷带空泡航行时的入水弹道”,弹道学报,1998,10(2),93-96.
    51.刘桦,刘庆华,胡大群,“带空泡轴对称细长体水动力脉动的实验研究”,水动力学研究与进展,A,2004,19,(6),794-800.
    52.Huang H.L.;Wang C.;Huang W.H.;LI N.,Experimental investigation of pressure distribution in ventilated supercavity of underwater vehicle model,Journal of Harbin University of Commerce,2007,23,188-221
    53.刘磊,The Research of Supercavitating Shape and Drag and Optimizing Cavitator Shape,硕士学位论文,2007,哈尔滨工业大学
    54.Cao,W.;Wang,C.;Wei,Y.J.;Zou,Z.Z.;HIGH-SPEED PROJECTILE EXPERIMENTAL INVESTIGATIONS ON THE CHARACTERISTICS OF NATURAL SUPERCAVIATION, Engineering Mechanics,2006,23,175-187
    55.程晓俊,鲁传敬,“二维水冀的局部空泡流研究”,应用数学和力学,2002,21(12),1310-1318.
    56.Cheng;X.J.;Lu,C.J.;On the Partially Cavitating Flow Around Two-DimensionalHydrofoils,Applied Mathematics and Mechanics,2000,21(12),1450-1459.
    57.冷海军,鲁传敬,“轴对称体的局部空泡流研究”,上海交通大学学报,2002,36(3),395-398.
    58.Wu L.;Lu C.J.,An approach in modeling two-dimensional partially cavitation flow,J.Hydrodynamics,Ser.B,2002,14(1),45-51.
    59.吴磊,“空泡流数值模拟”,上海交通大学博士学位论文,2002.
    60.邓丽梅,鲁传敬,薛雷平,“单流体变特性模型的定常局部空泡流数值模拟”,上海交通大学学报,2003,37(4),544-547.
    61.傅慧萍,鲁传敬,吴磊,“回转体空泡流特性研究”,水动力学研究与进展,A辑,2005,20,(1),84-89.
    62.Fu,H.P.;Lu,C.J.;Li,J.,Numerical research on drag reduction characteristics of supercavitating body of revolution,J.Ship Mech.,2004,8(3),1-7.
    63.Jia L.P.;Wang C.;Wei Y.J.,Numerical simulation of artificial ventilated cavity,J.Hydrodynamics,Ser.B,2006,18(3),273-279.
    64.贾力平,张嘉钟,于开平,“空化器线形与超空泡减阻效果关系研究”,船舶工程,2006,28(2),20-23.
    65.Huang,H.L.;Huang,W.H.;Wang,C.;Huang,Q.X.;Huang,W.,Numerical analysis of the influence of angle of ventilation on the shapes of shapes of supercavity,Eng.Mech.,2007,24,195-208
    66.Xiang,Q.R.;Yang,B.;Yin S.P.;WANG Z.J.;Experimental Computer Simulation of Supercavitating Undersea Vehicle,Torpedo Technology,2003,11,(3) 14-17
    67.汤继斌,钟诚文,“空化、超空化流动的数值模拟方法研究”,力学学报,2005,37(5),640-644.
    68.Rosenbluth,M.N.;Further results on monte carlo equations of state,J.Chem.Phys.,1954,22,881-884
    69.Carnahan,N.F.;Starling K.E.,Equation of state for nonattracting rigid spheres,J.Chem.Phys.1969,51,635-636
    70.Tildesley,D.J.;Streett,W.B.,An equation of state for hard dumbbell fluids,Molec.Phys.,1980,41,85-94
    71.Zhang,B.J.;Liang,S,Q,;Lu,Y.H.,Calculating thermodynamic properties from perturbation theory Ⅱ.An analytic representation for the square-well chain fluid,Fluid Phase Equilibria,2001,180,183-194
    72.Henderson,D.;Madden,W.G.;Fitts,D.D.,Monte Carlo and hypernetted chain equation of state for the square-well fluid,J.Chem.Phys.,1976,64,5026-5034
    73.Tavares,F.W.;Chang,J.C.;Sandler,S.I.;A completely analytic equation of state for the square-well chain fluid of variable well width,Fluid Phase Equilibria.,1997,140,129-143
    74.Alder.B.J.;Wainwright,T.E.;Studies in Molecular Dynamics.Ⅱ.Behavior of a Small Number of Elastic Spheres,J.Chem.Phys.,1960,33,1439-1451
    75.Hoover,W.G.;Ladd,A.J.C.;Moran,B.;Argon shear viscosity via a Lennard-Jones potential with equilibrium and nonequilibrium molecular dynamics,Phys.Rev.Lett.,1973,31,206-208
    76.Nose,S.,A unified formulation of the constant temperature molecular dynamics methods,J.Chem.Phys.,1984,81,511-519
    77.Berendsen,H.J.C.;Postma,J.P.M.;van Gunsteren,W.F.;DiNoLa,A.;and Haak,J.R.;Molecular dynamics with coupling to an external bath,J.Chem.Phys.,1984,81,3684-3690
    78.Lee,A.W.;Edwards,S.F.;The computer study of transport processes under extreme conditions,J.Phys.C:Solid State,1972,5,1921-1929
    79.D.J.Evans,G.P.Morris,Statistical Mechanics of Nonequilibrium Liquids,Academic,London,1990.
    80.冯晓利,李志信,过增元.“导热系数的分子动力学模拟研究及相关问题的探讨”.工程热物理学报,2001,22(2):195-198.
    81.冯晓利,李志信,梁新刚,过增元.“纳米薄膜导热系数的分子动力学模拟”.科学通报,2000,45(19):2113-2117.
    82.杨决宽,陈云飞,颜景平.“超晶格纳米线热传导的分子动力学模拟”.中国科学E辑,2003,33(5):429-434.
    83.M(u|¨)ller-Plathe,F.;A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity.J.Chem.Phys,1997,106,6082-6085.
    84.Zhang,M.M.;Lussetti,E;Souza,L.E.S.;M(u|¨)ller-Plathe,F.;Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics.J.Chem.Phys.B,2005,109:15060-15067.
    85. Yasuoka, K.; Matsumoto, ML; Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid., J. Chem. Phys., 1998, 109:8451-8462.
    86. Yasuoka, K.; Matsumoto, M.; Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water., J. Chem. Phys., 1998, 109, 8463-8470.
    87. Viisanen, Y.; Stray, R., Homogeneous nucleation rates for water. J. Chem. Phys., 1993, 99. 4680-4692.
    88. Ikeshoji, T.; Hafskjold, B., Molecular dynamics simulation for the cluster formation process of Lennard-Jones particles: Magic numbers and characteristic features, J. Chem. Phys., 1996, 105,5126-5137.
    89. Ikeshoji, T.; Hafskjold, B., Molecular dynamics simulation for the formation of magic-numbers cluster with the Lennard-Jones potential, Phys Rev Lett, 1996, 76: 1792-1795.
    90. Travis, K.P.; Todd, B.D; Evans, D.J., Poiseuille flow of molecular fluids, Physica A, 1997, 240, 315-327
    91. MacElroy, J.M.D.; Boyle, M.J; Nonequilibrium molecular dynamics simulation of a model carbon membrane separation of CH4/H2 Mixtures. Chem. Eng. J., 1999, 74, 85-97
    92. MacElroy, J.M.D.; Suh, S.H.; Equilibrium and nonequilibrium molecular dynamics studies of diffusion in model one-dimensional micropores. Microporous and Mesoporous Mater., 2001, 48,195-202
    93. Vieira-linhares, A.M.; Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane, Chem. Eng. Sci., 2003, 58, 4129-4136
    94. Heffelfinger, G.S.; van Swol, E, Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular-dynamics simulation (DCV-GCMD). J. Chem. Phys., 1994, 100, 7548-7552
    95. Xu, L.; Tsotsis, T.T, Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores, I. Basic results, J. Chem. Phys., 1999, 111, 3252-3264
    96. Furukawa, S.; Shigeta, T.; Nitta, T., Non-equilibrium molecular dynamics for simulating permeation of gas mixtures through nanoporous carbon membrane, J. Chem. Eng. Jpn., 1996, 29, 725-728
    97. Hoover, W.G.; Evans, D.J.; Hichman, R.B.; Ladd, A.J.C; Moran, B., Lennard-Jones triple-point bulk and shear viscosities: Green-Kubo theory, Hamiltonian mechanics and non-equilibrium molecular dynamics, Phys. Rev. A, 1980, 22, 1690-1697
    98. Ladd, A.J.C., Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids, Mole. Phys., 1984, 53, 459-463
    99. Evans, D.J.; Morriss, G.P. Non-Newtonian molecular dynamics, Comput. Phys. Rep., 1984, 1, 297-343
    100. Akhmatskaya, E.; Todd, B.D.; Daivis, P.J.; A study of viscosity in homogeneity in porous media, J. Chem. Phys., 1997, 106,4684-4695
    101. Miyahara, M.; Yoshioka, T.; Okazaki, M.; Determination of adsorption equilibria in pores by molecular dynamics in a unit cell with imaginary gas phase, J. Chem. Phys, 1997, 106, 8124-8134
    102. Miyahara, M.; Kanda, H.; Yoshioka, T.; Okazaki, M.; Modeling Capillary Condensation in Cylindrical Nanopores: A Molecular Dynamics Study, Langmuir, 2000, 16, 4293-4299
    103. Xu, L.F.; Sahimi, M.; Tsotsis, T.T.; Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures, Phys. Rev. E, 2000, 62, 6942-6948
    104. Travis, K. P.; Gubbins, K. E.; Poiseuille flow of Lennard-Jones fluids in narrow slit pores, J. Chem. Phys., 2000, 112, 1984 -1994
    105. Thomas, T.G.; Williams, J.J.R.; Simulation of skewed turbulent flow past a surface mounted cube, J. Wind. Eng. Ind. Aerodyn. 1999, 81, 347-360
    106. Olveczky, B.P.; Verkman, A.S.; Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles, Biophys. J., 1998, 74, 2722-2730
    107. Gao, J.P.; Luedtke, W.D.; and Landman, U., Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribology Lett., 2000, 9, 3-13
    108. Rapaport, D.C.; Clementi, E.; Eddy formation in obstructed fluid flow: a molecular-dynamics study, Phys. Revi. Lett., 1985, 57, 695-698
    109. Mi, X.B.; and Chwang, A.T., Molecular dynamics simulations of nanochannel flows at low Reynolds numbers. Molecules, 2003, 8, 193-206
    110. Leherte, L; Lie, G.C.; Swamy, K.N.; Determination of the self-diffusion coefficient of water in ferrierite by molecular dynamics, Chem. Phys. Lett., 1988, 145, 237-241
    111. Yashonath, S.; Demontis, P.; Klein, M.L.; A molecular dynamics study of methane in zeolite NaY, Chem. Phvs. Lett., 1988, 153, 551-556
    112. Demontis, P.; Yashonath, S.; Klein, M.L.; Localization and mobility of benzene in sodium-Y zeolite by molecular dynamics calculations, J. Phys. Chem., 1989, 93, 5016-5019
    113. Woods, G.B.; Rowlinson, J.S.; Computer simulations of fluids in zeolites X and Y, J. Chem. Soc., Faraday Trans., 1989, 85, 765-781
    114. Smit, B.; Den Ouden, C.J.J.; Monte Carlo simulations on the relation between the structure and properties of zeolites: the adsorption of small hydrocarbons, J. Phys. Chem., 1988, 92: 7169-7171
    115. den Ouden, C.J.J.; Smit, B.; Wielers, A.F.H.; Monte Carlo simulation of the adsorption of methane in zeolites, Molec. Sim., 1989, 4: 121-136
    116. June, R.L.; Bell, A.T.; Theodorou, D.N.; Prediction of low occupancy sorption of alkanes in silicalite, J. Phys. Chem., 1990, 94,1508-1516
    117. June, R.L.; Bell, A.T.; Theodorou, D.N.; Molecular dynamics study of methane and xenon in silicalite, J. Phys. Chem., 1990, 94: 8232-8240
    118. Demontis, P.; Fois, E.S.; Suffritti, G.B.; Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite, J. Phys. Chem., 1990, 94, 4329-4334
    119. Kvamme, B.; Kuznetsova, T.; Hydrate dissociation in chemical potential gradients: theory and simulations, Fluid Phase Equilibria, 2004, 217, 217-226
    120. Rodger, P.M.; Forester, T.R.; Smith, W.; Simulations of the methane hydrate/methane gas interface near hydrate forming conditions, Fluid Phase Equilibria, 1996, 116, 326-332
    121. Titiloye, J.O.; Skipper, N.T.; Computer simulation of the structure and dynamics of methane in hydrated Na-smectite clay, Chem. Phys. Lett. 2000, 329, 23-28
    122. Vishnyakov, A.; Neimark, A.V.; Specifics of freezing of Lennard-Jones fluid confined to molecularly thin layers, J. Chem. Phys., 2003, 118, 7585-7598
    123. Shevade, A.V.; Jiang, S.Y.; Gubbins, K.E.; Molecular simulation study of water-methanol mixtures in activated carbon pores, The Journal of Chemical Physics, 2000, 113, 6933-6942
    1.Haile,J.M.,Molecular dynamics simulation;elementary methods,Wiley,1992
    2.Martin,J.F.,A practical introduction to the simulation of molecular systems,(Cambridge University Press),世界图书出版公司,北京,1999
    3.Daw,M.S.;Baskes,M.I.;Embedded-atom method:Derivation and application to impurities,surfaces and other defects in metals.Phys.Rev.B,1984,29,6443-6453
    4.Daw,M.S.;Baskes,M.I.,Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals.Phys.Rev.Lett.,1983,50,1285-1288
    5.Baskes,M.I.;Modified embedded-atom potentials for cubic materials and impurities.Phys.Revi.B,1992,46,2727-2742
    6.Mishin,Y.;Mehl,M.J.;Papaconstantopoulos,D.A.;Voter,A.F.;Kress.J.D.;Structural stability and lattice defects in copper:Ab initio,tight-binding,and embedded-atom calculations.Phys.Rev.B,2001,63,224106
    7.Zope,R.R.;Mishin.Y.;Interatomic Potentials for atomistic simulations of the Ti-Al system.Phys.Revi.B,2003,68,024102
    8.Finnis,M.W.;Sinclair.J.E.;A simple empirical N-body potential for transition metals.Phil.Mag.A,1984,50,45-55
    9.Sutton,A.P.;Chen,J.,Long-range Finnis-Sinclair potentials.Phil.Mag.Lett.,1990,61:139-146
    10.Schmid,M.;Holfer,W.;Stoltze,P.;Jacobse,K.W.;Norskov.J.K.,Surface stress,surface elasticity,and the size effect in surface segrenation.Phys.Rev.B,1995,51,10937
    11.Ercolessi,F.;Parrinello,M.;Tosattim,E.;Simulation of gold in the glue model,Phil.Mag.A,1998,58:213-226
    12.Allen,M.P.;Tildesley,D.J.,Computer simulation of liquid.Oxford:Clarendon press,1987
    13.Frenkel,D.;Smit,B.,“分子模拟:从算法到应用”,化学工业出版社,北京,2002
    14.Verlet,L.;Computer "experiments" on classical fluids,I.Thermodynamical properties of Lennard-Jones molecules,Phys.Revi.,1967,59(1),98-103
    15.Butler,B.D.;Ayton,G.;Jepps,O.G.;Evans,D.J.;J.Chem.Phys.1998,109,6519-6522
    16. Berrendsen, H.J.C.; Postma, J.P.M.; Molecular Dynamics with Coupling to an external Bath, J. Chem. Phys., 1984, 81, 3684-3690
    17. S. Nose.; A molecular dynamics method for simulations in the canonical ensemble. Mole. Phys., 1984, 52, 255-268
    18. Hoover, W.G.; Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31,1695-1697
    19. Melchionna, S.; Ciccotti, G.; Holian, B.L.; Hoover NPT dynamics for systems varying in shape and size. Mole. Phys. 1993, 78, 533-544
    20. Meineke, M. A., OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics, J Comp. Chem., 2004, 26, 252-271
    21. De Leeuw S.W.; Perram J.W.; Smith E.R.; Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constant. Proc Roy Soc Lond , 1980 ,373, 27-56
    22. Neumann M.; Dipole moment fluctuation formulas in computer simulations of polar systems. Mol Phys, 1983, 50, 841-858
    23. Hockney, R.W., Eastwood, J.W. Computer simulation using particles, McGraw-Hill, New York, 1981
    24. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E., Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087-1092
    25. Peter A.; Thompson, Sandra M.; Troian, A general boundary condition for liquid flow at solid surfaces, Nature, 1997, 389, 360-362
    26. Miyahara, M.; Yoshioka, T.; Okazaki, M.; Determination of adsorption equilibria in pores by molecular dynamics in a unit cell with imaginary gas phase, J. Chem. Phys., 1997, 106:8124
    27. Bitsanis, I.; Magda, J.J.; Tirrell, M.; Davis, H.T.; Molecular dynamics of flow in micropores, J. Chem. Phys., 1987, 87,1733-1750
    28. Liem, S.Y.; Brown, D.; Clarke, J.H.R.; Investigation of the homogeneous-shear nonequilibrium- molecular-dynamics method, Phys, Revi. A, 1992, 45, 3706-3713
    29. Zhang H.; Zhang, B.J.; Liang, S.Q; Lu, Y.H.; Hu, W.X.; Jin, Z.J.; Shear viscosity of simple fluids in porous media: molecular dynamic simulations and correlation models, Chem. Phys. L., 2001,350, 247-252
    30. Wang, J.W.; Andrey G.K.; Kirkpatrick, R.J.; Hou, X.Q.; Molecular Modelling of the Structure and Energetics of Hydrotalcite Hydration, Chem. Mater., 2001, 13, 145-150
    31. Kalinichev A.G.; Wang, J.W.; Kirkpatrick, R.J.; Molecular Dynamics Simulation of Layered Double Hydroxides, AIChE Symp. Ser., 2001, 325, 251-255
    32. Miyahara, M.; Kanda, H.; Yoshioka, T.; Okazaki, M.; Modelling Capillary Condensation in Cylindrical Nanopores: A Molecular Dynamics Study, Langmuir, 2000, 16, 4293-4299
    33. Fan, X.J.; Phan-Thien, N.; Yong, N.T.; Xu D., Molecular dynamics simulation of a liquid in a complex nano channel flow, Phys. Fluids, 2002, 14(3), 1146-1153
    34. Rowlinson, J. S.; The lattice energy of ice and the second virial coefficient of water vapour, Trans.Faraday Society, 1951, 47, 120-129
    35. Ben-Nairn, A.; Stillinger, F. H.; Structure and Transport Processes in Water and Aqueous Solutions, R.A.Borne, John Wiley and.Sons, Inc., Interscience Division, New York, 1972
    36. Rahman, A.; Stillinger, F. H.; Molecular Dynamics Study of Liquid Water, J.Chem. Phys., 1971, 55, 3336-3359
    37. Berendsen, H. J. C. ; MC and MD on water, Orsay Cecam Workshop, France, 1972
    38. Stillinger, F. H.; Rahman, A.; Improved simulation of liquid water by molecular dynamics, J. Chem. Phys., 1974, 60, 1545-1557
    39. Matsuoka, O.; Clementi, E.; Yoshimime, M.; CI study of the water dimer potential surface, J. Chem. Phys., 1976, 64, 1351-1361
    40. Impey, R. W.; Klein, M. L.; McDonald, I. R.; Molecular dynamics studies of the structure of water at high temperatures and density, J. Chem. Phys., 1981, 74, 647-652
    41. Berendsen, H. J. C; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J.; Intermolecular Forces, B. Pullmann Ed., Reidel, Dordrecht, 1981
    42. Berendsen, H. J. C; Grigera, J. R.; Straatsma, T. P.; The Missing Term in Effective Pair Potentials, J. Phys. Chem., 1987, 91(24), 6269-6271
    43. Carravetta, V; Clementi, E., Water-Water Interaction Potential: An Approximation of the Electron Correlation Contribution by a Function of the SCF Density Matrix, J. Chem. Phys., 1984,81,2646-2651
    44. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys., 1983, 79, 926-935.
    45. Jorgensen, W. L., Optimized Intermolecular Potential Functions for Liquid Alcohols, J. Phys. Chem., 1986, 90, 1276-1284.
    46. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.; Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys., 1983, 79, 926-935
    47. Liu, Y.; Ichiye, T.; Soft Sticky Dipole Potential for Liquid Water: A New Model, J. Phys. Chem., 1996, 100,2723-2730
    48. Mattson, W; Rice, B.M.; Near-neighbor calculations using a modified cell-linked list method. Comp. Phys. Comm., 1999, 119, 135-148
    49. Wolff, D.; Rudd, W.G.; Tabulated potentials in molecular dynamics simulations. Comp. Phys. Comm., 1999, 120,20-32
    1. Brovchenko, I.; Geiger, A.; Oleinikova, A.; Phase equilibria of water in cylindrical nanopores, Phys. Chem. Chem. Phys. 2001, 3, 1567-1569
    
    2. Miyahara, M.; Yoshioka, T.; Okazaki, M.; Determination of adsorption equilibria in pores by molecular dynamics in a unit cell with imaginary gas phase, J. Chem. Phys., 1997, 106, 8124-8134
    
    3. Akhmatskaya, E.; Todd, B.D.; Daivis, P.J.; Evans, D.J.; Gubbins, K.E.; and Pozhar, L.A.; A study of viscosity inhomogeneity in porous media, J. Chem. Phys., 1997, 106, 4684-4695
    
    4. Warne, M.R.; Allan, N.L.; Cosgrove, T.; Computer simulation of water molecules at kaolinite and silica surfaces, Phys. Chem. Chem. Phys., 2000, 2, 3663-3668
    
    5. Thomas, T.G; Williams, J.J.R.; Simulation of skewed turbulent flow past a surface mounted cube, J. Wind, Eng. Ind. Aerodyn. 1999, 81, 347 -360
    
    6. Olveczky, B.P.; Verkman, A.S.; Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles, Biophys. J., 1998, 74, 2722-2730
    
    7. Mi, X.B.; and Chwang, A.T., Molecular dynamics simulations of nanochannel flows at low Reynolds numbers. Molecules, 2003, 8, 193-206
    
    8. Moseler, M.; Landman, U.; Formation, stability, and breakup of nanojets, Science, 2000, 289, 1165-1169()
    
    9. Rapaport, D.C.; Clementi, E.; Eddy formation in obstructed fluid flow: a molecular-dynamics study, Phys. Rev. Lett., 1985, 57, 695-698
    
    10. Zhang, H.; Zhang, B.J.; Liang, S.Q.; Lu, Y.H; Hu, W.X.; Jin ZJ, Shear viscosity of simple fluids in porous media: molecular dynamic simulations and correlation models, Chem. Phys. Lett, 2001, 350, 247-252
    
    11. Zhang, H.; Zhang, B.J.; Lu, J.W.; Liang, S.Q.; Molecular dynamics simulations on the adsorption and surface phenomena of simple fluid in porous media, Chem. Phys. Lett., 2002, 366, 24-27
    
    12. Zhang, H.; Zhang, B.J.; Zhang, J.J.; Shear viscosity of simple fluids in porous media: molecular dynamics simulations and correlation models (II) - methane in silicate pores, Chem. Phys. Lett, 2004, 397,233-236
    
    13. Rao, M.; Berne, B.J.; On the location of surface of tension in the planar interface between liquid and vapour, Mol. Phys., 1979, 37, 455-461
    
    14. Todd, B.D.; Evans, D.J.; Daivis, P.J.; Pressure tensor for inhomogeneous fluids, Phys. Rev. E, 1995,52, 1627-1638
    
    15. Rowlinson, J.S.; Widom, B.; Molecular theory of capillarity, Oxford University Press, New York, 1982
    
    16. Irving, J.H.; Kirkwood, J.G.; The statistical mechanics theory of transport processes. IV. The equation of hydrodynamics,J.Chem.Phys.,1950,18,817-829
    17.Evans,D.J.;Equilibrium fluctuation expressions for the wave-vector- and frequency-dependent shear viscosity,Phys.Rev.A,1981,23,2622-2626
    18.Steele,W.A.;The Interaction of Gases with Solid Surfaces,Pergamon,Oxford,1974.
    19.Powles,J.G.;Murad,S.;Ravi,P.V.;A new model for permeable micropores,Chem.Phys.Lett.,1992,188,21-24
    20.Evans,D.J.;Morris,G.P.;Statistical Mechanics of Nonequilibrium Liquids,Academic,London,1990
    21.Lemmon,E.W.;McLinden,M.O.;Friend,D.G.;N1ST Chemistry WebBook,NIST Standard Reference Database Number 69,National Institute of Standards and Technology,2005
    22.Landau,L.D.;Lifshitz,E.M.;Fluid Mechanics,Pergamon,Oxford,1987
    23.Aarts,D.G.A.L.;Dullens,R.P.A.;Lekkerkerker,H.N.W.;Interfacial dynamics in demixing systems with ultralow interfacial tension,New J.Phys.2005,7,40
    24.Wysocki,A.;Lowen,H.;Instability of a fluid-fluid interface in driven colloidal mixtures,J.Phys.:Condens.Matter,2004,16,7209-7224
    1.Kunz,R.F.;Boger,D.A.;Stinebring,D.R.;Chyczewski,T.S.;Lindau,J.W.;Gibeling,H.J.;Venkateswaran,S.;Govindan,T.R.,A Preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Predication,Comput.and Fluids,2000,29,849-875
    2.Venkateswaran,S.;Lindau,J.W.;Kunz,R.F.;Merkle,C.L.,Evaluation of Preconditioning Algorithms for the Computation of Multi-Phase Mixture Flows,AIAA 2001-0279.
    3.Lindaw,J.W.;Kunz,R.F.;Merkle,C.L.;Fully coupled,6-DOF to URANS,modeling of cavitating flows around a supercavitating vehicle,Fifth International Symposiun on Cavitation,Osaka,Japan,2003
    4.Lindau,J.W.;Kunz,R.F.;Unsteady,three Dimensional multiphase CFD analysis of maneuvering high speed supercavitating vehicle,AIAA,2003-841
    5.Pellone,C.;Franc,J.P.;Perrin,M.;Modelling of unsteady 2D cavity flows using the Logvinovich independence principle,C.R.Mecanique,2004,332,827-833
    6.Wang,H.B.;Zhong,J.Z.;Wei,Y.J.,Study on relations between cavity form and typical cavitor parameters J.Hydrodynamics A,2005,20,251-257
    7.Choi,J.H.;Penmetsa,R.C.;Grandhi,R.V.,Shape Optimization of the Cavitator for a Supercavitating Torpedo,Journal of the International Society for Structural and Multidisciplinary Optimization,2005,29,159-167
    1.Chen,Y.;Heister,S.D.;A numerical treatment for attached cavitation,J.Fluids Eng.,1998,116,613-618
    2.Vlasenko,Y.D.;Experimental investigations of high speed unsteady supercavitating flows,Proceedings of Third International Symposium on Cavitation,1998
    3.Stillinger,F.H.;Rahman,A.;Improved simulation of liquid water by molecular dynamics,J.Chem.Phys.,1974,60,1545-1567
    4.Jia,L.P.;Zhang,J.Z.;Yu,K.P.;Wang,Q.;Wang,H.B.;Research on the relation of cavitator profile and supercavity drag reduction,Ship Eng.,2006,28(2),20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700