非线性滤波及其在说话人跟踪中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
说话人定位是语音信号处理的重要内容之一,在语音增强、视频会议系统、人机交互、机器人等领域有广阔的应用前景。传统的说话人定位方法利用麦克风阵列在当前时刻接收到的语音信息进行定位,在自由声场条件下,能给出良好的定位效果。但是,在环境噪声与房间混响均存在的复杂声场条件下,该定位方法会由于虚声源的出现而错误地估计说话人位置。因此,需要采用声源跟踪的方法确定说话人位置,以提高说话人位置的估计精度。
     说话人跟踪是一种典型的非线性滤波问题。本文在贝叶斯估计框架下,以系统状态的后验概率密度函数为线索,对高斯和非高斯两类不同的非线性滤波方法,在滤波精度、鲁棒性和计算量等方面进行了改进。同时,将非线性滤波方法应用于说话人跟踪问题,提出了一些具有针对性的改进措施。本论文取得的主要创新成果如下:
     (1)在高斯分布条件下,提出了迭代的sigma点卡尔曼滤波(ISPKF)方法,该方法通过重复利用观测信息,提高了SPKF方法的估计精度。针对传统的迭代方法稳定性较差的问题,在非线性优化理论基础上,利用Levenberg-Marquardt方法调整预测协方差阵,保证了迭代滤波方法的全局收敛性。
     (2)传统的贝叶斯估计方法建立在H_2准则基础上,以均方误差为代价函数,要求系统模型较为准确并且外部干扰信号的统计特性确切已知。但在实际应用中,不仅外部干扰信号的统计特性难以准确了解,而且系统模型本身也存在一定程度的不确定性。本文在H_∞范数意义下,将统计线性化技术应用到鲁棒滤波系统,提出了H_∞sigma点卡尔曼滤波方法(HSPKF)。该方法用sigma点转换技术减小了线性化误差,用H_∞滤波方法提高了滤波系统对不确定性噪声的适应能力,从而增强了系统的鲁棒性。
     (3)在粒子滤波框架下,提出了基于均值漂移的拟蒙特卡洛滤波方法,该方法以确定性采样代替随机采样,利用拟蒙特卡洛积分中的低偏差序列代替随机采样点集合,使采样粒子在状态空间上均匀分布,最大程度地互相远离,从而降低了滤波过程中的积分误差,提高了状态估计精度;同时,用均值漂移技术调整采样粒子的空间位置,使采样粒子沿梯度方向向高似然区域移动,从而增加了滤波过程中有效采样粒子的个数,减少了所需采样粒子的数目,降低了计算需求。
     (4)针对重采样过程导致采样粒子多样性丧失、计算量增大的问题,本文提出了基于充分统计量的粒子滤波方法。对后验概率密度函数可以用充分统计量描述且充分统计量易于更新的情况,该方法通过充分统计量的传递代替后验概率密度函数的更新,这样,由于新的采样粒子从连续的而不是离散的分布函数中抽样获得,因而不会发生粒子退化现象,也不需要再进行重采样过程,从而降低了计算量。
     (5)根据说话人运动的特点,本文用多种模型描述说话人的运动状态,提出了基于采样交互的多模型粒子滤波方法。该方法在说话人跟踪过程中,通过调整粒子的采样区域来完成多模型方法中滤波器输入的交互过程,这不仅实现了对各滤波器中采样粒子数目的直接控制,避免了模型转换过程中的性能退化现象,而且摒弃了对各模型后验概率密度函数的高斯假定,使算法能适应任意的概率分布形式,增强了说话人跟踪系统的鲁棒性。
     (6)利用信息融合技术,提出了一种联合波达方向和时间延迟信息的说话人跟踪方法。考虑到波达方向和时间延迟两种观测信息对说话人位置估计精度的差异,该方法利用分层采样技术,将波达方向滤波器的状态估计结果,作为时间延迟跟踪方法的建议分布函数,这样就通过改善建议分布函数的质量,提高了粒子滤波器的采样效率,降低了说话人的跟踪误差。
Speaker localization is one of the important techniques in acoustic signal processing, which have found many applications in fields such as speech enhancement, video-conferencing,human-computer interface,robot navigation,et al.Traditional approaches to speaker localization,which collect data from several microphones and exploit a frame of data merely at the current time to estimate the current source location,may causes wrong results since noise and reverberation cause spurious peaks to occur in the localization function.Therefore,it is necessary to track the location utilizing state space approach to improve localization accuracy.
     Speaker tracking is a typical nonlinear filtering problem.Taking the posterior probability density function as a clue,the nonlinear filtering methods,including Gaussian filters and non-Gaussian filters,are studied and improved in accuracy,robustness and computational complexity in this dissertation.Moreover,some improving measures are proposed purposely when applying the nonlinear filter to speaker tracking problem.The main contributions of this dissertation are as follows:
     (1) Under Gaussian assumption,an iterated sigma point Kalman filter(ISPKF) is proposed to improve estimation accuracy by using the new measurement iteratively.In the new method,the iteration is formulated as a nonlinear optimization process and a new update process is proposed based on the Levenberg-Marquardt algorithm,which insures convergence of the estimation and improves mean square estimation error.
     (2) Traditionally,Bayesian estimator has been based on the minimization of the H_2 -norm of the corresponding estimation error.This type of estimator assumes the message model and the noise descriptions have known statistical properties.Unfortunately,accurate system models and statistical nature of the noise processes are not readily available.Here a H_∞sigma point Kalman filter is presented under H_∞performance criterion.Since sigma point transformation technique is used instead of Taylor series expansion,linearization error of the nonlinear system is decreased.Moreover,the noise uncertainty problem is solved utilizing H_∞filtering method,which enhance robustness of the system.
     (3) In the framework of particle filtering,a mean shift quasi-Monte Carlo(MS-QMC) method is proposed in which low-discrepancy sequences are exploited instead of random draws according to a quasi-Monte Carlo integration rule.The idea of using deterministic points suggests that we can choose the points that provide the best-possible spread in the sample space and attain low integration error.Additionally,the mean shift technique is used to estimates the gradient of the approximated density and moves particles toward the modes of the posterior,leading to a more effective allocation of particles thereupon fewer particles are needed and the computational demand is reduced.
     (4) A sufficient statistics based particle filter is put forward to deal with sample impoverishment and large computational complexity problems in particle filtering.If the posterior density function depends on the observed data only through a set of sufficient statistics,which is straightforward to update,both of the problems mentioned above can be mitigated utilizing the proposed method by propagating the sufficient statistics instead of the posterior density function.As new samples are drawn from continuous density rather than discrete one,resampling is not required in the new filter,which results in a reduced complexity compared with the sequential importance sampling filter with resampling procedure.
     (5) A new interacting multiple model(IMM) particle filtering algorithm based on sampling interaction is developed to track a randomly moving speaker according to dynamic characteristics of the speaker.The interacting process in the new algorithm is accomplished by properly selecting the sampling region.Thus,not only the number of particles in each mode can be controlled so that the degeneracy problem around mode transition is avoided,but also the Gaussian assumption of posterior density function of the state is abandoned so that the filter can adapt to all distribution and the robustness of the speaker tracking system is enhanced.
     (6) Applying information fusion techniques to speaker tracking,both direction of arrival (DOA) and time difference of arrival(TDOA) of speech source are used to localize the speaker.Since the measurement modalities differ in the level of information they provide about the state,layered sampling method is employed in the proposed filter.Posterior density function of the DOA based filter is used as proposal distribution of the TDOA based filter,so that the new filter exploits the information in the most recent observation and guides the search in the state space effectively.Thus,the speaker localization error is decreased.
引文
[1]韩纪庆,张磊.语音信号处理.北京:清华大学出版社,2004.
    [2]Vermaak J,Ganguet M,Blake A,et al.Sequential Monte Carlo fusion of sound and vision for speaker tracking.IEEE International Conference on Computer Vision,Vancouver,Canada,2001,volume 1:741-746.
    [3]Dvorkind T and Gannot S.Speaker localization using the unscented Kalman filter.Proceedings of the Joint Workshop on Hands-Free Speech Communication and Microphone Arrays,Piscataway,NJ,USA,2005:3-4.
    [4]Cutler R,Rui Y,Gupta A,et al.Distributed meetings:a meeting capture and broadcasting system.Proceedings of the tenth ACM International Conference on Multimedia,Juan les Pins,France,2002:503-512.
    [5]Stenger B,Thayananthan A,Torr P,et al.Model-based hand tracking using a hierarchical Bayesian filter.IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(9):1372-1384.
    [6]Wu S and Hong L.Hand tracking in a natural conversational environment by the interacting multiple model and probabilistic data association(imm-pda) algorithm.Pattern Recognition.2005,38(11):2143-2158.
    [7]Herbert B and Walter K.An acoustic human/machine interface with multi-channel sound reproduction.IEEE International Workshop on Multimedia Signal Processing,Cannes,France,2001:359-364.
    [8]Badran E and Selim H.Speaker recognition using artificial neural networks based on vowel phonemes.International Conference on Signal Processing,Beijing,China,2000:796-802.
    [9]Seltzer M L and Raj B.Speech-recognizer-based filter optimization for microphone array processing.IEEE Signal Processing Letters.2003,10(3):69-71.
    [10]Lathoud G,Bourgeois J and Freudenberger J.Sector-based detection for hands-free speech enhancement in cars.EURASIP Journal on Applied Signal Processing.2006,2006(1):169-169.
    [11]McCowan I,Gatica-Perez D,Bengio S et al.Automatic analysis of multimodal group actions in meetings.IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(3):305-317.
    [12]Wrede B and Shriberg E.The relatiouship between dialogue acts and hot spots in meetings.IEEE Automatic Speech Recognition and Understanding Workshop,Virgin Islands,USA,2003:180-185.
    [13]CHIL-Computers in the Human Interaction Loop,http://chil.server.de.
    [14]AMI-Augmented Multiparty Interaction,http://www.amiproject.org.
    [15]VACE-Video Analysis and Content Extraction,http://www.ic-arda.org.
    [16]Quelhas P,Monay F,Gatica-Perez D,Odobez J-M,et al.A thousand words in a scene.IEEE Transactions on Pattern Analysis and Machine Intelligence.2007,29(9):1575-1589.
    [17]Isard M and MacCormick J.BRAMBLE:a Bayesian multi-blob tracker.IEEE International Conference on Computer Vision,Vancouver,Canada,2001:34-41.
    [18]Perez P,Hue C,Vermaak J,et al.Color-based probabilistic tracking.Proceedings of European Conference on Computer Vision,Copenhagen,Denmark,2002:661-675.
    [19]State-of-the-art overview:localization and tracking of multiple interlocutors with multiple sensors.http://www.amidaproject.org.
    [20]Silverman H F,Yu Y,et al.Performance of real-time source-location estimators for a large-aperture microphone array.IEEE Transactions on Speech and Audio Processing.2005,13(4):593-606.
    [21]Chen J,Benesty J and Huang A.MIMO acoustic signal processing.Invited Talk,Proceedings of the Joint Workshop on Hands-Free Speech Communication and Microphone Arrays,Piscataway,NJ,USA,2005.
    [22]Buchner H,Aiehner R and Kellerman W.Trinieon:a versatile framework for multichannel blind signal processing.IEEE International Conference on Acoustics,Speech and Signal Processing,Erlangen,Germany,2004:889-892.
    [23]Buehner H,Aichner R and Kellermann W.Relation between blind system identification and eonvolutive blind source separation.Invited Talk,Proceedings of the Joint Workshop on Hands-Free Speech Communication and Microphone Arrays,Piscataway,NJ,USA,2005.
    [24]Buehner H,Aiehner R,et al.Simultaneous localization of multiple sound sources using blind adaptive MIMO filtering.IEEE International Conference on Acoustics,Speech and Signal Processing,Philadelphia,PA,USA,2005:18-23.
    [25]Matsumoto M and Hashimoto S.Multiple signal classification by aggregated microphones.IEICE Transactions on Fundamentals of Electronics.2005,E88-A(7):1701-1707.
    [26]Krim H and Viberg M.Two decades of array signal processing research:the parametric approach.IEEE Signal Processing Magazine.1996,13(4):67-94.
    [27]Carter G.Variance bounds for passively locating an acoustic source with a symmetric line array.Journal of Acoustical Society of America.1977,62(4):922-926.
    [28]Hahn W,Tretter S.Optimum processing for delay vector estimation in passive signal arrays.IEEE Transactions on Information Theory.1973,9(1):608-614.
    [29]Omologo M and Svaizer P.Acoustic event localization using a cross power spectrum phase based technique.IEEE International Conference on Acoustics,Speech and Signal Processing,Adelaide,Australia,1994,Vol Ⅱ:273-276.
    [30]Wax M and Kailath T.Optimum localization of multiple sources by passive arrays.IEEE Transactions on Acoustics,Speech and Signal Processing.1983,31(5):1210-1217.
    [31]Knapp C H and Carter G C.The generalized correlation method for estimation of time delay.IEEE Transactions on Acoustics,Speech and Signal Processing.1976,24(4):320-327.
    [32]DiBiase J.A High-Accuracy Low-Latency Technique for Talker Localization in Reverberant Envirouments:(Ph.D Thesis).Providence RI,USA:Brown University,2000.
    [33]Duraiswami R,Zotkin D and Davis L.S.Active speech source localization by a dual coarse-to-fine search.IEEE International Conference on Acoustics,Speech and Signal Processing,Salt Lake City,USA,2001,vol.5:3309-3312.
    [34]Zotkin D and Duraiswami R.Accelerated speech source localization via a hierarchical search of steered response power.IEEE Transactions on Speech and Audio Processing.2004,12(5):499-508.
    [35]Chen J C,Hudson R E and Yao K.Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field.IEEE Transactions on Signal Processing.2002,50(8):1843-1854.
    [36]Wang H and Chu P.Voice source localization for automatic camera pointing system in videoconference.IEEE International Conference on Acoustics,Speech,and Signal Processing.Washington,DC,USA,1997:187-192.
    [37]Schmidt R O.A new approach to geometry of range difference location.IEEE Transactions on Aerospace and Electronic Systems.1972,8(11):821-835.
    [38]Schau H C and Robinson A Z.Passive source localization employing intersecting spherical surfaces from time-of-arrival differences.IEEE Transactions on Acoustics,Speech and Signal Processing.1987,35(8):1223-1225.
    [39]Smith J O and Abel J S.Closed-form least-squares source location estimation from range-difference measurements.IEEE Transactions on Acoustics,Spech and Signal Processing.1987,35(12):1661-1669.
    [40]Chen Y T and Ho K C.A simple and efficient estimator for hyperbolic location.IEEE Transactions on Signal Processing.1994,42(8):1905-1915.
    [41]Huang Y,Benesty G,et al.Real-time passive source localization:an unbiased linear-correction least-square approach.IEEE Transactions on Speech and Audio Processing.2001,9(8):943-956.
    [42]Gillette M and Silverman H.A linear closed-form algorithm for source localization from time-difference of arrival.IEEE Signal Processing Letters.2008,15(1):1-4.
    [43]Vermaak J and Blake A.Nonlinear filtering for speaker tracking in noisy and reverberant environments.IEEE International Conference on Acoustics,Speech and Signal Processing,Salt Lake City,USA:IEEE,2001:3021-3024.
    [44]Bechler D,Grimm M and Kroschel K.Speaker tracking with a microphone array using Kalman filtering.Advances in Radio Science.2003,1:113-117.
    [45]Strobel N,Spors S and Rabenstein R.Joint audio-video signal processing for object localization and tracking.(In):Brandstein M and Ward D.Microphone Arrays,chapter 10,Heidelberg,Germany:Spinger,2001.
    [46]Klee U,Gehrig T and McDonough J.Kalman filters for time delay of arrival-based source localization.EURASIP Journal on Applied Signal Processing.2006,2006(1):1-15.
    [47]Dvorkind T and Gannot S.Speaker localization exploiting spatial-temporal information.Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control,Kyoto,Japan:IWAENC,2003:295-298.
    [48]Gannot S and Dvorkind T.Microphone array speaker localizers using spatial-temporal information.Special Issue on "Advances in Multimicrophone Speech Processing",EURASIP Journal on Applied Signal Processing.2006,2006:1-17.
    [49]Ward D,Lehmann E and Williamson R.Particle filtering algorithms for tracking an acoustic source in a reverberant environment.IEEE Transactions on Speech and Audio Processing.2003,11(6):826-836.
    [50]Pisarenko V F.The retrival of harmonics from a covariance function.The journal of the Royal Astronomical Society.1973,33:347-366.
    [51]Capon J.High-resolution frequency-wavenumber spectrum analysis.Proceedings of the IEEE.1969,57:1408-1418.
    [52]Roy R and Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques.IEEE Transactions on Acoustics,Speech and Signal Processing.1986,37:984-995.
    [53]Schmidt R O.Multiple emitter location and signal parameter estiamtion.IEEE Transactions on Antennas and Propagation.1986,34:276-280.
    [54]Jutten C and Herault J.Blind separation of sources,Part I:An adaptive algorithm based on neuromimetic architecture.Signal Processing.1991,24:1-10.
    [55]Roth P R.Effective measurements using digital signal analysis.IEEE Spectrum.1971,8(4):62-70.
    [56]Carter G C,Nuttall A H and Cable P G.The smoothed coherence transform.Proceedings of the IEEE.1973,61(10):1497-1498.
    [57]Hassab J C and Boucher R E.Performance of the generalized cross correlator in the presence of a strong spectral peak in the signal.IEEE Transactions on Acoustics,Speech and Signal Processing,1981.29(6):549-555.
    [58]Carter G C.Coherence and time delay estimation.(In):Chen C H.Signal Processing Handbook.New York:Marcel Dekker Inc,1988.
    [59]Haykin S.Radar array processing for angel of arrival estimation.(In):Haykin S.Array Signal Processing.Englewood Cliffs,USA:Prentice-Hall,1985:194-292.
    [60]Benesty J.Adaptive eigenvalue decomposition algorithm for passive acoustic source localization.Journal of Acoustic society of America.2000,107(1):384-391.
    [61]Huang Y,Benesty J and Elko G.Adaptive eigenvalue decomposition algorithm for realtime acoustic source localization.Proceeings of the IEEE Conference on Acoustics,Speech and Signal Processing,Phoenix,Ariz.,USA,1999:937-940.
    [62]Huang Y and Benesty J.Adaptive multichannel time delay estimation based on blind system identification for acoustic source localization.(In):Adaptive Signal Processing—Applications to Real-World Problems.Benesty J and Huang Y.Berlin,Germany:Springer,2003:227-248.
    [63]Huang Y and Benesty J.A class of frequency-domain adaptive approaches to blind multichannel identification.IEEE Transactions on Signal Processing.2003,51(1):11-24.
    [64]Kailath T.A view of three decades of linear filtering theory.IEEE Transactions on Information Theory.1974,20(2):146-181.
    [65]Chen Z.Bayesian filtering:From Kalman filters to particle filters,and beyond:(Technical Report).Adaptive Syst.Lab.,McMaster Univ.,Hamilton,ON,Canada,2003.
    [66]Gauss K F.Theory of the Motion of the Heavenly Bodies about the Sun in Comic Sections.New York:Dover Publication Inc.,1963.
    [67]Fisher R A.On an absolute criterion for fitting frequency curves.Messenger of Mathematics.1912,41:155-160.
    [68]Wiener N.Extrapolation,Interpolation and Smoothing of Time Series,with Engineering Applications.New York:Wiley,1949.
    [69]Kolmogorov A N.Interpolation and extrapolation of stationary random sequences.Izv.Akad.Nauk USSR,Ser.Math..1941,5(5):3-14.
    [70]Kalman R E.A new approach to linear filtering and prediction problems.Transactions of the ASME-Journal of Basic Engineering.1960:82(D):35-45.
    [71]Bierman G J.Sequential square root filtering and smoothing of discrete linear systems.Automatica.1974,10:147-158.
    [72]Carlson N A.Fast triangular factodzation of the square root filter.AOAA Journal.1973,11(9):1259-1265.
    [73]Schmidt S F.Computational techniques in Kahnan filtering.(In):Theory and Applications of Kalman Filtering.NATO Advisory Group for Aerospace Research and Development,Agardograph,1970,139:65-68.
    [74]Bernardo J M and Smith A F M.Bayesian Theory.New York:Wiley,1998.
    [75]Ho Y C and Lec R C K.A Bayesian approach to problems in stochastic estimation and control.IEEE Transactions on Automatic Control.1964,9(4):333-339.
    [76]Wishner R P,Tabaczynski J A and Athans M.A comparison of three non-linear filters.Automatica.1969,5(5):487-496.
    [77]Athans M,Wishner R P and Bertolini A.Suboptimal state estimation for continuous time nonlinear systems from discrete noisy measurements.IEEE Transactions on Automatic Control.1968,13(10):504-514.
    [78]Tanizaki H.Nonlinear Filters:Estimation and Applications:(Ph.D Thesis).Pennsylvania:University of Pennsylvania,1991.
    [79]Schwartz L and Stear E B.A computational comparison of several non-linear filters.IEEE Transactions on Automatic Control 1968,13(2):83-86.
    [80]Bizwas K K and Mahalanabis A K.Suboptimal algorithms for nonlinear smoothing.IEEE Transactions on Aerospace and Electronic Systems.1973,9(4):529-534.
    [81]Feyzioglu T.Analysis of Non-Linear,Non-Normal Economic Time Series and Applications.(Ph.D Thesis).Pennsylvania:University of Pennsylvania,1989.
    [82]Takata H.Transformation of a nonlinear system into an augmented linear system.IEEE Transactions on Automatic Control.1979,24(4):736-741.
    [83]Meinhold R J and Singpurwalla N D.Robustification of Kalman filter models.Journal of the American Statistical Association.1989,84:479-486.
    [84]Julier S and Uhlmann J K.Unscented filtering and nonlinear estimation.Proceedings of the IEEE.2004,92(3):401-422.
    [85]Julier S J,Uhlmann J K and Durrant-Whyte H F.A new approach for filtering nonlinear systems.Proceedings of the American Control Conference,Evanston,IL,USA,1995:1628-1632.
    [86]Nφrrgarrd M,Poulsen N and Ravn O.New developments in state estimation for nonlinear systems.Automatica.2000,36(11):1627-1638.
    [87]Ito K and Xiong K.Gaussian filters for nonlinear filtering problems.IEEE Transactions on Automatic Control.2000,45(5):910-927.
    [88]Lefebvre T,Bruyninckx H and Schutter J.Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators".IEEE Transactions on Automatic Control.2002,47(6):1406-1408.
    [89]Li P,Zhang T and Ma B.Unscented Kalman filter for visual curve tracking.Image and Vision Computing.2004,22(2):157-164.
    [90]Wan E A,Van der Merwe R.The unscented Kalman filter.(In):S.Haykin.Kalman Filtering and Neural Networks.NJ:Wiley Publishing,2001:221-280.
    [91]Romanenko A and Castro J.The unscented filter as an alternative to the EKF for nonlinear state estimation:a simulation case study.Computers and Chemical Engineering.2004,28(3):347-355.
    [92]Sadhu S,Mondal S,et al.Sigma point Kalman filter for bearing only tracking.Signal Processing.2006,86(12):3769-3777.
    [93]Xiong K,Chan C and Zhang H.Detection of satellite attitude sensor faults using the UKF.IEEE Transactions on Aerospace and Electronic Systems.2007,43(2):480-491.
    [94]Ristic B,Farina A et al.Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry radar.IEE Proceedings on Radar,Sonar and Navigation.2003,150(2):65-70.
    [95]Julier S and Uhlmann J.A consistent,debiased method for converting between polar and Cartesian coordinate systems.Proceedings of AeroSense:Acquisition,Tracking and Pointing Ⅺ,vol.3086,1997:110-121.
    [96]Julier S and Uhlmann J.The scaled unscented transformation.Proceedings of the American Control Conference,Jefferson City,USA,2002:4555-4559.
    [97]Julier S and Uhlmann J.Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations.Proceedings of the American Control Conference,Jefferson City,2002:887-892.
    [98]Tenne D and Singh T.The higher order unscented filter.Proceedings of the American Control Conference,Denver,Colorado,USA,vol.3,2003:2441-2446.
    [99]Alspach D L and Sorenson H W.Nonlinear Bayesian estimation using Gaussian sum approximations.IEEE Transactions on Automatic Control.1972,17(4):439-448.
    [100]Alspach D L.Gaussian sum approximations in nonlinear filtering and control.Information Sciences.1974,7:271-290.
    [101]Fearnhead P.Sequential Monte Carlo Methods in Filter Theory:(Ph.D Thesis).Oxford,UK:Merton College,University of Oxford,1998.
    [102]Bucy R S and Senne K D.Realization of optimum discrete-time nonlinear estimator.1st Symposium on Nonlinear Estimation,San Diego,USA,1970:6-17.
    [103]Binder K.Applications of the Monte Carlo Method in Statistical Physics.Berlin:Springer-Verlag,1984.
    [104]Gordon N,Salmond D and Smith A.Novel approach to nonlinear and non-Gaussian Bayesian state estimation.IEE Proceedings on Radar and Signal Processing.1993,140:107-113.
    [105]Arulampalam M,Maskell S,et al.A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking.IEEE Transactions on Signal Processing.2002,50(2):241-252.
    [106]Cappe O,Godsill S and Moulines E.An overview of existing method and recent advances in sequential Monte Carlo.Proceedings of the IEEE.2007,95(5):899-924.
    [107]Carpenter J,Clifford P and Feamhead P.An improved particle filter for non-linear problems.IEE Proceedings on Radar Sonar and Navigation.1999,146:2-7.
    [108]Kitagawa G.Monte Carlo filter and smoother for non-Gaussian nonlinear state space models.Journal of Computational and Graphical Statistics.1996,5(1):1-25.
    [109]Liu J and Chen R.Sequential Monte Carlo methods for dynamic systems.Journal of American Statistical Association.1998,93(443):1032-1044.
    [110]Spall J.Estimation via Markov chain Monte Carlo.IEEE Control Systems Magazine.2003,23(2):34-45.
    [111]Hurzeler M and Kunsch H.Monte Carlo approximations for general state space models.Journal of Computational and Graphical Statistics.1998,7(2):175-193.
    [112]Daum F and Huang J.The curse of dimensionality for particle filters.Proceedings of IEEE Conference on Aerospace,Big Sky,MT,USA,Volume 4,2003:1979-1993.
    [113]Casella G and Robert P.Rao-Blackwellisation of sampling schemes.Biometrika.1996,83(1):81-94.
    [114]Chen R and Liu J.Mixture Kalman Filters.Journal of the Royal Statistical Society B.2000,62(3):493-508.
    [115]Doucet A,Freitas N,et al.Rao-Blackwellised particle filtering for dynamic Bayesian networks.Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence,San Francisco,CA,USA,2000:176-183.
    [116]Soto A.Self adaptive particle filter.Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,Edinburgh,Scotland,UK,2005:1398-1406.
    [117]Kotecha J and Djuric M.Gaussian particle filtering.IEEE Transactions on Signal Processing.2003,51(10):2592-2601.
    [118]Kotecha J and Djuric M.Gaussian sum particle filtering.IEEE Transactions on Signal Processing.2003,51(10):2602-2612.
    [119]Haykin S,Huber K and Chen Z.Bayesian sequential state estimation for MLMO wireless communications.Proceedings of the IEEE.2004,92(3):439-455.
    [120]Cheng Y.Mean shift,mode seeking,and clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence.1995,17(8):790-799.
    [121]Guo D and Wang X.Quasi-Monte Carlo filtering in nonlinear dynamic systems.IEEE Transactions on Signal Processing.2006,54(6):2087-2098.
    [122]Doucet A,Godsill S and Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering.Statistical Computation.2000,10(3):197-208.
    [123]Merwe R,Doucet A,et al.The unscented particle filter:(Technical Report).CUED/F-INFENG/TR 380.Cambridge University,2000.
    [124]Isard M and Blake A.Icondensation:unifying low-level and high-level tracking in a stochastic framework.Proceedings of the 5th European Conference on Computer Vision,Freiburg,Germany,1998:893-908.
    [125]Sullivan J,Blake A,et al.Object localization by Bayesian correlation.Proceeding of International Conference on Computer Vision,Kerkyra,Greece,1999:1068-1075.
    [126]Wu Y,Hu D,et al.A numerical-integration perspective on Gaussian filters.IEEE Transactions on Signal Processing.2006,54(8):2910-2921.
    [127]Papoulis A,Pillai S.保铮,冯大政,水鹏朗译.概率、随机变量与随机过程.西安:西安交通大学出版社.2004.
    [128]Jazwinski A H.Stochastic Processes and Filtering Theory.New York:Academic Press,1970.
    [129]Anderson B and Moore J.Optimal Filtering.Englewood Cliffs,NJ:Prentice-Hall,1979.
    [130]Kitagawa G.Non-Gaussian state-space modeling of nonstationary time series.Journal of the American Statistical Association.1987,82:1032-1063.
    [131]Rabiner L R.A tutorial on hidden Markov Models and selected applications in speech recognition.Proceedings of the IEEE.1989,77(2):257-286.
    [132]Ghahramani Z.An introduction to hidden Markov models and Bayesian networks.International Journal on Pattern Recognition and Artificial Intelligience.2001,15(1):9-42.
    [133]Merwe R,Wan E and Juliet S J.Sigma-point Kalman filters for nonlinear estimation and sensor-fusion:applications to integrated navigation.Proceedings of the AIAA Guidance,Navigation & Control Conference,Providence,RI,USA,Aug 2004.
    [134]Gelb A.Applied Optimal Estimation.Massachusetts:MIT Press,1974.
    [135]Bellaire R L,Kamen E W and Zabin S M.A new nonlinear iterated filter with applications to target tracking.In Proceedings of the SPIE Conferences on Signal and Data Processing of Small Targets,1995,2561:240-251.
    [136]Dennis J and Schnabel R.Numerical Methods for Unconstrained Optimization and Nonlinear Equations.Philadelphia:SIAM,1983:218-236.
    [137]More J.The Levenberg-Marquardt algorithm:implementation and theory.(In):Watson G A Ed.,Numerical Analysis,Lecture Notes in Math,630,Springer Verlag,Berlin:105-116.
    [138]Simon D.Optimal State Estimation:Kalman,H_∞,and Nonlinear Approaches.New Jersey:John Wiley & Sons Inc,2006.
    [139]Doyle J,Glover K,Khargonekar P,et al.State-space solutions to standard and control problems.IEEE Transactions on Automatic Control 1989,24(8):831-847.
    [140]Hassibi B,Saved A and Kailath T.Linear estimation in Krein spaces-part Ⅱ:applications.IEEE Transactions on Automatic Control 1996,41(1):34-49.
    [141]Einicke G and White L.Robust extended Kalman filtering.IEEE Transactions on Signal Processing.1999,47(9):2596-2599.
    [142]Shaked U and Berman N.H_∞ nonlinear filtering of discrete-time processes.IEEE Transactions on Signal Processing.1995,43(9):2205-2209.
    [143]Shen X and Deng L.Game theory approach to discrete H_∞ filter design.IEEE Transactions on Signal Processing.1997,45(4):1092-1095.
    [144]Song T,Speyer J.A stochastic analysis of a modified gain extended Kalman filter with application to estimation with bearing-only measurements.IEEE Transactions on Automatic Control.1985,30(10):940-949.
    [145]Press W,Flannery B,et al.Numerical Recipes in C,The Art of Scientific Computing.New York:Cambridge University Press,1992.
    [146]Tanizaki H.Nonlinear Filters:Estimation and Applications.Berlin:Springer-Verlag,1996.
    [147]Mazor E,Averbuch A,et al.Interacting multiple model methods in target tracking:a survey.IEEE Transactions on Aerospace and Electronic Systems.1998,34(1):103-123.
    [148]Liu J S.Monte Carlo Strategies in Scientific Computing.北京:世界图书出版公司,2005.
    [149]Doucet A.On sequential Monte Carlo methods for Bayesian filtering:(Technical Report).Department of Engineering,Cambridge University,UK,1998.
    [150]裴鹿成等.计算机随机模拟.长沙:湖南科学技术出版社,1989.
    [151]Kong A,Liu J S and Wong W.Sequential imputations and Bayesian missing data problems.Journal of American Statistical Association.1994,89(425):278-288.
    [152]Oudjaen N,Musso C.Progressive correction for regularized particle filters.Proceedings of the 3rd International Conference on Information Fusion,Onera,Chatillon,France,2000:10-17.
    [153]Silverman B W.Density Estimation for Statistics and Data Analysis.London:Chapman & Hall,1986.
    [154]Guo D,Wand X and Chen g.New sequential Monte Carlo methods for nonlinear dynamic systems.Statistics and Computing.2005,15:135-147.
    [155]L'Ecuyer P and Lemieux C.Recent advances in randomized Quasi-Monte Carlo methods.(In):Modeling Uncertainty:An Examination of Stochastic Theory,Methods,and Applications.Boston,MA:Kluwer Academic,2002.
    [156]Tan K S.Quasi-Monte Carlo Methods:Applications in Finance and Actuarial Science:(Ph.D Thesis).Waterloo,Ontario,Canada:University of Waterloo,1998.
    [157]Morokoff W and Caflisch R.Quasi-Monte Carlo integration.Journal of Computational Physics.1995,122(2):218-230.
    [158]Henderson S,Chiera R and Cooke R.Generating "dependent" quasi-random numbers.Proceedings of the 2000 Winter Simulation Conference.J.A.Joines,R.R.Barton,K.Kang and E.Fishwick,eds.,Orlando,Florida:Academic Press,Inc.,2000:527-536.
    [159]Marsaglia G and Zaman A.Rapid evaluation of the inverse of the normal distribution function.Statistics & Probability Letters.1994,19:259-266.
    [160]Owen A B.Monte Carlo extension of Quasi-Monte Carlo.(In):Proceedings of the I998 Winter Simulation Conference.Medeiros D,Watson E,Carson J and Manivannan M eds.,New York:Springer,2000:571-577.
    [161]Berzuini C,Best N G,et al.Dynamic conditional independence models and Markov chain Monte Carlo methods.Journal of the American Statistical Association.1997,Vol.92:1403-1441.
    [162]Storvik G.Particle filters in state space models with the presence of unknown static parameters.IEEE Transactions on Signal Processing.2002,50(2):281-289.
    [163]Wan E A.and Nelson A T.Dual extended Kalman filter methods.(In):S.Haykin.Kalman Filtering and Neural Networks.NJ:Wiley Publishing,2001:123-173.
    [164]Minvielie P,Marrs A,et al.Joint target tracking and identification-Part Ⅰ:sequential Monte Carlo model-based approaches.7th International Conference on Information Fusion,Philadelphia,PA,2005:259-266.
    [165]Chen E J.Simulation-based estimation of quantiles.Proceedings of the 31st conference on Winter simulation,Arizona,USA,1999:428-434.
    [166]Karlsson R,Sch(o|¨)n T and Gustafsson F.Complexity analysis of the marginalized particle filter:(Technical Report).Department of Electrical Engineering,Link(o|¨)ping University,Link(o|¨)ping,Sweden,2004.
    [167]Huang Y,Benesty J.Audio Signal Processing for Next-Generation Multimedia Communication Systems.Norwell,Massachusetts:Kluwer Academic Publishers,2004.
    [168]Benesty J,Chen J and Huang Y.Time-delay estimation via linear interpolation and cross correlation.IEEE Transactions on Speech and Audio Processing.2004,12(5):509-519.
    [169]Huang Y.Real-time Acoustic Source Localization with Passive Microphone Arrays:(Ph.D Thesis).Georgia,USA:Georgia Institute of Technology,2001.
    [170]Chen J,Benesty J and Huang Y.Time delay estimation in room acoustic environments:an overview.EURASIP Journal on Applied Signal Processing.2006,2006:1-19.
    [171]Weinstein W and Weiss A.Fundamental limitations in passive time-delay estimation—part Ⅱ:wide-band systems.IEEE Transactions on Acoustics,Speech and Signal Processings.1984,32(5):1064-1078.
    [172]Lehmann E,Johansson A and Nordholm S.Modeling of motion dynamics and its influence on the performance of a particle filter for acoustic speaker tracking.IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,New Paltz,NY,USA,2007:98-101.
    [173]Li X and Jilkov V.Survey of maneuvering target tracking.Part Ⅰ:dynamic models.IEEE Transactions on Aerospace and Electronic Systems.2003,39(4):1333-1364.
    [174]Blom H and Bar-Shalom Y.The interacting multiple model algorithm for systems with Markovian switching coefficients.IEEE Transactions on Automatic Control.1988,33(8):780-783.
    [175]Mcginnity S and Irwin G.Multiple model bootstrap filter for maneuvering target tracking.IEEE Transactions on Aerospace and Electronic Systems.2000,36(3):1006-1012.
    [176]Boers Y and Driessen J.Interacting multiple model particle filter.IEE Proceedings on Radar,Sonar and Navigation.2003,150 (5):344-349.
    [177]Allen J and Berkley D.Image method for efficiently simulating small-room acoustics.Journal of the Acoustical Society of America.1979,65(4):943-950.
    [178]Doucet A,Gordon N and Krishnamurthy V.Particle filters for state estimation of jump Markov linear systems.IEEE Transactions on Signal Processing.2001,49(3):613-624.
    [179]Genz A and Keister B.Full symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight.Journal of Computational and Applied Mathematics.1996,71:299-309.
    [180]Haber S.Numerical evaluation of multiple integrals.SLAM Review.1970,12(4):481-526.
    [181]Daum F.Non-particle filter.Proceedings of SPLE.2006,6236:623614.1-623614.12.
    [182]Kirubarajan T and Bar-Shalom Y.Probabilistic data association techniques for target tracking in clutter.Proceedings of the IEEE.2004,92(3):536-557.
    [183]Ma W,Vo B,et al.Tracking an unknown time-varying number of speakers using TDOA measurements:a random finite set approach.IEEE Transactions on Signal Processing.2006,54(9):3291-3304.
    [184]Tobias M.Probability Hypothesis Densities for Multitarget,Multisensor Tracking with Application to Passive Radar:(Ph.D Thesis).Georgia:Georgia Institute of Technology,2006.
    [185]Mahler R.Statistical Multisource-Multitarget Information Fusion.Norwood,MA:Artech House,2007.
    [186]Li X R and Zhao Z.Evaluation of estimation algorithms part I:incomprehensive measures of performance.LEEE Transactions on Aerospace and Electronic Systems.2006,42(4):1340-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700