用户名: 密码: 验证码:
螺旋藻藻蓝蛋白裂合酶cpcE-F基因的克隆、表达及进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋藻是一种具有重要经济价值和开发前景的原核生物,关于螺旋藻的分类问题,曾经有一段争论,由于目前越来越多的人把螺旋藻与全价营养和多种医疗功能结合在一起,因此其分类显得更为重要。螺旋藻的传统分类是介于其表现型,但是表现型容易受到环境的影响,这给螺旋藻的分类带来了不小的麻烦;随着分子技术的飞速发展,许多基因被用来进行螺旋藻的系统分析,并取得一定成果。藻胆蛋白是一类结构相似的色素蛋白,它们是由藻胆色素与相应的脱辅基蛋白以硫醚键共价结合而成的,裂合酶是催化该连接反应的酶,藻蓝蛋白是藻胆蛋白中的一种。裂合酶cpcE和cpcF基因最早在聚球藻Synechococcus sp.PCC7002中发现和鉴定,该基因在不同的藻种中具有较高的同源性,适宜作为分子进化的工具,使用该基因作为进化分析的报道还没有。目前,对于裂合酶分析较多的是对α亚基的研究,并且对于螺旋藻自身的藻蓝蛋白α亚基的催化研究还没有报道。
     本文通过GenBank中报道的其他蓝藻关于裂合酶cpcE和cpcF基因设计引物,进行PCR扩增,首次从螺旋藻FACHB314和盐泽螺旋藻FACHB351中克隆得到了cpcE-F裂合酶基因全序列,并对其进行了序列分析和进化研究。结果表明:裂合酶cpcE-F基因的GC含量在Spirulina platensis FACHB314和Spirulina subsalsa FACHB351中分别为50.5%和50.6%,在已经报道的蓝藻cpcE-F基因中处于上游水平,该基因的GC%含量在螺旋藻各个藻种间存在差异,螺旋藻FACHB314 cpcE-F基因与已经报道螺旋藻和节旋藻核苷酸序列的相似性分别为95.0%和94.8%、氨基酸序列的相似性分别为93.7%和93.3%;盐泽螺旋藻FACHB351该基因与已经报道螺旋藻和节旋藻核苷酸序列的相似性分别为95.0%和94.8%、氨基酸序列的相似性分别为94.7%和95.1%,能够使用cpcE-F基因将螺旋藻和节旋藻以及其他蓝藻区分开。同时,我们还对得到的cpcE-F基因进行了二级结构的预测分析,螺旋藻FACHB314和盐泽螺旋藻FACHB351中cpcE-F基因的Mw分别为119587.0kDa和119576.0kDa,等电点分别为5.76和5.69,其蛋白质的不稳定系数分别为23.12和22.92。分子生物学的方法对蓝藻进行快速准确地分析是非常必要的,裂合酶cpcE-F基因位点提供了快速直接的鉴定的方法,本研究首次使用裂合酶基因为螺旋藻的分类提供分子生物学证据。
     通过构建表达质粒,我们证实、鉴定了该裂合酶基因。其在大肠杆菌中的表达研究表明:从Spirulina platensis FACHB314和Spirulina subsalsa FACHB351克隆的得到的藻蓝蛋白裂合酶cpcE和cpcF基因结构完整,能够编码表达裂合酶CpcE和CpcF起到催化藻胆色素与脱辅基藻蓝蛋白结合的作用,也首次证实了螺旋藻藻蓝蛋白α亚基自身的催化作用。
Spirulina is a high economic value prokaryote whose exploitation has a bright future. It is usually argued about the classification. Due to the connection of its nourishment and medical value, the classification of Spirulina appares to be very important. The conventional classification of it is base on the phenotype, but the phenotype is influenced by the surrounding, therefore the difficult appears. By the usage of molecular technique, its classification develops rapidly, and the results of that are obvious. Biliproteins are a wide spread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. It is catalyzed by the lyase. The cpcE and cpcF lyase genes are found in the cyanobacterium Synechococcus sp. PCC 7002. The function of them has been proved. We find that the cpcE and cpcF genes have homology in different cyanobacterias. They are fit for phyletic evolution analysis. At present we have not found the new report about phyletic evolution analysis by this genes. We also have not found the new report about the catalytic reaction by this gene in Spirulina itself.
     The complete sequence of lyase genes were obtained by PCR. Primers were designed according to the published gene sequences of cpcE-F. The sequences are also totally 1488bp. We firstly obtain the sequences of cpcE-F in Spirulina platensis and Spirulina subsalsa. The GC contents of cpcE-F are 50.6% and 50.5%. The similarities of nucleotide in FACHB314 are different in 95.0% and 94.8%, amino acid are different in 93.7% and 93.3%, The similarities of nucleotide in FACHB351 are different in 95.0% and 94.8%, amino acid are different in 94.7% and 95.1%. Mw are 119587.0kDa and 119576.0kDa, pI are 5.76 and 5.69, the aliphatic index are 23.12 and 22.92. We can reach the conclusion that the lyase gene should be use to make a difference in Spirulina.
     To verify the function of lyase, we have overproduced CpcE and CpcF in Escherichia coli. In vitro, these proteins catalyze the attachment of phycocyanobilin to theα-subunit of apophycocyanin at the appropriate site,α-Cys-84, to form the correct adduct. We also firstly suggest that CpcE and CpcF of Spirulina could catalyse the connection of PCB to phycocyaninαsubunit in vivo, and therefore obtained the transformation activity of light energy.
引文
[1] Zhao K-H, Su P, Tu M-T, et al. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins[J]. Proc. Natl. Acad .Sci .U.S.A., 2007,104:300-305
    [2] Saunee N A, Williams S R, Bryant D A, et al. Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002[J]. J.Biol.Chem., 2008, 283:513-522
    [3] Miller C A. Identification and Characterization of Enzymes Involved in Post-translational Modifications of Phycobiliproteins in the Cyanobacterium Synechocystis sp.PCC6803[J]. M.Sc.thesis, University of New Orleans, 2007,30:475–486
    [4]陈峰,姜悦主编.微藻生物技术[M],中国轻工业出版社,1999
    [5] Bryant, D B(ed).The Molecular Biology of Cyanobaeteria[M]. Kluwer Aeademic Publishers, Dordreeht, Boston.1994
    [6]刘金姐.节旋藻藻蓝蛋白操纵子Rubisco基因及节旋藻和螺旋藻分子系统学研究[D].中国海洋大学,2003
    [7] Liu J. J., Zhang X. C., Sui Z. H., et al. Cloning, sequencing and phylogenetic study of rbcL gene from cyanobacteria Arthrospira and Spirulina[J]. High Technology Letters, 2004,10:76-79
    [8]秦松,严小军,曾呈奎.藻类分子生物技术两年评——基因工程及其上游分子遗传学[J],海洋与湖沼,1996,27(1):103-101
    [9]王业勤,徐旭东,黎尚豪.蓝藻分子遗传学十年研究进展[J].水生生物学报,1991,15(4):356-367
    [10]张晓辉.双向氢化酶基因的克隆、分析及其在节旋藻和螺旋藻分子系统学中的应用[D].中国海洋大学,2004
    [11]凌娜.节旋藻、螺旋藻基因组特性初探及硝酸盐转运蛋白基因克隆与序列分析[D].中国海洋大学,2006
    [12] Tiboni O, Pasquael G D, Ciferni O. Two tuf genes in the cyanobacterium Spirulian platensis [J]. Bacteriol, 1984,159(1):407-409
    [13] Kasahara M, Unno T, Yashiro K, et al. A novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclase CyaG[J]. Boil. Chem., 2001,276(13):10564-10569
    [14] Yashiro K, Sakamoto T, Ohmori M. Molecular characterization of an adenylate cyclase gene of the cyanobacterium Spirulian platensis[J]. Plant Mol. Boil., 1996,31(1):175-181
    [15] Salvi S, Trinei M, Lanfaloni L. Cloning and characterization of the gene encoding an esterase from Spirulian platensis[J]. J. Mol. Gen. Genet., 1994,243:124-126
    [16] Buttarelli F R, Tiboni O, Gualerzi C O, et al. Characterization of the str operon genes from Spirulian platensis and their evolutionary relationship to those of other prokaryotes[J]. Mol. Gen. Genet., 1989,217(1):97-104
    [17] Riccardi G, De Rossi E, Valle G D, et al. Cloning of the glutamine synthetase gene from Spirulian platensis acetohydroxy acid synthase genes in Escherichia coli[J]. Arch. Microbio,1991,155:360-365
    [18] De Rossi, Thiessen R A, Vasudevan S, et al. CDD:a curated Entrez database of conserved domain alignments[J]. Nucleic Acids Res., 2003,31:383-387
    [19]凌娜,茅云翔,张学成等.极大节旋藻高分子量基因组文库构建及其应用[J].高技术通讯,2006,27(4):46-48
    [20] Shen G, Saunee N A, Williams S R, et al. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002[J]. J.Biol.Chem., 2006,281:68-78
    [21] Li R H, Watanabe M M. DNA base composition of planktonic species of Anabaena and its taxonomic value[J]. Gen Appl Microbiol, 2002,48(2):77-82
    [22] Delwiche C F, Kuhsel M, Palmer J D. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids[J]. Molecular Phylogenetics and Evolution, 1995, 4:110-128
    [23] Crameri A, White horn E A, et al. Improved green fluorescent protein by molecular evolution using DNA shuffling[J]. Nat. Biotechnol, 1996,14(3):315-319
    [24] Goodma M. Man’place in the phylogeny of the primates as reflected in serum protein. In: Washburn, S L(ed). Classification and Human Evolution[C]. Chicago Aldine, 1963, 204- 233
    [25]徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-46
    [26] Schopf J. Microfossils of the early archean apex chert:new evidence of the antiquity of life[J]. Science, 1993,260:640-646
    [27] Golubic S, Seong-joo L. Early cyanobacterial fossil record:preservation, palaeoenvironments and identification[J]. Eur J Phycol., 1999,34:339-348
    [28] Knoll A, Barghoorn E. Archean microfossiles showing cell division from the swaziland system of south Africa[J]. Science, 1977,198:396-398
    [29] Sankarasu B S, kaushika B D. Development of genetic markers in cyanobacteria and stability of genetically marked strains in siol world journal of microbiology and biotechnology[J]. Bacteriol., 2001,17:535-544
    [30] Tamas L, Svircev Z, Andersson S. Determinative value of a portion of the nifH sequence for the genera Nostoc and Anbaena(cyanobacteria)[J]. Curr.Mierobiol., 2000,41:197-200
    [31] Wong F C, Meek J C. The hefT gene product is essential to heterocyst differentiation an affects HetR function in the cyanobacterium Nostoc punctiforme[J]. Bacteriol., 2001,183(8):2654-2661
    [32] Neilan B A, Jacobs D, Goodman A E. Genetic diversity and phylogeny of toxic Cyanobacteria determined by DNA polymorphisms within the phycocyanin locus[J]. Environ Microbiol, 1995,61:3875-3883
    [33]徐涤,秦松.海洋褐藻分子系统学研究进展[J].海洋科学, 2002,26(2):19-22
    [34] Hanson P. Vliyanie faktora regional’nogo raznoobraziya na ekonomieheskuyu transformatsiyu Rossii[J]. Problemy Prognozirovaniya, 2001,3:78-88
    [35]张灵霞,庄玉辉,何秀云等.16s-23srRNA间隔区序列在分枝杆菌分类鉴定中的应用研究[J].微生物学报,2000,40(5):459-464
    [36]茅云翔,杨官品,张宝红等.16srRNA基因与16s-23srRNA转录单元内间隔区序列分析及其在节旋藻和螺旋藻分类鉴定中的应用[J].高技术通讯,2001,6:12-18
    [37] Nair U, Thomas C, Golden S S. Functional elements of the strong psbAL promoter of Synechococcus elongates PCC7942[J]. Bacteriol, 2001,183(5):1740-1747
    [38] Yoon H S, Golden J W. PatS and products of nitrogen fixation control heterocyst pattern[J]. Bacteriol., 2001,183(8):2605-2613
    [39] Casamatta D A, Vis M L, Sheath R G. Cryptic species in cyanobacterial systematic:a case study of Phormiduim retzii using RAPD molecular markers and 16srRNA sequence data[J]. Aqua Bot, 2003,77:295-309
    [40] Zhou J, Gasparich GE, Stirewalt VL, et al. Mutational Analysis of the Genes Encoding Phycobilisome Components in the Cyanobacterium Synechococcus sp.PCC7002[J]. Ph. D. thesis, Pennsylvania State University, 2007,267:146-154
    [41] Benson D A I, Karsch-Mizrachi D J, Lipman J, Ostell B A. Moleclular cloning and sequencing of theβ-isopropylmalate dehydrogenase gene from the cyanobacterium Spirulian platensis[J]. Gen. Microbiol., 2006,138:493-498
    [42] Nicolle A Saunée, Shervonda R Williams, et al. Identification and Characterization of a New Class of Bilin Lyase[J]. The Jouranl of Biological Chemistry, 2006,281(26): 17768-17778
    [43] Schmitz O, Boison G, Salzmann H, et al. HoxE-a subunit specific for the pentameric bidirectional hydrogenase complex of cyanobacteria[J]. Biochim Biophys Aeta., 2002,1554(1-2):66-74
    [44] Falcon L I, Cipriano F, Chistoserdov A Y, et al. Diversity of diazotrophic unicellular cyanobacteria in the tropical North Atlantic Ocean[J]. Appl Environ Mierobiol, 2002,68(11):5760-5764
    [45] Gonzalez J E, Neguleseu P A. Intracellular detection assays for high-throughput screening[J]. CurrOpin Biotechnol, 1998,9(6):624-631
    [46] Hansel A, R Axelsson, P Lindberg, et al. Cloning and charaeterization of a hyp gene cluster in the filamentous cyanobacterium Nostoc sp. PCC73102[J]. FEMS Microbiol. Lett., 2001,201:59-64
    [47] Happe T, K Schutz, H Bohme. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobaeterium Anabaena variabilis ATCC29413[J]. Bacteriol., 2000,182:1624-1633
    [48] Henson B J, Watson L E, Barnum S R. Molecular differentiation of the heteroeystous cyanobacteria, Nostoc and Anabaena, based on complete NifD sequences[J]. Curr Microbiol, 2002,45(3):161-164
    [49] Janson S, Graneli E. Phylogenetic analyses of nitrogen-fixing cyanobaeteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon[J]. Int Syst Evol Mierobiol, 2002,52:397-1404
    [50] Ogawa T, Bao D H, Katoh H, et al. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis PCC6803, a photosynthetic organism[J]. Biol.Chem., 2002,277(32):28981-28986
    [51]刘金姐,茅云翔,隋正红等.节旋藻Rubisco基因部分序列的克隆和分析[J].高技术通讯,2003,13(6):87-93
    [52] Xiangyu Guan, Song Qin, Zhongliang Su, et al. Combinational Biosynthesis of a Fluorescent Cyanobacterial Holo-α-Phycocyanin in Escherichia coli by Using One ExpressionVector[J]. Biochemistry and Biotechnology, 2007,142:52-59
    [53] Saitou N, Nei M. The neighbour-joining method:a new method for reconstructing phylogenetictrees[J]. Mol Biol Evol., 1987,4:406-425
    [54] Currier T C, Wolk C P. Characteristics of Anabaena variabilis influencing plaque formation by cyanophage N-J[J]. Bacteriol, 1979,139:88-92
    [55] Akaile H. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on, 1974,19:716-723
    [56]陈士超.世界菝葜科系统发育研究[D].杭州:浙江大学生命科学学院,2005
    [57]张原.分子系统学分析平台的建立和应用[J].生物科技,2007,6:68-69
    [58]蒋彦,王小行,曹毅等.基础生物信息学及应用[M].北京:清华大学出版社,2003
    [59] Hong Q, Zhao K H, Scheer H. Different types of photochemistry in phycoerythrocyanin alpha-subunit[J]. Photochem Photobiol, 1993,58(5):745-747
    [60] Zhou J, Gasparich G E, Stirewalt V L, et al. The cpcE and cpcF genes of Synechococcus sp.PCC7002[J]. J Biol Chem, 1992,267(28):16138-16144
    [61] Cai Y A, Murphy J T, Wedemayer G J, et al. Recombinant phycobiliproteins-Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains[J]. Anal Biochem, 2001,290(2):186-204
    [62]秦松.藻胆蛋白功能的研究[J].生命科学,1998,10(6):312-315。
    [63]范晓,张士璀等编著.海洋生物技术新进展[M].北京:海洋出版社,1999,196-221
    [64]王广策,邓田,曾呈奎.藻胆蛋白的研究( I ) [J].海洋科学,2000,24(2):22-25
    [65]王广策,邓田,曾呈奎.藻胆蛋白的研究( II )[J].海洋科学,2000,24(3):19-22
    [66] Zhao K H, Hong Q, Siebzehnruebl S, et al. Phycoerythrocyanin:A photoreceptor pigment with two faces[J]. Frontiers of Photobiol, 1993,31-36
    [67] Ong L J, Glazer A N. R-phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins[J]. J Biol Chem, 1987,262:6323-6327
    [68] Houmard J, Capuano V, Colombano M V, et al. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes[J]. Proc Natl Acad Sci USA, 1990,87:2152-2156
    [69] Troxler R F, Ehrhardt M M, Brown-Mason A S, et al. Primary structure of phycocyanin from the unicellular rhodophyte Cyandiom caldarium. Complete amino acid sequence of theβ-subunit[J]. J Biol Chem, 1981,256:12176-12184
    [70] Apt K E, Collier J L, Grossman A R. Evolution of the phycobiliproteins[J]. J Mol Biol, 1995,248:79-96
    [71] Zhao K H, Scheer H. TypeⅠand typeⅡreversible photochemistry of phycoerythrocyaninα-subunit from Mastigocladus laminosus both involve Z/E isomerization of phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein[J]. Biochim Biophys Acta, 1995,1228:244-253
    [72] Zhao K H, Haessner R, Cmiel E, et al. TypeⅠreversible photochemistry of phycoerythrocyanin involves Z/E-isomerization ofα-84 phycoviolobilin chromophore[J]. Biochim Biophys Acta, 2005,1228:235-243
    [73] Berkelman T R, Lagaris J C. Visualization of bilin-linker peptides and proteins inpolyacryamids[J]. Anal Biochem, 2007,156:194-201
    [74] Gantt E, Lipschultz C A. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin[J]. Biochim.Biophys.Acta, 2009,292:858-861
    [75] Glazer A N. Light guides:directional energy transfer in a photosynthetic antenna[J]. J.Biol.Chem., 2007,264:1-4
    [76] Berkelman T R, Lagaris J C. Visualization of bilin-linker peptides and proteins in polyacryamids[J]. Anal Biochem, 1986,156:194-201
    [77] Scheer H, Kufer W. Conformational studies on C-phycocyanin from Spirulina platensis[J]. Z Naturforsch, 1977,32:513-519
    [78] Manodori A, Alhadeff M, Glazer A N, et al. Photochemical apparatus organization in Synechoccus PCC6301 Effect of phycobilisome mutation[J]. Arch Microbiol, 1984,139:117-123
    [79] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970,227:680-685
    [80] Schirmer T, Bode W, Huber R, et al. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures[J]. J.Mol.Biol, 1985,184:257-277
    [81] Brown S B, Holroyd J A. Biosynthesis of the chromophore of phycoliliproteins:a study of mesohaem anad mesobiliverdin as possible intermediates and further evidence for an algal haem oxygenase[J]. Biochem J, 1984,217:265-272
    [82] Beale S I, Cornejo J. Biosynthesis of phycobilins 3(Z)-Phycoerythrobilin and 3(Z)- phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX[J]. J Biol Chem, 1991,266:22333-22340
    [83] Belknap W R, Haselkorn R. Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena[J]. EMBO J, 1987,6(4):871-884
    [84] Ebelein M, Kufer W. Genes encoding both subunits of phycoerythrocyanin,a lightharvesting biliprotein from the cyanobacterium Mastigocladus laminosus[J]. Gene, 1990, 94:133-136
    [85] Zhao K H, Wu D, Wang L, et al. Characterization of phycoviolobilin phycoerythrocyaninα-84-cystein-lyase from Mastigocladus laminosus[J]. J Eur Biochem, 2002,269:4524-4550
    [86] Bryant D A. Phycoerythrocyanin and phycoerythrin:properties and occurrence in cyanobacteria[J]. J Gen Microbiol, 1982,128:835-844
    [87] Zolla L, Bianchetti M, Rinalducci S. Functional studies of the Synechocystis phycobilisomes organization by high performance liquid chromatography on line with a mass spectrometer[J]. Eur Biochem, 2002, 269(5):1534-1542
    [88] Gantt E, Lipschultz C A. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin[J]. Biochim.Biophys.Acta, 1989,292:858-861
    [89] Kai-Hong Zhao, Ping Su, Jian Li, et al. Chromophore attachment to Phycobiliproteinβ-subunits Phycocyanobilin:cysteine-β-84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp.PCC7120[J]. The Journal of Biological Chemistry, 2006,281(14):8573-8581
    [90] Glazer A N. Light harvesting by phycobilisomes[J]. Ann Rev Biophys Chem, 1985,14:47-77
    [91] Kahn K, Mazel D, Houmard J, et al. A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis[J]. J Bacteriol, 1997,179(4):998-1006
    [92] Zhao K H, Su P, B?hm S, et al. Reconstitution of phycobilisome coremembrane linker, LCM,by autocatalytic chromophore binding to ApcE[J]. Biochim.Biophys.Acta-Bioenergetics, 2005,1706:81-87
    [93] Siebzehnruebl S, Fischer R, Scheer H. Chromophore assignment in C-phycocyanin from Mastigocladus laminosus[J]. Z Naturforsch, 1987,42:258-262
    [94]卓素珍,张虹.螺旋藻中藻蓝蛋白的生理功能及其提取纯化研究进展[J].食品科技, 2008,33(1):150-152
    [95]李冰,张学成,高美华等.钝顶螺旋藻藻蓝蛋白和多糖的抗肿瘤免疫活性研究[J].中国海洋大学学报,2004,34(3):396-402
    [96] Saunee NA. Identification and Characterization of a New Class of Bilin Lyases in Synechococcus sp.PCC7002[J]. M.Sc.thesis, University of New Orleans, 2006,97:852-862
    [97]张学成,信式祥,李清华等.螺旋藻——最完美的功能食品[M].青岛:青岛海洋大学出版社,1999
    [98] X.Y. Guan, W.J. Zhang, X.W. Zhang, et al. A potent anti-oxidant property:fluorescent recombinant alpha-phycocyanin of Spirulina[J]. Appl. Microbiol, 2009,106(4):1093-1100
    [99]朱菁萍,武栋,周明等.层理鞭枝藻藻蓝蛋白E和F基因的克隆及序列分析[J].武汉植物学研究, 2002,20(4):245-250
    [100]黄培堂等译.PCR技术实验指南[M].北京:科学出版社,1999
    [101]张桂和,徐碧玉等.几种海洋微藻基因组DNA的分离提取及PCR检测[J].热带海洋学报,2007,26(1):68-72
    [102] Thompson J D, Gibson T J, Plewniak F. The CLUSTAL-X windows interface:flexible strategiesfor multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997,25:4876-4882
    [103] Felsenstein J. Confidence limits on phylogenie:an approach using the bootstrap[J]. Evolution, 1985,39(4):783-791
    [104] Xiangyu Guan, Song Qin, Zhongliang Su, et al. Combinational Biosynthesis of a Fluorescent Cyanobacterial Holo-α-Phycocyanin in Escherichia coli by Using One Expression Vector[J]. Applied Biochemistry and Biotechnology, 2007,142:52-59
    [105]赵金梅,朱菁萍,王锋等.层理鞭枝藻藻蓝蛋白β亚基的体内重组[J].武汉大学学报(理学版),2006,52(4):481-486
    [106]关翔宇.藻蓝蛋白组合生物合成及蓝藻连接多肽生物进化研究[D].中国海洋大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700