斑马鱼p26s-8基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太空环境中微重力条件会导致基因和蛋白表达谱发生变化。前期蛋白双向电泳结果初步表明,模拟微重力处理会引起斑马鱼P26S-8蛋白表达发生显著变化,Q-PCR结果表明p26s-8基因表达发生显著下调。因此,推测该基因是微重力感受基因。目前,关于p26s-8基因的功能研究较少,在斑马鱼中该基因尚未被克隆及研究。
     本文以斑马鱼(Danio rerio)为模式生物,利用NASA研制的微重力模拟系统RCCS(Rotary Cell Culture System, RCCS)进行地面模拟。从p26s-8基因全序列的克隆、对应蛋白在微重力条件下表达变化的定量分析及其在细胞周期调控中的作用三方面,对微重力感受基因p26s-8进行了深入的研究。
     本论文首次克隆获得了斑马鱼p26s-8基因的全序列,并对序列进行了初步分析及构建了进化树。对P26S-8蛋白在模拟微重力处理前后表达水平的定量分析表明:模拟微重力处理24hpf-48hpf和24hpf-72hpf的斑马鱼胚胎P26S-8蛋白水平发生显著上调,分别为处理组的1.18和1.22倍。同时发现,模拟微重力处理会导致斑马鱼胚胎的孵化产生延迟。利用斑马鱼胚胎成纤维细胞系ZF4进行细胞周期检测的结果表明:模拟微重力处理会使ZF4细胞的细胞周期阻断在G1期,抑制P26S-8蛋白也会导致细胞周期阻滞在G1。模拟微重力处理是否通过影响p26s-8对斑马鱼细胞G1-S期的调控,进而导致胚胎发育的延迟,尚待进一步验证。本课题获得的研究结果,为进一步揭示微重力产生的生物学效应机制提供了数据。
Microgravity environment of space can induce a serial of changes in gene and protein expression profilings. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated P26S-8protein was up-regulated on two-dimensional (2-D) electrophoresis gel, while the gene expression level of p26s-8was significantly decreased after simulated-microgravity. These results suggest that p26s-8may be a microgravity sensitive gene. However, functional study on p26s-8is very limited and it has not been cloned in zebrafish till now.
     In this study, we tried to clone p26s-8gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity, and identify its function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity.
     The whole sequence of p26s-8gene in zebrafish was cloned in this study for the first time. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that p26s-8protein expression levels were significantly increased1.18and1.22times after24-48hpf and24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of P26S-8protein in zebrafish embryonic cell lines ZF4could block cell cycle in G1phase, which indicated that p26s-8may play a role in cell cycle regulation. Intererstingly, simulated-microgravity could also lead to the block in the G1. Whether it is p26s-8mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. However, results obtained in this study will contribute to the biological mechanism revealing of microgravity.
引文
[1]余志斌.失重对航天员的影响及其对抗措施.中华航空航天医学杂志.2007,18(1):72-77.
    [2]Manti L. Does reduced gravity alter cellular response to ionizing radiation? Radiat Environ Biophys.2006,45(1):1-8.
    [3]Synthecon incorporated. The Rotary Cell Culture SystemTM-The Premier Tissue Engineering Culture System. User's Guide.
    [4]李宝香,郭德伦,张莹等.三维细胞培养技术及相关仪器的进展和应用,中国医学装备.2006.6(3):11-13
    [5]Fritsch-Yelle J M, Charles J B, Jones M M, et al. Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol.1996,80:910-914.
    [6]Atkov O.Some medical aspects of an 8-month's space flight.Adv Space Res.1992, 12:343-345.
    [7]Basso N, Bellows C G, Heersche J N. Effect of simulated weight-lessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone.2005, 36:173-183.
    [8]Bucaro M A, Fertala J, Adams C S, et al. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann NY Acad Sci.2004,1027:64-73.
    [9]Leach C S. Biochemical and hematologic changes after short-term space flight. Microgravity Q.1992(2):69-75.
    [10]Heer M, Kamps N, Biener C, et al. Calcium metabolism in microgravity. Eur J Med Res.1999(4)357-360.
    [11]Pardo S J, Patel M J, Sykes M C, et al. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol.2005,288:1211-1221.
    [12]戴伟川,王进霞,曹欣等.飞行人员期前收缩特点分析.航空军医.2004,32(2):58-59
    [13]冯岱雅.失重对人体心血管系统的影响及仿真.2005,25(3):253-256
    [14]马进,张立藩,杨天德.模拟失重大鼠动脉平滑肌收缩反应性的变化.中华航空航天医学杂志.1999(2):37.
    [15]孙磊,向求鲁,汪德生等.微重力与模拟重力条件下的肺循环变化.航天医学与医学工程. 2000,1 3(04):305-309.
    [16]孙联文.微重力导致航天员骨质疏松的研究进展.中华航空航天医学杂志.2004,5(1):54-62.
    [17]Zerath E. Effects of microgravity on bone and calcium homeostasis. Adv Space Res.1998,21 (8/9):1049-1058.
    [18]孙怡宁.微重力引起骨丢失的细胞机制.国际骨科学杂志.2006,27(2):126-128.
    [19]Clement G. Musculo-skeletal system in space. Fundamentals of space medicine. 2003,173-204.
    [20]Bateman TA. Countryman S1 Osteoprote gerin and bone loss associated with spaceflightl DDT.2002,7(8):456-457.
    [20]Robert H. Fitts. Microgravity and skeletal muscle. J Appl Physiol.2000, 89:823-839.
    [21]DANNY A. RILEY. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J. Appl. Physiol.2000,88:567-572.
    [22]G. R. Adams. Effects of spaceflight and thyroid deficiency on hindlimb development I. Muscle mass and IGF-I expression. Appl. Physiol.2000,88:894-903.
    [23]Buravkova LB, Rykova MP, Grigorieva V. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro, J Gravit Physiol,2004,11(2): 177-180.
    [24]Taylor W E, Bhasin S, Lalani R. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J Gravit Physiol.2002, 9:61-70.
    [25]Tobin BW, Uchakin PN, Leeper-Woodford SK. Insuilin secretion and sensitivity in space light:diabetogenic effects. Nutrition.2002,18:842-848.
    [26]王冰,张舒,吴兴裕.模拟失重对大鼠骨肉瘤细胞内I型胶原表达的影响.中华航空航天医学杂志.2003,14(1):5-7
    [27]龙星星,模拟微重力对K562细胞的影响.硕士学位论文,南方医科大学.2011.
    [28]郑红霞,田维明,岳磊等,模拟失重对NIH3T3细胞纺锤体结构和细胞周期的影响.航天医学与医学工程.2010,23(6):416-418
    [29]Shimada N, Sokunbi G, Moorman S J. Changes in gravitational force affect gene expression in developing organ systems at different developmental times. BMC Dev. Biol.2005,5:10.
    [30]Naoko Shimada and Stephen J. Moorman. Changes in Gravitational Force Cause Changes in Gene Expression in the Lens of Developing Zebrafish. Developmental dynamics.2006, 235:2686-2694
    [31]Moorman SJ, Cordova R, Davies SA. A critical period for functional vestibular development in zebrafish. Dev Dyn.2002,223:285-291
    [32]马雯雯.模拟微重力下脊椎动物胚胎发育研究模型建立.硕士学位论文.大连海事大学,2010.
    [33]李蕙,模拟微重力对斑马鱼胚胎发育及microRNA表达的影响.硕士学位论文.大连海事大学,2011.
    [34]M. H. Glickman, N. Adir. The proteasome and the delicate balance between destruction and rescue.PLoS Biol.2004,2:E13.
    [35]K. Tanaka. The proteasome:overview of structure and functions. Proc. Jpn Acad. B Phys. Biol. Sci.2009,85:12-36.
    [36]S. Nickell, F. Beck, S. H. Scheres, et al. Insights into the molecular architecture of the 26S proteasome. Proc.Natl Acad. Sci.2009, USA 106:11943-11947.
    [37]Keiji Tanaka. Molecular Biology of the Proteasome. Biochemical and Biophysical Research Communication.1998,247:537-541.
    [38]倪晓光,赵平.泛素-蛋白酶体途径的组成和功能.生理科学进展.2006,37(3):255-258.
    [39]I. Dikic, S. Wakatsuki, K. J. Walters, Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol.2009,10:659-671.
    [40]王晓.泛素-26蛋白酶体途径在凋亡中的作用.国外医学分子生物学分.2002,24(2):97-99.
    [41]D. Finley.Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.2009,78:477-513.
    [42]S. Murata, H. Yashiroda, K. Tanaka. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol.2009,10:104-115.
    [43]E. K. Schrader, K. G. Harstad, A. Matouschek, Targeting proteins for degradation. Nat. Chem. Biol.2009,5:815-822.
    [44]李存玺,王永潮.泛素-蛋白水解酶复合体通路.科学通报.1998,43(18):1905-1012.
    [45]Tanahashi N, Tsurumi C, Tamura T, et al. Molecular st ructures of 20S and 26S proteasomes. Enzyme Protein.1993,47:241-251.
    [46]Dieter H. Wolf, Wolfgang Hilt. The proteasome:a proteolyticnanomachine of cell regulation and waste disposal. Biochimicaet Biophysica Acta.2004,1695:19-31.
    [47]Ho Min Kim, Yadong Yu, Yifan Cheng. Structure Characterization of the 26S proteasome.2010,1809 (2):67-79.
    [48]K. Tanaka. The proteasome:overview of structure and functions. Proc. Jpn Acad. B Phys. Biol. Sci.2009,85:12-36.
    [49]H. Fu, N. Reis, Y. Lee, et al. Subunit interaction maps for the regulatory particle of the 26S proteasome and the C0P9 signalosome. EMBOJ.2001,20:7096-7107.
    [50]E. Isono, Y. Saeki, H. Yokosawa, et al. Rpn7 Is required for the structural integrity of the 26S proteasome of Saccharomyces cerevisiae. J. Biol.Chem.2004, 279:27168-27176.
    [51]E. Isono, N. Saito, N. Kamata, et al. Functional analysis of Rpn6p, a lid component of the 26S proteasome, using temperature-sensitive rpn6mutants of the yeast Saccharomyces cerevisiae. J. Biol.Chem.2005,280:6537-6547.
    [52]M.H. Glickman, D. M. Rubin, V.A. Fried, et al.The regulatory particle of the Saccharomyces cerevisiae proteasome.Mol. Cell. Biol.1998,18:3149-3162.
    [53]M. H. Glickman, D. M. Rubin,0. Coux, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell.1998,615-623.
    [54]X.I. Ambroggio, D. C. Rees, R. J. Deshaies. JAMM:ametalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol.2004,2:E2.
    [55]V. Maytal-Kivity, N. Reis, K. Hofmann, M. H. Glickman. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpnll function, BMC Biochem.2002,28(3).
    [56]R. Verma, L. Aravind, R. Oania, et al. Role of Rpnllmetalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002,298:611-615.
    [57]E. Koulich, X. Li, G. N. DeMartino. Relative structural and functional roles of multiple deubiquitylating proteins associated withmammalian 26S proteasome. Mol. Biol. Cell.2008,19:1072-1082.
    [58]T. Yao, R. E. Cohen. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature.2002,419:403-407.
    [59]K. Husnjak, S. Elsasser, N. Zhang, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature,2008,453:481-488.
    [60]P. Schreiner, X. Chen, K. Husnjak, et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature,2008,453:548-552.
    [61]X. B. Qiu, S. Y. Ouyang, C. J. Li, et al. hRpnl3/ADRMl/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J.2006,25:5742-5753.
    [62]J. Hamazaki, S. Iemura, T. Natsume, et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J.2006, 25:4524-4536.
    [63]T. Yao, L. Song, W. Xu, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrml. Nat. Cell Biol.2006,8:994-1002.
    [64]Kin-ichiro Kominami, George N. DeMartino, Carolyn R. Moomaw, et al. Ninlp, A regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae. The EMBO Journal.1995,13(14):3105-3115.
    [65]T T Nugroho and M D Mendenhall. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. 1994,14(5):3320-3328.
    [66]Young-Joo Yi, Gaurishankar Manandhar, Miriam Sutovsky, et al. Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro.Journal of Reproductive Immunology.2010,84:154-163.
    [67]Li T, Duan W, Yang H, et al. Identification of two proteins, S14 andUIPl, that interact with UCH37. FEBS Lett.2001,488(3):201-205.
    [68]M. Stone, R. Hartmann-Petersen, M. Seeger, et al. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol.2004,344:697-706.
    [69]Verma R, Aravind L, Oania R, et al. Role of Rpnll metalloprotease in deubiquitination and degradation by the 26S proteasome. Science.2002,298 (5593):611-615.
    [70]Robert J, TomkoJr, Mark Hochstrasser. Incorporation of Rpn12 Sununit Couples Completion of Proteasome Regulatory Particle Lid Assembly to Lid-Base Joining.2011, 44(6):907-917.
    [71]J. Takeuchi and A. Toh-e. Genetic evidence for interaction between components of the yeast 26S protesome:combination of a mutation in RPN12(a lid component gene) will mutations in RPT1(an ATPase gene) causes synthetic lethality.1999,262:145-153.
    [72]Yingchun Wang, Yufen Xie, Dana Wygle, et al. A Major Effect of Simulated Microgravity on Several Stages of Preimplantation Mouse Development is Lethality Associated With Elevated Phosphorylated SAPK/JNK. Reproductive Sciences.2009,16(10): 949-950.
    [73]Solohill engineering INC. Protocol for Small-Scale Microcarrier Culture-Hillex(?) Ⅱ(H112-170) Microcarriers.2011, MCP-002B.
    [74]Suda T. Lessons from the space experiment SL-J/FMPT/L7:the effect of microgravity on chicken embryogenesis and bone formation. Bone.1998,22:73-78.
    [75]Izumi-Kurotani A, Kiyomoto M, Imai M, et al. Effects ofgravity on spicule formation in cultured micromeres of seaurchin embryo. Advances in Space Research.2006, 38(6):1112-1116.
    [76]Komazaki S. Gravitational effects on apoptosis of pre-sumptive ectodermal cells of amphibian embryo. Journal of Experimental Zoology Part A:Comparative Experimental Biology.2004,301(3):204-11.
    [77]Wakayarma S, Kawahara Y, Li C, et al. Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS One.2009,4:e6753.
    [78]吴嫦丽,高淑静,江青艳等.模拟微重力条件下昆明小鼠早期胚胎体外发育及其G6PD基因表达[J].航天医学与医学工程.2006,5(19):340-344.
    [79]Donald I. How cells(might)sense microgravity. FASEBJ,1999,13:S3-5.
    [80]Hughes-Fulford M. Function of the cytoskeleton in gravisensing during spacef light [J]. Adv space Res.2003,32(8):1585-1593.
    [81]Sui H, Donald EI. A discrete cell cycle checkpiont in late G1 that is cytoskeleton-dependent and MAP kinase (Erk) independent. Experimental Cell Research.2002,275:255-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700