神经营养因子-3基因修饰的神经干细胞移植治疗大鼠脊髓损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究神经营养因子-3(NT-3)修饰的胚胎脊髓来源的神经干细胞移植对于脊髓损伤的治疗作用。
     方法:构建NT-3基因真核表达载体pEGFPN1-NT-3后,应用核转染技术将其转入神经干细胞内建立NT-3基因修饰的神经干细胞。比较脊髓损伤后不同时间神经干细胞移植的治疗效果,确定脊髓损伤后进行神经干细胞移植的最佳时间。在NT-3修饰的神经干细胞移植入脊髓损伤大鼠后,通过行为学测试,及对损伤脊髓局部移植细胞存活、分化及基因表达的分析,综合评价NT-3修饰的神经干细胞治疗大鼠脊髓损伤的效果。
     结果:动物行为学实验研究结果表明:与未修饰的神经干细胞移植相比,NT-3基因修饰的神经干细胞移植更能显著改善脊髓损伤大鼠的脊髓功能。免疫组织化学实验研究结果表明:NT-3修饰能使更多的移植细胞存活,并能促进移植的神经干细胞向少突胶质细胞分化。分子生物学实验研究结果表明:NT-3基因修饰的神经干细胞移植后能更好的表达NT-3和MBP。
     结论:NT-3修饰的神经干细胞移植治疗脊髓损伤具有良好效果,治疗效果优于未修饰的神经干细胞,具有广阔的应用前景。
     第一部分载体构建
     目的:构建将NT-3基因真核表达载体pEGFPN1-NT-3。方法:将NT-3基因编码序列克隆入pMD19-T Simple载体;经鉴定确认后,将NT-3基因CDS克隆至真核表达载体pEGFPN1。结果:重组质粒pEGFPN1-NT-3双酶切鉴定与预期结果相同。结论:NT-3基因真核表达载体pEGFPN1-NT-3构建成功。
     第二部分细胞培养
     目的:对胚胎脊髓神经干细胞进行稳定的培养。方法:从孕鼠中分离胚胎14天的脊髓组织,培养胚胎脊髓神经干细胞,传代并进行多能性检测。结果:胚胎脊髓神经干细胞神经球形成,并且Nestin阳性。结论:胚胎脊髓神经干细胞培养成功并保持干细胞多能性。
     第三部分基因修饰
     目的:构建EGFP标记NT-3基因修饰的神经干细胞。方法:采用核转染将重组质粒pEGFPN1-NT-3转染至大鼠胚胎脊髓神经干细胞后,采用RT-PCR、Western blot及免疫细胞化学方法对转染后的细胞进行鉴定。结果:RT-PCR和Western blot显示转染后细胞NT-3表达强阳性,免疫细胞化学染色结果显示转染后细胞呈NT-3及EGFP阳性。结论:FGFP标记NT-3基因修饰的神经干细胞构建成功并能表达NT-3和EGFP。鼠右侧半脊髓,术后观察大鼠行为学表现并进行行为学测试。结果:脊髓损伤后大鼠右侧后肢瘫痪,损伤后4周时大鼠右侧后肢BBB评分不足2分、网格测试经常摔倒。结论:胸9水平脊髓半切大鼠动物模型建立成功。
     第五部分细胞移植(一)
     目的:确定脊髓损伤后神经干细胞的最佳移植时间。方法:比较脊髓损伤后不同时间神经干细胞移植对于大鼠行为功能恢复的治疗效果,确定治疗效果最佳的神经干细胞移植时间。结果:脊髓损伤后3天、7天及14天进行移植大鼠的BBB测试和网格测试结果明显优于对脊髓损伤大鼠,脊髓损伤后7天时进行细胞移植的治疗效果最佳。结论:进行神经干细胞移植的最佳时间为脊髓损伤后一周左右。
     第六部分细胞移植(二)
     目的:研究NT-3修饰的胚胎脊髓来源的神经干细胞移植对于脊髓损伤大鼠行为学恢复的治疗作用。方法:采用行为学测试评价NT-3修饰的神经干细胞移植后脊髓损伤大鼠的行为学恢复,并与未修饰的神经干细胞移植的治疗效果进行比较。结果:神经干细胞移植组和NT-3修饰的神经干细胞移植组大鼠的BBB测试结果和网格测试结果明显优于对照组大鼠,NT-3修饰的神经干细胞移植的治疗效果最佳。结论:NT-3修饰能够促进神经干细胞移植对于脊髓损伤大鼠行为学恢复的治疗作用。
     第七部分细胞检测
     目的:研究NT-3修饰的胚胎脊髓来源的神经干细胞移植后细胞的存活、分化及基因表达情况。方法:采用免疫组织化学检测NT-3修饰的神经干细胞移植后细胞的存活及分化情况;采用分子生物学技术检测相关基因的表达;并与未修饰的神经干细胞移植进行比较。结果:免疫细胞化学染色表明NT-3修饰的神经干细胞能更好的在损伤脊髓内的存活,分泌NT-3并向少突胶质细胞分化;分子生物学检测表明NT-3修饰能在转录水平和蛋白水平增强NT-3和MBP的表达。结论:NT-3修饰能够促进神经干细胞移植后移植细胞的存活、分化及相关基因表达。
Objective:To investigate therapeutic effects of transplantation of Neurotrophin-3(NT-3) modified fetal spinal cord-derived neural stem cells (NSCs) for spinal cord injury(SCI) repairing.
     Methods:eukaryon expression vector pEGFPN1-NT-3 recombinant plasmid wasconstructed and transfected into NSCs to establish EGFP-labeled NT-3 gene modifiedNSCs via nucleofection.Therapeutic effects of NSCs transplantation at different times aftcrSCI were compared and most suitable time point for NSCs transplantation was determincd.After NT-3-NSCs transplanted into SCI rats,therapeutic effect of NT-3-NSCstransplantation was evaluated by behavioral tests,and analyses of the survival,differentiation and gene expressions of grafted cells at injured sites.
     Results:Behavioral tests presented the transplantation of NT-3 gene modified NSCscould make SCI rats get more behavioral recovery than the transplantation of unmodifiedNSCs.Immunohistochemical analyses demonstrated NT-3 modification could improvc thesurvival and differentiation into oligodendrocytes of grafted cells.Molecular biologicalexperiments revealed NT-3 modified NSCs could obtain stronger NT-3 and MBPexpression than unmodified NSCs after transplantation.
     Conclusion:Transplantation of NT-3 modified NSCs is a potential therapy for SCIrepairing,which yields better effect than transplantation of unmodified NSCs, transplantation of NT-3 modified NSCs has a brilliant future for SCI treatment.
     PART ONE:Construction of recombinant plasmid
     Objective:To construct NT-3 gene eukaryon expression vector pEGFPN1-NT-3recombinant plasmid.Methods:The coding sequence of NT-3 was amplified andconnected to pMD19-T Simple Vector;after identification,NT-3 gene and plasmid vectorpEGFPN1 were connected.Results:The result of double enzyme digestion of recombinantplasmids was consistent with expectation.Conclusion:NT-3 gene eukaryon expressionvector pEGFPN 1-NT-3 recombinant plasmid was successfully constructed.
     PART TWO:Culture of neural stem cells
     Objective:To stably culture fetal spinal cord derived neural stem cells.Methods:Spinal cord tissue was obtained from fetal Sprague-Dawley rats at embryonic day 14,neural stem cells were cultured and their multipotentiality was detected.Results:Fetalspinal cord neural stem cells formed neurospheres and were Nestin immunoreactivc.Conclusion:Fetal spinal cord neural stem cells were successfully cultured and their stemcell multipotentiality was maintained.
     PART THREE:NT-3 gene modification
     Objective:To construct EGFP-labeled NT-3 gene modified neural stem cells.Methods:After neural stem cells were transfected with recombinant plasmidpEGFPN1-NT-3 via nucleofection,the cells were identified via RT-PCR,Western blot and immunocytochemical assessments.Results:RT-PCR and Western blot results prcscntedstrong expression of NT-3 in transfected cells;immunocytochemical staining demonstratedNT-3 and EGFP immunoreactions in transfected ceils.Conclusion:EGFP-labeled NT-3gene modified neural stem cells were successfully constructed and could express NT-3 andEGFP.
     PART FOUR:Establishment of spinal cord hemisection models
     Objective:To establish thoracic 9 right-sided spinal cord hemisection rat models.Methods:Spinal cords of female Sprague--Dawley rats were right-sided hemisected atthoracic 9 level,behavioral observation and tests were administered postoperatively.Results:Right hindlimb paralyzed after operation;hemisected rats were scored were lessthan 2 in BBB test and fell frequently in grid test.Conclusion:Thoracic 9 right-sidedspinal cord hemisection rat models were successfully established.
     PART FIVE:Neural stem cells transplantation
     Objective:To determine the most suitable neural stem cells transplantation time afterspinal cord injury.Methods:The therapeutic effects of neural stem cells transplantation atdifferent times after spinal cord injury were compared to determine the best transplantationtime point.Results:The rats received neural stem cells transplantation at 3rd,7th and 14thdays after spinal cord injury presented better results than spinal injured rats,rats obtainedbest recovery when neural stem cells transplanted at 7th day after spinal cord injury.Conclusion:The most suitable neural stem cells transplantation time was around one week after spinal cord injury.
     PART SIX:NT-3 gene modified neural stem cells transplantation
     Objective:To study the behavioral recovery effect of NT-3 gene modified fetal spinalcord derived neural stem cells transplantation for spinal cord injury rats.Methods:Thebehavioral tests were applied to evaluate the behavioral recovery in spinal cord injury ratsafter transplantation of NT-3 modified neural stem cells;the therapeutic effects of NT-3modified and non-modified neural stem cells transplantation were compared.Results:Therats received NT-3 modified or non-modified neural stem cells transplantation after spinalcord injury presented better results than controls,rats obtained best recovery when receivedNT-3 modified neural stem cells transplantation.Conclusion:The behavioral recoveryeffect of neural stem cells transplantation could be improved by NT-3 gene modification inspinal cord injury rats.
     PART SEVEN:Detection of transplanted cells
     Objective:To study the survival,differentiation and gene expression of transplantedNT-3 modified fetal spinal cord derived neural stem cells.Methods:The survival anddifferentiation of transplanted cells were detected via immunohistochemistries,relatedgenes expressions were detected via molecular biologies;which were compared withtransplantation of non-modified neural stem cells,Results:Immunohistochemical stainingpresented NT-3 modified neural stem cells got better survival,NT-3 secretion anddifferentiation into oligodendrocytes in injuried spinal cords;molecular biologicalassessment demonstrated NT-3 modification could increase NT-3 and MBP expression attranscription and protein levels.Conclusion:NT-3 gene modification could improve the survival,differentiation and related genes expression of transplanted neural stem cells inspinal cord injury rats.
引文
1.Horn EM,Preul MC,Sonntag VK,Bambakidis NC.Multimodality treatment of spinal cord injury:endogenous stem cells and other magic bullets.Barrow Quarterly.2007;23:9-14.
    2.Plunet W,Kwon BK,Tetzla.W.Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy.J Neurosci Res 2002;68:1-6.
    3.Caroni P.Intrinsic neuronal determinants that promote axonal sprouting and elongation.Bioessays 1997;19:767-75.
    4.Fawcett JW.Intrinsic control of regeneration and the loss of regenerative ability in development.In:Ingoglia N,Murray M (eds).Nerve Regeneration.New York:Marcel Dekker,2000.
    5.Cai D,Qiu J,Cao Z,McAtee M,Bregman BS,Filbin MT.Neuronal cyclic amp controls the developmental loss in ability of axons to regenerate.J Neurosci 2001;21:4731-39.
    6.Fawcett J.Repair of spinal cord injuries:where are we,where are we going? Spinal Cord.2002 Dec;40(12):615-23.
    7.Fournier AE,Grandpre T,Strittmatter SM.Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration.Nature 2001;409:341-46.
    8.Bandtlow CE,Schmidt MF,Hassinger TD,Schwab ME,Kater SB.Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones.Science 1993;259:80-83.
    9.Mukhopadhyay G,Doherty P,Walsh FS,Crocker PR,Fiibin MT.A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration.Neuron 1994;13:757-67.
    10.Niederost BP,Zimmermann DR,Schwab ME,Bandtlow CE.Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans.J Neurosci 1999;19:8979-89
    11.Asher RA,Morgenstern DA,Shearer MC,Adcock KH,Pesheva P,Fawcett JW.Versican is upregulated following CNS injury and is a product of oligodendrocyte lineage cells.J Neurosci 2002;22:2225-36.
    12.Asher RA,Morgenstern DA,Fidler PS,Adcock KH,Oohira A,Braistead JE,Levine JM,Margolis RU,Rogers JH,Fawcett JW.Neurocan is upregulated in injured brain and in cytokine-treated astrocytes.J Neurosci 2000;20:2427-38.
    13.Levine JM,Reynolds R,Fawcett JW.The oligodendrocyte precursor cell in health and disease.Trends Neurosci 2001;24:39-47.
    14.Smith-Thomas LC,Stevens J,Fok-Seang J,Faissner A,Rogers JH,Fawcett JW.Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors.J Cell Sci 1995;108:1307-15.
    15. Geller HM, Fawcett JW. Building a bridge: engineering spinal cord repair. Exp Neurol 2002; 174: 125-36.
    16. Gage FH.Mammalian neural stem cells.Science. 2000 Feb 25;287(5457): 1433-38.
    17. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci, 2006; 7(5):395-406.
    18. Temple S. The development of neural stem cell. Nature 2001, 414(1): 112-17.
    19. McDonald JW, Xiao-Zhong L, Qu Y, Su L, Mickey SK, Turestsky D, Gottlieb DI, Choi D. Transplanted embryonic stem cells survive, differentiate and promote recvery in the injured rat spinal cord. Nature Medicinel999; 5(12): 1410-12.
    20. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006 Jun 29;441(7097): 1094-96.
    21. Vroemen M, Aigner L, Winkler J, Weidner N. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Hur .J Neurosci. 2003 Aug; 18(4):743-51.
    22. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006 Mar 29;26(13):3377-89.
    23. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002 Sep 15;69(6):925-33.
    24. Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine. 2007 May 20;32( 12): 1272-78.
    25. Bradbury EJ, Khemani S, Von R, King, Priestley JV, McMahon SB. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 1999; 11: 3873-83.
    26. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature. 1994 Jan 13;367(6459): 170-73.
    27. Jones LL, Oudega M, Bunge MB, Tuszynski MH. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 2001; 533: 83-89.
    28. Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci. 1997 Jul 15;17(14):5560-72.
    29. RomeroMI, Rangappa N, Li L, Lightfoot E, GarryMG, Smith GM. Extensive sprouting of sensory a.erents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci 2000; 20: 4435-45.
    30. Guo JS, Zeng YS, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord. 2007 Jan;45(1): 15-24.
    31. Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol. 2003 Nov;184(1):114-30.
    32. Oudega M, Moon LD, de Almeida Leme RJ. Schwann cells for spinal cord repair Braz J Med Biol Res. 2005 Jun;38(6):825-35.
    33. Kakulas BA. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord. 2004 Oct;42(10):549-63.
    34. Richardson PM. Neurotrophic factors in regeneration. Curr Opin Neurobiol, 1991; 1(3):401-06.
    35. Tessarollo L, Vogel K, Palko M, Reid S, Parada L. "Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons". Proc Natl Acad Sci USA. 1994,91 (25): 11844-48.
    36. Klein R, Silos-Santiago I, Smeyne R, Lira S, Brambilla R, Bryant S, Zhang L, Snider W, Barbacid M. "Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements". Nature. 1994, 368 (6468): 249-51.
    37. Tessarollo L, Tsoulfas P, Martin-Zanca D, Gilbert D, Jenkins N, Copeland N, Parada L. "trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues". Development. 1993,118 (2): 463-75.
    38. Lynskey JV, Sandhu FA, Dai HN, McAtee M, Slotkin JR, MacArthur L, Bregman BS. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. J Neurotrauma. 2006 May;23(5):617-34.
    39. Romero MI, Rangappa N, Garry MG, Smith GM. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 2001; 21: 8408-16.
    40. Hagg T, Baker KA, Emsley JG, Tetzlaff W. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Neuroscience 2005; 130: 875-87.
    41. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain. 2006 Jun; 129(Pt 6): 1534-45.
    42. Bambakidis NC, Miller RH. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J. 2004 Jan-Feb;4(1): 16-26.
    43. Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L, de la Monte SM, Squinto S, Furth ME, Yancopoulos GD. Human and rat brain-derived neurotrophic factor and neurotrophin-3:gene structures,distributions,and chromosomal localizations.Genomics.1991 Jul;10(3):558-68.
    44.Prasher DC,Eckenrode VK,Ward WW,Prendergast FG,Cormier MJ.Primary structure of the Aequorea victoria green-fluorescent protein.Gene.1992 Feb 15;111(2):229-33.
    45.Green fluorescent protein as a rnarker for gene expression.Chalfie M,Tu Y,Euskirchen G,Ward WW,Prasher DC.Science.1994 Feb 11;263(5148):802-05.
    46.Cormack BP,Valdivia RH,Falkow S.FACS-optimized mutants of the green fluorescent protein (GFP).Gene.1996;173(1 Spec No):33-38.
    47.Kozak M.An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs.Nucleic Acids Res.1987 Oct 26;15(20):8125-48.
    48.Purves D,Augustine GJ,Fitzpatrick D,et al.Neuroscience.2ed ed.Sunderland (MA):Sinauer Associates,Inc.c2001.
    49.Kim HT,Kim IS,Lee IS,Lee JP,Snyder EY,Park KI.Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed.Exp Neurol,2006;199(1):222-35.
    50.Rajan P,Snyder E.Neural stem cells and their manipulation.Methods Enzymol,2006;419:23-52.
    51.Baz(?)n E,Alonso FJ,Redondo C,L(?)pez-Toledano MA,Alfaro JM,Reimers D,Herranz AS,Pa(?)no CL,Serrano AB,Cobacho N,Caso E,Lobo MV.In vitro and in vivo characterization of neural stem cells.Histol Histopathol,2004;19(4):1261-75.
    52.Ward TH,Lippincott-Schwartz J.The uses of green fluorescent protein in mammalian cells.Methods Biochem Anal,2006;47:305-37.
    53.Tomanin R,Scarpa M.Why do we need new gene therapy viral vectors? Characteristics,limitations and future perspectives of viral vector transduction.Curr Gene Ther,2004;4(4):357-72.
    54.Gao X,Huang L.Cationic liposome-mediated gene transfer.Gene Ther,1995;2(10):710-22.
    55.Eliyahu H,Barenholz Y,Domb AJ.Polymers for DNA delivery.Molecules,2005;10(1):34-64.
    56.Plank C,Schillinger U,Scherer F,Bergemann C,R(?)my JS,Kr(?)tz F,Anton M,Lausier J,Rosenecker J.The magnetofection method:using magnetic force to enhance gene delivery.Biol Chem,2003;384(5):737-47.
    57.Aslan H,Zilberman Y,Arbeli V,Sheyn D,Matan Y,Liebergall M,Li JZ,Helm GA,Gazit D,Gazit Z.Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration.Tissue Eng,2006;2(4):877-89.
    58.Akita H,Harashima H.Nonviral gene delivery.Contrib Nephrol,2008;159:13-29.
    59.Chinswangwatanakul W,Lewis JL,Manning M,Roberts IA,Gordon MY.Use of G418 resistance to select cells retrovirally transduced with the Neo(R) gene.Exp Hematol,1998;26(3):185-87.
    60. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995 Feb; 12(1): 1-21.
    61. Christie SD, Mendez I. Neural transplantation in spinal cord injury. Can J Neurol Sci. 2001 Feb;28(1):6-15.
    62. Talac R, Friedman JA, Moore MJ, Lu L, Jabbari E, Windebank AJ, Currier BL, Yaszemski MJ. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004 Apr;25(9): 1505-10.
    63. Jakeman LB, Ma M, Stokes BT. Considering the use of transgenic mice in spinal cord research. In: Marwah J, Dixon CE, Banik NL, editors. Traumatic CNS injury. Scottsdale: Prominent Press; 2001. p. 180-201.
    64. Stokes BT, Jakeman LB. A murine model for experimental spinal cord injury. Spinal Cord 2002;40:101-09.
    65. Doyle LM, Stafford PP, Roberts BI. Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel. Neuroscience 2001; 107(1): 169-79.
    66. Borgens RB, Shi R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J 2000; 14:27 35.
    67. Borgens RB. Cellular Engineering: molecular repair of membranes to rescue cells of the damaged nervous system. Neurosurgery 2001 ;49:370-79.
    68. Metz GAS. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 2000; 17:1-17.
    69. Stokes BT, Noeys DH, Behrmann DI. An electromechanical spinal cord injury device with dynamic sensitivity. J Neurotrauma 1992;9:187-95.
    70. Anderson TE, Stokes BT. Experimental models for spinal cord injury research: physical and physiological considerations. J Neurotrauma 1992;9(Suppl. 1):S135 42.
    71. Bunge MB. Transplantation of purified populations of Schwann cells into lesioncd adult rat spinal cord. J Neurol 1994;242:S36-39.
    72. Xu XM, Guenard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995;351:145-60.
    73. Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 1999;11:1723-40.
    74. Friedman JA, Windebank AJ, Moore MJ, Spiner RJ, Currier BL, Yaszemski MJ. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery 2002;51:742-52.
    75. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioncd spinal cord. Physiol Rev. 1996 Apr;76(2):319-70.
    76. Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C, Bregman BS. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci. 2001 Dec 1;21(23):9334-44.
    77. Bj(?)rklund A. Neurobiology. Better cells for brain repair. Nature. 1993 Apr 1;362(6419):414-15.
    78. Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer Ⅰ. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci. 2005 Oct 19;25(42):9624-36.
    79. Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007 Feb;24(2):391-10.
    80. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bungc MB, Whittemore SR. Functional recovery in traumatic spinal cord injury alter transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005 Jul 27;25(30):6947-57.
    81. Ditunno JF, Little JW, Tessler A, Burns AS. Spinal shock revisited: a fourphasc model. Spinal Cord 2004; 42: 383-95.
    82. Jeffery ND, Blakemore WF. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 1997; 120. 27-37.
    83. Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F. Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 2004; 127: 1019-34.
    84. Romero SE, Bravo G, Hong E, Rojas G, Ibarra A. Acute, subacute and chronic effect of cyclosporin-A on mean arterial pressure of rats with severe spinal cord contusion.Neurosci Lett. 2008 Nov 7;445(l):99-102.
    85. Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer Ⅰ. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005 Feb 21; 1035(1):73-85.
    86. Malmsten J. Time course of segmental reflex changes after chronic spinal cord hemisection in the rat. Acta Physiol Scand. 1983 Dec;l19(4):435-43.
    87. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann 0, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.Nat Neurosci. 2004 Mar;7(3):269-77.
    88. Bamber NI, Li H, Lu X, Oudega M, Aebischer P, Xu XM. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci. 2001 Jan;13(2):257-68.
    89. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I.Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci. 1999 Jun 1;19(11):4370-87.
    90. Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K. Efficient testing of motor function in spinal cord injured rats. Brain Res. 2000 Nov 17;883(2): 165-77.
    91. Hess DC, Hill WD, Carroll JE, Borlongan CV. Do bone marrow cells generate neurons? Arch Neurol 2004; 61: 483-85.
    92. Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J. 2005 May;19(7):694-703.
    93. Barker RA, Jain M, Armstrong RJE, Caldwell MA. Editorial: stem cells and neurological disease. J Neurol NeurosurgPsychiatry 2003; 74: 553 57.
    94. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Hol ford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. 1996 Jul;13(7):343-59.
    95. von Euler M, Seiger A, Sundstrom E. Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations.Exp Neurol. 1997 Jun; 145(2 Pt 1):502-10.
    96. Broton JG, Nikolic Z, Suys S, Calancie B. Kinematic analysis of limb position during quadrupedal locomotion in rats. J Neurotrauma. 1996 Jul;13(7):409-16.
    97. Schwab ME, Br(?)samle C.Regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord under experimental conditions. Spinal Cord. 1997 Jul;35(7):469-73.
    98. Brustein E, Rossignol S.Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. J Neurophysiol. 1999 Apr;81(4): 1513-30.
    99. Z'Graggen WJ, Metz GA, Kartje GL, Thallmair M, Schwab ME.Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci. 1998 Jun 15;18(12):4744-57.
    l00.Metz GA, Schwab ME, Welzl H. The effects of acute and chronic stress on motor and sensory performance in male Lewis rats. Physiol Behav. 2001 Jan;72(1-2):29-35.
    l0l.Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT.Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.Exp Neurol. 1999 Aug;158(2):351-65.
    102.Barnab(?)-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell. 2008 Jul 3;3(1): 16-24.
    103.Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes axon regeneration and functional recovery following spinal cord injury. Nature 2002; 416: 636-640.
    104.Ramos-Vara JA. Technical aspects of immunohistochemislry. Vet Pathol. 2005 Jul;42(4):405-26.
    105.Rao MS, Mayer-Proschel M. Precursor cells for transplantation. Prog Brain Res. 2000; 128:273-92.
    106.Kamei N, Oishi Y, Tanaka N, Ishida O, Fujiwara Y, Ochi M. Neural progenitor cells promote corticospinal axon growth in organotypic co-cultures. Neuroreport. 2004 Dec 3; 15(17):2579-83.
    107.Christie SD, Mendez I. Neural transplantation in spinal cord injury. Can J Neurol Sci. 2001 Feb;28(1):6-15.
    1.Lali HS,Sekhon LHS,Fehlings MG.Epidemiology,demographics,and pathophysiology of acute spinal cord injury.Spine 2001;26:S2-12.
    2.张强,贾连顺.脊髓损伤的临床统计资料分析.第二军医大学学报 2003;24(06);684-86.
    3.DeVivo MJ.Causes and costs of spinal cord injury in the United States.Spinal Cord 1997;35:809-13.
    4.Berkowitz M,Harvey C,Greene C,Wilson SE.The economic consequences of traumatic spinal cord injury.New York:Demos;1992.
    5.Christie SD,Mendez I.Neural transplantation in spinal cord injury.Can J Neurol Sci.2001 Feb;28(1):6-15.
    6.Talac R.Friedman JA,Moore MJ,Lu L,Jabbari E,Windebank A J,Currier BL,Yaszemski MJ.Animal models of spinal cord injury for evaluation of tissue engineering treatment strategics.Biomaterials.2004 Apr;25(9):1505-10.
    7.Stokes BT,Jakeman LB.A murine model for experimental spinal cord injury.Spinal Cord 2002;40:101-9.
    8.Hulsebosch CE.Recent advances in pathophysiology and treatment of spinal cord injury.Adv Physiol Educ 2002;26(4):238-55.
    9.Bunge RP,Puckett WR,Becerra JL,Marcillo A,Quencer RM.Observations on the pathology of human spinal cord injury.A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination.Adv Neurol 1993;59:75-89.
    10.Li S,Stys PK.Mechanisms of ionotropic glutamate receptormediated excitotoxicity in isolated spinal cord white matter.J Neurosci 2000;20:1190-8.
    11.Takami T,Oudega M,Bethea JR,Wood PM,Kieltman N,Bunge MB.Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fisher rat thoracic spinal cord but not improve functional outcome.J Neurotrauma 2002;19:653-66.
    12.Zhang Z,Krebs CJ,Guth L.Experimental analysis of progressive necrosis after spinal cord trauma in the rat:etiological role of the inflammatory response.Exp Neurol 1997;143:141-52.
    13.Kakulas BA.A review of neuropathology of human spinal cord injury with emphasis on specific features.J Spinal Cord Med 1999;22:119-24.
    14.Jakeman LB,Ma M,Stokes BT.Considering the use of transgenic mice in spinal cord research.In:Marwah J,Dixon CE,Banik NL,editors.Traumatic CNS injury.Scottsdale:Prominent Press;2001.p.180-201.
    15.Doyle LM,Stafford PP,Roberts BI.Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel.Neuroscience 2001;107(1):169-79.
    16.Borgens RB,Shi R.Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol.FASEB J 2000;14:27-35.
    17.Borgens RB.Cellular Engineering:molecular repair of membranes to rescue cells of the damaged nervous system.Neurosurgery 2001;49:370-9.
    18.Metz GAS.Validation of the weight-drop contusion model in rats:a comparative study of human spinal cord injury.J Neurotrauma 2000;17:1-17.
    19.Blight A.Mechanical factors in experimental spinal cord injury.J Am Paraplegia Soc 1988;11:26-34.
    20.Stokes BT,Noeys DH,Behrmann DI.An electromechanical spinal cord injury device with dynamic sensitivity.J Neurotrauma 1992;9:187-95.
    21.Anderson TE,Stokes BT.Experimental models for spinal cord injury research:physical and physiological considerations.J Neurotrauma 1992;9(Suppl.1):S135-42.
    22.Bunge MB.Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord.J Neurol 1994;242:S36-9.
    23.Xu XM,Guenard V,Kleitman N,Bunge MB.Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.J Comp Neurol 1995;351:145-60.
    24.Xu XM,Zhang SX,Li H,Aebischer P,Bunge MB.Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord.Eur J Neurosci 1999;11:1723-40.
    25.Friedman JA,Windebank AJ,Moore MJ,Spiner RJ,Currier BL,Yaszemski MJ.Biodegradable polymer grafts for surgical repair of the injured spinal cord.Neurosurgery 2002;51:742-52.
    26.Metz GA,Merkler D,Dietz V,Schwab ME,Fouad K.Efficient testing of motor function in spinal cord injured rats.Brain Res.2000 Nov 17;883(2):165-77.
    27.Barnab(?)-Heider F,Fris(?)n J.Stem cells for spinal cord repair.Cell Stem Cell.2008 Jul 3;3(1):16-24.
    1.Horn EM,Preul MC,Sonntag VK,Bambakidis NC.Multimodality treatment of spinal cord injury:endogenous stem cells and other magic bullets.Barrow Quarterly.2007;23:9-14.
    2.Baptiste DC,Fehlings MG.Update on the treatment of spinal cord injury.Prog Brain Res.2007;161:217-33.
    3.Liu,XZ,Xn XM,Hu R.,Du C,Zhang SX,McDonald JW,Dong HX,Wu YJ,Fan GS,Jacquin MF,Hsu CY,Choi DW.Neuronal and glial apoptosis after traumatic spinal cord injury.J Neurosci.1997;17:,5395-5406.
    4.Hausmann ON.Post-traumatic inflammation following spinal cord injury.Spinal Cord.2003;41:369-78.
    5.Fleming JC,Norenberg MD,Ramsay DA,Dekaban GA,Marcillo AE,Saenz AD,Pasquale-Styles M,Dietrich WD,Weaver LC The cellular inflammatory response in human spinal cords after injury.Brain,2006;129:3249-69.
    6.Anderson AJ,Robert S,Huang W,Young W,Cotman CW.Activation of complement pathways after contusion-induced spinal cord injury.J Neurotrauma.2004;.21:1831-46.
    7.Totoiu MO,Keirstead HS.Spinal cord injury is accompanied by chronic progressive demyelination.J Comp Neurol.2005;486:373-83.
    8.Fitch MT,Silver J.CNS injury,glial scars,and inflammation:inhibitory extracellular matrices and regeneration failure.Exp Neurol.2008;.209:294-301.
    9.Silver J,Miller JH.Regeneration beyond the glial scar.Nat Rev Neurosci.2004;5:146-51.
    10.Keirstead HS,Nistor G,Bernal G,Totoiu M,Cloutier F,Sharp K,Steward O.Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.J Neurosci.2005;25:4694-4705.
    11.Okano H,Ogawa Y,Nakamura M,Kaneko S,Iwanami A,Toyama Y.Transplantation of neural stem cells into the spinal cord after injury.Semin Cell Dev Biol.2003;14:191-98.
    12.Kleinsmith LJ,Pierce Jr GB.Multipotentiality of single embryonal carcinoma cells.Cancer Res.1964;24:1544-51.
    13.Nagy A,Rossant J,Nagy R,Abramow-Newerly W,Roder JC.Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.Proc Natl Acad Sci U.S.A.1993;90:8424-28.
    14.Cibelli JB,Grant KA,Chapman KB,Cunniff K,Worst T,Green HL,Walker SJ,Gutin PH,Vilner L,Tabar V,Dominko T,Kane J,Wettstein PJ,Lanza RP,Studer L,Vrana KE,West MD.Parthenogenetic stem cells in nonhuman primates.Science.2002;295:819.
    15.Vrana KE,Hipp JD,Goss AM,McCool BA,Riddle DR,Walker SJ,Wettstein PJ,Studer LP,Tabar V,Cunniff K,Chapman K,Vilner L,West MD,Grant KA,Cibelli JB.Nonhuman primate parthenogenetic stem cells.Proc.Natl Acad Sci U.S.A.2003;100 (Suppl 1):11911-16.
    16.Zeng X,Rao MS.Human embryonic stem cells:long term stability,absence of senescence and a potential cell source for neural replacement.Neuroscience.2007;145:1348-58.
    17.Richards M,Fong CY,Chan WK,Wong PC,Bongso A.Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells.Nat.Biotechnol.2002;20:933-36.
    18.Lang KJ,Rathjen J,Vassilieva S,Rathjen PD.Differentiation of embryonic stem cells to a neural fate:a route to re-building the nervous system? J Neurosci Res.2004;76:184-192.
    19.Billon N,Jolicoeur C,Raff M.Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro.Methods Mol Biol.2006;330:15-32.
    20.Liu S,Qu Y,Stewart TJ,Howard MJ,Chakrabortty S,Holekamp TF,McDonald JW.Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation.Proc Natl Acad Sci U.S.A.2000;97:6126-31.
    21. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond .J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006;60:32 - 44.
    22. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001 ;172:383 - 97.
    23. Reubinoff BE, Itsykson P, Turetsky T, Pera M.F, Reinhartz E, Itzik A, Ben-Hur T. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001; 19: 1134 - 40.
    24. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen Lo, Pearce RA, Zhang SC. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005;23:215 - 221.
    25. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005;49:385 - 96.
    26. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U. S. A. 2000;97:14720- 25.
    27. Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron. 1997;19: 773 - 85.
    28. Shi J, Marinovich A, Barres BA. Purification and characterization of adult oligodendrocyle precursor cells from the rat optic nerve. J Neurosci. 1998; 18: 4627 - 36.
    29. Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001; 19: 475 - 79.
    30. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann II G, Jiang L, Kang J, Nedergaard M, Goldman SA. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9:439 - 47.
    31. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U. S. A. 2005;102: 14069 - 74.
    32. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rals. J Neurosci Res. 2002; 69: 925 - 33.
    33. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Transplantation of human neural stem cells for spinal cord injury in primates, J Neurosci Res, 2005;80: 182-90.
    34. Lu P, Jones LL, Snyder EY, Tuszynski MH, Neural stem cells constitutively secrete ncurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003; 181: 115 -29.
    35.Llado J,Haenggeli C,Maragakis N J,Snyder EY,Rothstein JD.Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors.Mol Cell Neurosci.2004;27:322-31.
    36.Doetsch F,Caille I,Lim DA,Garcia-Verdugo JM,Alvarez-Buylla A.Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.Cell 1999;97:703-16.
    37.Wright LS,Prowse KR,Wallace K,Linskens MH,Svendsen CN.Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro.Exp Cell Res.2006;312:2107-20.
    38.Han SS,Kang DY,Mujtaba T,Rao MS,Fischer I.Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord.Exp Neurol.2002;177:360-75.
    39.Yan J,Xu L,Welsh AM,Hatfield G,Hazel T,Johe K,Koliatsos VE.Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.PLoS Med.2007;4:e39.
    40.Einstein O,Karussis D,Grigoriadis N,Mizrachi-Kol R,Reinhartz E,Abramsky O,Ben-Hur,T.Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis.Mol Cell Neurosci 2003;24:1074-82.
    41.Pluchino S,Quattrini A,Brambilla E,Gritti A,Salani G,Dina G,Galli R,Del Carro U,Amadio S,Bergami A,Furlan R,Comi G,Vescovi AL,Martino G.Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis.Nature.2003;422:688-94.
    42.Ben-Hur T,Einstein O,Mizrachi-Kol R,Ben-Menachem O,Reinhartz E,Karussis D,Abramsky O.Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis.Glia.2003;41:73-80.
    43.Bulte JW,Ben-Hur T,Miller BR,Mizrachi-Kol R,Einstein O,Reinhartz E,Zywicke HA,Douglas T,Frank JA.MRmicroscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain.Magn Reson Med.2003;50:201-05.
    44.Enzmann GU,Benton RL,Talbott JF,Cao Q,Whittemore SR.Functional considerations of stem cell transplantation therapy for spinal cord repair.J Neurotrauma.2006;23:479-95.
    45.Roy NS,Nakano T,Keyoung HM,Windrem M,Rashbaum WK,Alonso ML,Kang J,Peng W,Carpenter MK,Lin J,Nedergaard M,Goldman SA.Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord.Nat Biotechnol.2004;22:297-305.
    46.Richter MW,Roskams AJ.Olfactory ensheathing cell transplantation following spinal cord injury:hype or hope? Exp Neurol.2008;209:353-67.
    47.Raisman G,Li Y.Repair of neural pathways by olfactory ensheathing cells.Nat Rev Neurosci.2007;8:312-19.
    48.Pastrana E,Moreno-Flores MT,Gurzov EN,Avila J,Wandosell F,Diaz-Nido J.Genes associated with adult axon regeneration promoted by olfactory ensheathing cells:a new role for matrix metalloproteinase 2.J Neurosci.2006;26:5347-59.
    49.Yoon SH,Shim YS,Park YH,Chung JK,Nam JH,Kim MO,Park HC,Park SR,Min BH,Kim EY,Choi BH,Park H,Ha Y.Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor:phase Ⅰ/Ⅱ clinical trial.Stem Cells.2007;25:2066-73.
    50.Callera F,do Nascimento RX.Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury:a preliminary safety study.Exp Hematol.2006;34:130-31.
    51.Mezey E,Key S,Vogelsang G,Szalayova I,Lange GD,Crain B.Transplanted bone marrow generates new neurons in human brains.Proc Natl Acad Sci U.S.A.2003;100:1364-69.
    52.Weimann JM,Charlton CA,Brazelton TR,Hackman RC,Blau HM.Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains.Proc Natl Acad Sci U.S.A.2003;100:2088-93.
    53.Cogle CR,Yachnis AT,Laywell ED,Zander DS,Wingard JR,Steindler DA,Scott EW.Bone marrow transdifferentiation in brain after transplantation:a retrospective study.Lancet.2004;363:1432-37.
    54.Parr AM,Tator CH,Keating A.Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury.Bone Marrow Transplant.2007;40:609-19.
    55.Akiyama Y,Radtke C,Honmou O,Kocsis JD.Remyelination of the spinal cord following intravenous delivery of bone marrow cells.Glia.2002;39:229-36.
    56.Akiyama,Y.,Radtke,C.,Kocsis,J.D.Remyelination of the rat spinal cord by transplantation of identified bonemarrowstromal cells.J.Neurosci.,2002.22,6623-6630.
    57.Sasaki M,Honmou O,Akiyama Y,Uede T,Hashi K,Kocsis JD.Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons.Glia.2001;35:26-34.
    58.Koda M,Okada S,Nakayama T,Koshizuka S,Kamada T,Nishio Y,Someya Y,Yoshinaga K,Okawa A,Moriya H,Yamazaki M.Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice.Neuroreport.2005;16:1763-67.
    59.Steidl U,Kronenwett R,Rohr UP,Fenk R,Kliszewski S,Maercker C,Neubert P,Aivado M,Koch J,Modlich O,Bojar H,Gattermann N,Haas R.Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells.Blood.2002;99:2037-44.
    60.Goolsby J,Marty MC,Heletz D,Chiappelli J,Tashko G,Yarnell D,Fishman PS,Dhib-Jalbut S,Bever Jr CT,Pessac B,Trisler D.Hematopoietic progenitors express neural genes.Proc Natl Acad Sci.U.S.A.2003;100:14926-31.
    61.Aggarwal S,Pittenger MF,Human mesenchymal stem cells modulate allogeneic immune cell responses.Blood.2005;105:1815-22.
    62.Noel D,Djouad F,Bouffi C,Mrugala D,Jorgensen C.Multipotent mesenchymal stromal cells and immune tolerance.Leuk Lymphoma.2007;48:1283-89.
    63.Song S,Kamath S,Mosquera D,Zigova T,Sanberg P,Vesely DL,Sanchez-Ramos J.Expression of brain natriuretic peptide by human bone marrow stromal cells.Exp Neurol.2004;185:191-197.
    64.Hofstetter CP,Schwarz EJ,Hess D,Widenfalk J,El Manira A,Prockop DJ,Olson L.Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery.Proc Natl Acad Sci U.S.A.2002;99:2199-2204.
    65. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci. 2004;24:6402 -09.
    66. Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005; 191: 344 - 60.
    67. Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord. 2005;43: 134-61.
    68. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med. 2004;10:610 - 16.
    69. McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci. 2001 ;21:3392 - 3400.
    70. Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis Brain. 2000; 123 (Pt 1):105 - 15.
    71. Capello E, Voskuhl RR, McFarland HF, Raine CS. Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann Neurol. 1997;41: 797 05.
    72. Ibanez C, Shields SA, El-Etr M, Leonelli E, Magnaghi V, Li WW, Sim FJ, Baulieu EE, Melcangi RC, Schumacher M, Franklin RJ. Steroids and the reversal of age-associated changes in myelination and remyelination. Prog Neurobiol. 2003;71: 49 - 56.
    73. Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005; 192:384 - 93.
    74. Shields S, Gilson J, Blakemore W, Franklin R. Remyelination occurs as extensively but more slowly in old rats compared to young rats following fliotoxin-induced CNS demyelination. Glia. 2000; 29: 102.
    75. Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK. Oligodendrocytes and progenitors become progressively depleted within chronically demyelinatcd lesions. Am J Pathol. 2004; 164: 1673 - 82.
    76. Crang AJ, Gilson J, Blakemore WE The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol. 1998;27: 541 - 53.
    77. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med. 2002;8: 1115-21.
    78. Zhang YW, Denham J, Thies RS. Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev. 2006;15: 943 - 52.
    79. Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res. 2008;30(1):5-16.
    80. Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury. Exp Neurol. 2008;209(2):368-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700