R-spondin及其受体在Wnt信号通路中相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Wnt信号通路是依赖于细胞分泌蛋白Wnt与其细胞表面受体结合而被激活的重要细胞通路。自发现至今已有三十余年。Wnt通路根据其是否依赖β-cantenin,而被分为经典Wnt通路和非经典Wnt通路。经典Wnt通路由胞外Wnt配体同时结合一个七次跨膜受体(Frizzled)和低密度脂蛋白受体相关蛋白5/6(Lrp5/6)而被激活。被Wnt蛋白激活的受体Frizzled和Lrp6,将抑制胞内Wnt通路效应物β-catenin的降解,从而激活下游通路。经典Wnt通路(以下简称Wnt通路)在生物体的胚胎形成和发育以及干细胞的更新和分化中起着重要作用。此外,近年来的研究发现,Wnt通路的异常与肿瘤和骨质酥松等疾病也有很大关系。因此,开展对Wnt通路的深入研究,将有利于探索治疗上述疾病的新方法。
     在Wnt通路中,尚存在着多种胞外或者胞内的拮抗剂和激动剂,共同调节Wnt通路的活性。R-spondin便是Wnt通路最重要的激动剂之一。它在决定动物性别、介导胚胎四肢形成、影响胚胎血管形成和指甲发育等方面具有重要作用。尽管R-spondin对Wnt通路的激活作用已经确定,但其受体一直存在争议。Lrp6、Frizzled和Kremen,曾被认为是R-spondin的受体。然而,最近几年的研究结果表明,七次跨膜蛋白LGR4/5/6和单次跨膜蛋白ZNRF3/RNF43是R-spondin最可能的受体。
     最初曾认为,LGR是通过R-spondin分别与Lrp、Wnt以及Frizzled形成复合物而激活下游Wnt通路的。直到发现了R-spondin受体ZNRF3/RNF43参与Wnt信号通路之后,R-spondin激活Wnt通路的模型才得到了更新。最新研究结果表明,当R-spondin不存在时,E3泛素连接酶ZNRF3/RNF43持续泛素化Wnt受体Frizzled,使Frizzled被降解,从而抑制了Wnt信号通路;而当R-spondin存在时,R-spondin与LGR和ZNRF3/RNF43结合形成复合物,进而将ZNRF3/RNF43拽离Frizzled,Frizzled的降解被抑制,蛋白水平上升,Wnt通路被间接激活。
     虽然R-spondin的受体陆续被发现,但这些受体行使功能的机理以及与R-spondin相互作用的方式,仍然存在争议。这正是本领域目前研究的热点之一。对此,本论文着重研究了R-spondin及其受体LGR4/5和ZNRF3/RNF43在Wnt通路中的作用机理,达到了预期的研究目标,取得了如下的研究成果:
     首先,本论文着重研究了R-spondin受体LGR4/5激活Wnt通路的机理。依据“Wnt通路的两个拮抗剂DKK1和SFRP1可分别与受体Lrp6和Frizzled5的胞外区相互作用”这一特性,构建了串联蛋白DKK1-LGR4/5和SFRP1-LGR4/5,探索了LGR4/5是否通过与Lrp6或Frizzled5结合而激活下游Wnt通路的机理。结果表明,DKK1-LGR4可以帮助Lrp6激活Wnt通路,但其协同能力不强;而DKK1-LGR5则难以协助Lrp6激活Wnt通路;SFRP1-LGR4/5和Frizzled5共同转染可以激活Wnt通路,这主要是串联蛋白中的SFRP1将细胞自身分泌的Wnt3a富集到Frizzled5附近所致。虽然LGR4和Lrp6接触,可一定程度地激活Wnt通路,但LGR4和LGR5激活Wnt通路的主要方式,并不完全是通过与Lrp6或Frizzled5的接触,尚需其他蛋白的协助和参与。
     其次,本论文探讨了R-spondin1和Wnt3a的相互作用及其domain mapping(确认作用区域)。人类有19种Wnt,但其分别与R-spondin的协同效果并不清楚。通过Top-Flash reporter(检测Wnt通路是否被激活的荧光素酶报告实验,即luciferase)实验,检测了19种Wnt在不同浓度时单独激活Wnt通路的能力及其与R-spondin1的协同效果。结果表明,在19种Wnt中,Wnt1和Wnt3a分别单独激活Wnt通路的能力最强,而且与R-spondin1具有较好的协同效应。随后,实验选取了其中被广泛使用且效果较强的Wnt3a,探讨了其与R-spondin1的相互作用关系。根据序列比对和结构分析,更加科学地定义了R-spondin的不同结构域,通过分子克隆手段,成功地构建了R-spondin1的6种结构域缺失突变体(Furin-myc、Tsp-myc、△Furin1-myc、△Furin2-myc、Furin1-myc和Furin2-myc),进而研究了R-spondin1和Wnt3a的相互作用及其domain mapping。结果显示,R-spondin1和Wnt3a之间存在相互作用;R-spondin1的Furin1结构域主要负责与Wnt3a的结合。luciferase的结果显示,Furin1结构域单独与Wnt3a并没有协同作用,这说明R-spondin1尚需其他结构域与其他R-spondin受体的协助作用,才能完成R-spondin协同Wnt3a的功能。此外,实验还构建了4种R-spondin的点突变体(Q71R、N51S、Y83A和G73R),探讨了Furin1结构域的特殊位点对R-spondin1功能的影响。得出的结论是:Furin1结构域的73位的甘氨酸和83位的酪氨酸对R-spondin1的活性影响较大。
     最后,本论文就R-spondin及其受体LGR4和ZNRF3/RNF43的相互作用以及domain mapping进行了研究。结果表明,R-spondin1分别与LGR4和ZNRF3/RNF43间均存在着较强的相互作用;其中Furin2结构域主要负责R-spondin1与LGR4的结合,而Furin1结构域主要负责与RNF43的相互作用;并且R-spondin1的Tsp结构域与ZNRF3间可能存在一定的相互作用。同时,我们还检测了R-spondin2的Furin结构域、Furin1和Furin2结构域分别与ZNRF3和RNF43的相互作用,结果发现,Furin结构域分别与RNF43和ZNRF3之间均存在着较强的相互作用关系,而R-spondin1的Furin结构域与ZNRF3的作用很弱,说明R-spondin1和R-spondin2分别与受体间的作用存在细微差异。免疫共沉淀的结果还显示,ZNRF3和RNF43分别与其配体的作用存在差异,其中R-spondin2的Furin1结构域与RNF43的相互作用更强。同时发现,ZNRF3/RNF43与Frizzled8胞外区的相互作用较弱,尚需胞内区和(或者)跨膜区的协助和参与。luciferase实验证实,ZNRF3和RNF43可抑制R-spondin激活Wnt通路;R-spondin2的Furin结构域与Wnt3a具有较强的协同效果;而Furin1结构域单独对Wnt通路作用时却没有活性,这与R-spondin1的Furin1表现一致。
     通过上述研究,基本确定了R-spondin分别与Wnt3a、LGR4以及ZNRF3/RNF43相互作用机制。这为进一步研究R-spondin激活Wnt通路的机理奠定了基础。同时,为Wnt通路相关疾病的治疗和药物靶点的探索提供了新线索。
Wnt signaling is an important cell signaling whose activation is dependent on thebinding between Wnt protein and its receptor on the cell surface. Three decades havebeen passed since its discovery. Wnt signaling is divided into two kinds according towhether it needs β-cantenin. One is canonical Wnt signaling, the other isnon-canonical Wnt signaling. When Wnt ligands bind to both theseven-transmembrane receptor (Frizzled) and a low density lipoproteinreceptor-related protein5/6(Lrp5/6), the canonical Wnt signaling will be turned on.This binding will lead to the inhibition of β-cantenin’s degradation, resulting in theactivation of Wnt signaling. The canonical Wnt signaling (term as “Wnt signaling”below) has an important role in formation and development of embryos, and also inself-renew and differentiation of stem cells. Besides, the abnormity of Wnt signalingis found related to some diseases, such as cancer, osteoporosis and so on, according tothe recent studies. Thus, it is of great benefit for finding new treatments against thediseases mentioned above with making an intensive study of Wnt pathway.
     There are lots of extracellular and intracellular Wnt antagonists and agonists inWnt pathway. They take charge of regulating the activity of Wnt pathway. R-spondinis one important member of the agonists. It has important roles on genderdetermination, mediating limb formation, affecting embryonic blood vessel formationand nail development. Although the positive role of R-spondin in Wnt signaling hasalready been confirmed, its receptor is still in dispute. Lrp6, Frizzled and Kremenwere considered as the receptors of R-spondin. However, the current findings showthat seven-transmembrane protein LGR4/5/6and single transmembrane receptorZNRF3/RNF43are now considered as receptors of R-spondin.
     LGR was initially considered to bind with R-spondin and Lrp6. They form the complex together with Wnt and Frizzled to activating Wnt pathway. The model ofhow R-spondin activates the pathway was renewed after the discovery of thatZNRF3/RNF43involve in Wnt signaling as R-spondin’s receptor. The latest researchshows that, in the absent of R-spondin, E3ubiquitin ligase ZNRF3/RNF43willconstantly ubiquitinate Wnt receptor, Frizzled, leading to the degradation of Frizzled,which inhibits Wnt pathway. While R-spondin appears, R-spondin, LGR andZNRF3/RNF43will form a complex, resulting in the departure of ZNRF3/RNF43from Frizzled. The degradation of Frizzled will then be restrained. As a result, theprotein level of Frizzled rises up and Wnt signaling is enhanced.
     Although the receptors of R-sponidn are found one after another, the underlyingaction mechanism of R-spondin and its receptors is still a hot pot of this area. Thus,this study focused on the detailed action mechanism of R-spondin and its receptors,LGR4/5and ZNRF3/RNF43; reached expected target; achieved the following results.
     Firstly, the mechanism of how LGR4/5triggers Wnt pathway was studied. Wemade two kinds of series proteins DKK1-LGR4/5and SFRP1-LGR4/5using thetheory that Wnt antagonists DKK1and SFRP1can bind to Lrp6and Frizzled5respectively. Then we used these two series proteins to explore whether LGR4/5activate the downstream via binding with Lrp6or Frizzled5. The results showed thatDKK1-LGR4could synergize with Lrp6, which is not very prominent. WhileDKK1-LGR5could not. SFRP1-LGR4/5could synergize with Frizzled5because ofthe SFRP1part in SFRP1-LGR4/5which enriched the endogenous Wnt3a toFrizzled5. Although the association of LGR4with Lrp6could slightly enhance thesignal, the main manner in which LGR4/5activates the Wnt pathway may not rely onthe binding with Lrp6or Frizzled5. Other proteins involved should be needed.
     Secondly, this study probed into the way that R-spondin1binds with Wnt3a, andtheir domain mapping. There are19kinds of Wnt proteins in Human, but theirsynergism abilities with R-spondin are unclear. By Top-Flash reporter assay(Luciferase experiment which detects the level of Wnt pathway activation.), theabilities of activating the Wnt pathway by19kinds of Wnt at different concentrationalone and the synergism between19kinds of Wnts and R-spondin1were detected. The data showed that among the19Wnts, Wnt1and Wnt3a each had the strongestability of enhancing Wnt signaling and had better synergism with R-spondin1. Soonafterwards, Wnt3a was chosen to study the interaction with R-spondin1because it iswidely used and has strong effect. According to sequence alignment and structuralanalysis, different domains of R-spondin were defined more scientifically. By usingmolecular cloning,6domain deletion mutants (Furin-myc, Tsp-myc,△Furin1-myc,△Furin2-myc, Furin1-myc and Furin2-myc) were successfully made. Then theinteraction between R-spondin1and Wnt3a, the domain mapping of the interactionwere tested. The data showed that R-spondin1associated with Wnt3a. Furin1domainof R-spondin1took charge of the binding with Wnt3a. Top-Flash reporter assayshowed that Furin1could not synergize with Wnt3a functionally, which suggested thatother domains of R-spondin1might be needed to enhance Wnt pathway by binding toother receptors. Besides, four point mutants of R-spondin1(Q71R, N51S, Y83A andG73R) were cloned and used to explore the function of these amino acid sites. Theconclusion is that73glycine and83tyrosine are important for R-spondin1’s activity.
     Finally, this thesis studied the binding between R-spondin1and its receptors,LGR4and ZNRF3/RNF43, and their domain mapping. The results indicated that therewere strong binding between R-spondin1and its receptors. Furin2domain bound withLGR4, while Furin1domain bound with RNF43, and Tsp domain might interact withZNRF3. Meanwhile, we detected the interaction between Furin domain, Furin1domain, Furin2domain of R-spondin2and ZNRF3/RNF43separately. The resultsshowed that Furin domain had strong binding with both RNF43and ZNRF3; whilethe association between Furin of R-spondin1and ZNRF3was weak, which suggestedthat there is nuance between the interaction of R-spondin1and R-spondin2with theirreceptors. The co-immunoprecipitation data indicated that the ways of interaction ofZNRF3and RNF43with their ligands were also distinct, as RNF43bound better withFurin2of R-spondin2. At the same time, we found that ZNRF3/RNF43had weakinteraction with Frizzle8extracellular region, which illustrated that this binding mightneed the help of the cytoplasmic regions and/or transmembrane domains. Luciferaseexperiments showed that ZNRF3and RNF43could inhibit Wnt pathway enhanced by R-spondin; the Furin domain of R-spondin2synergized with Wnt3a well; Furin1domain of R-spondin2had no effect on Wnt3a, which is consistent with the behaviourof R-spondin1’s Furin1domain.
     Based on the study above, we confirmed the main mechanism of the associationbetween R-spondin and Wnt3a, LGR4/5, ZNRF3/RNF43. This lays a foundation forthe further study of the binding mechanism, and provides some clues for finding newtreatment and drug target.
引文
1. Rijsewijk F, Schuermann M, Wagenaar E et al. The Drosophila homolog of themouse mammary oncogene int-1is identical to the segment polarity genewingless[J]. Cell,1987,50(4):649-657.
    2. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number andpolarity in Drosophila[J]. Nature,1980,287(5785):795-801.
    3. Nusse R, van Ooyen A, Cox D et al. Mode of proviral activation of a putativemammary oncogene (int-1) on mouse chromosome15[J]. Nature,1984,307(5947):131-136.
    4. Noordermeer J, Klingensmith J, Perrimon N et al. dishevelled and armadillo actin the wingless signalling pathway in Drosophila[J]. Nature,1994,367(6458):80-83.
    5. Peifer M, Sweeton D, Casey M et al. wingless signal and Zeste-white3kinasetrigger opposing changes in the intracellular distribution of Armadillo[J].Development,1994,120(2):369-380.
    6. Siegfried E, Chou T B, Perrimon N. wingless signaling acts through zeste-white3,the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed andestablish cell fate[J]. Cell,1992,71(7):1167-1179.
    7. McMahon A P, Moon R T. Ectopic expression of the proto-oncogene int-1inXenopus embryos leads to duplication of the embryonic axis[J]. Cell,1989,58(6):1075-1084.
    8. Behrens J, von Kries J P, Kuhl M et al. Functional interaction of beta-catenin withthe transcription factor LEF-1[J]. Nature,1996,382(6592):638-642.
    9. Molenaar M, van de Wetering M, Oosterwegel M et al. XTcf-3transcriptionfactor mediates beta-catenin-induced axis formation in Xenopus embryos[J]. Cell,1996,86(3):391-399.
    10. Wehrli M, Dougan S T, Caldwell K et al. arrow encodes an LDL-receptor-relatedprotein essential for Wingless signalling[J]. Nature,2000,407(6803):527-530.
    11. Kinzler K W, Nilbert M C, Su L K et al. Identification of FAP locus genes fromchromosome5q21[J]. Science,1991,253(5020):661-665.
    12. Rubinfeld B, Souza B, Albert I et al. Association of the APC gene product withbeta-catenin[J]. Science,1993,262(5140):1731-1734.
    13. Choi H J, Park H, Lee H W et al. The Wnt pathway and the roles for itsantagonists, DKKS, in angiogenesis[J]. IUBMB Life,2012,64(9):724-731.
    14. MacDonald B T, Tamai K, He X. Wnt/beta-catenin signaling: components,mechanisms, and diseases[J]. Dev Cell,2009,17(1):9-26.
    15. Habas R, Dawid I B. Dishevelled and Wnt signaling: is the nucleus the finalfrontier?[J]. J Biol,2005,4(1):2.
    16. Dejmek J, Safholm A, Kamp Nielsen C et al. Wnt-5a/Ca2+-induced NFATactivity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase1alpha signaling inhuman mammary epithelial cells[J]. Mol Cell Biol,2006,26(16):6024-6036.
    17. Nusse R. Wnt signaling[J]. Cold Spring Harb Perspect Biol,2012,4(5).
    18. Nalesso G, Sherwood J, Bertrand J et al. WNT-3A modulates articularchondrocyte phenotype by activating both canonical and noncanonicalpathways[J]. J Cell Biol,2011,193(3):551-564.
    19. Willert K, Brown J D, Danenberg E et al. Wnt proteins are lipid-modified and canact as stem cell growth factors[J]. Nature,2003,423(6938):448-452.
    20. Willert K, Nusse R. Wnt proteins[J]. Cold Spring Harb Perspect Biol,2012,4(9):a007864.
    21. Nusse R, Varmus H E. Wnt genes[J]. Cell,1992,69(7):1073-1087.
    22. Hofmann K. A superfamily of membrane-bound O-acyltransferases withimplications for wnt signaling[J]. Trends Biochem Sci,2000,25(3):111-112.
    23. Port F, Kuster M, Herr P et al. Wingless secretion promotes and requiresretromer-dependent cycling of Wntless[J]. Nat Cell Biol,2008,10(2):178-185.
    24. Prasad B C, Clark S G. Wnt signaling establishes anteroposterior neuronalpolarity and requires retromer in C. elegans[J]. Development,2006,133(9):1757-1766.
    25. Dihlmann S, von Knebel Doeberitz M. Wnt/beta-catenin-pathway as a moleculartarget for future anti-cancer therapeutics[J]. Int J Cancer,2005,113(4):515-524.
    26. Mao B, Wu W, Davidson G et al. Kremen proteins are Dickkopf receptors thatregulate Wnt/beta-catenin signalling[J]. Nature,2002,417(6889):664-667.
    27. Baig-Lewis S, Peterson-Nedry W, Wehrli M. Wingless/Wnt signal transductionrequires distinct initiation and amplification steps that both depend onArrow/LRP[J]. Dev Biol,2007,306(1):94-111.
    28. Ryu Y K, Collins S E, Ho H Y et al. An autocrine Wnt5a-Ror signaling loopmediates sympathetic target innervation[J]. Dev Biol,2013,377(1):79-89.
    29. Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wntproteins and their receptors[J]. Cell Signal,2007,19(4):659-671.
    30. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway[J]. JCell Sci,2003,116(Pt13):2627-2634.
    31. Janda C Y, Waghray D, Levin A M et al. Structural basis of Wnt recognition byFrizzled[J]. Science,2012,337(6090):59-64.
    32. Mao J, Wang J, Liu B et al. Low-density lipoprotein receptor-related protein-5binds to Axin and regulates the canonical Wnt signaling pathway[J]. Mol Cell,2001,7(4):801-809.
    33. He X, Semenov M, Tamai K et al. LDL receptor-related proteins5and6inWnt/beta-catenin signaling: arrows point the way[J]. Development,2004,131(8):1663-1677.
    34. Bilic J, Huang Y L, Davidson G et al. Wnt induces LRP6signalosomes andpromotes dishevelled-dependent LRP6phosphorylation[J]. Science,2007,316(5831):1619-1622.
    35. Tamai K, Zeng X, Liu C et al. A mechanism for Wnt coreceptor activation[J].Mol Cell,2004,13(1):149-156.
    36. Liu G, Bafico A, Harris V K et al. A novel mechanism for Wnt activation ofcanonical signaling through the LRP6receptor[J]. Mol Cell Biol,2003,23(16):5825-5835.
    37. Beagle B, Mi K, Johnson G V. Phosphorylation of PPP(S/T)P motif of the freeLRP6intracellular domain is not required to activate the Wnt/beta-cateninpathway and attenuate GSK3beta activity[J]. J Cell Biochem,2009,108(4):886-895.
    38. MacDonald B T, Yokota C, Tamai K et al. Wnt signal amplification via activity,cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wntco-receptor LRP6[J]. J Biol Chem,2008,283(23):16115-16123.
    39. Rubinfeld B, Robbins P, El-Gamil M et al. Stabilization of beta-catenin bygenetic defects in melanoma cell lines[J]. Science,1997,275(5307):1790-1792.
    40. Xing Y, Clements W K, Kimelman D et al. Crystal structure of abeta-catenin/axin complex suggests a mechanism for the beta-catenin destructioncomplex[J]. Genes Dev,2003,17(22):2753-2764.
    41. Rivera M N, Kim W J, Wells J et al. An X chromosome gene, WTX, is commonlyinactivated in Wilms tumor[J]. Science,2007,315(5812):642-645.
    42. Noordermeer J, Johnston P, Rijsewijk F et al. The consequences of ubiquitousexpression of the wingless gene in the Drosophila embryo[J]. Development,1992,116(3):711-719.
    43. Yost C, Torres M, Miller J R et al. The axis-inducing activity, stability, andsubcellular distribution of beta-catenin is regulated in Xenopus embryos byglycogen synthase kinase3[J]. Genes Dev,1996,10(12):1443-1454.
    44. Hart M, Concordet J P, Lassot I et al. The F-box protein beta-TrCP associateswith phosphorylated beta-catenin and regulates its activity in the cell[J]. Curr Biol,1999,9(4):207-210.
    45. Verheyen E M, Gottardi C J. Regulation of Wnt/beta-catenin signaling by proteinkinases[J]. Dev Dyn,2010,239(1):34-44.
    46. Sato N, Meijer L, Skaltsounis L et al. Maintenance of pluripotency in human andmouse embryonic stem cells through activation of Wnt signaling by apharmacological GSK-3-specific inhibitor[J]. Nat Med,2004,10(1):55-63.
    47. Rayasam G V, Tulasi V K, Sodhi R et al. Glycogen synthase kinase3: more thana namesake[J]. Br J Pharmacol,2009,156(6):885-898.
    48. Piao S, Lee S H, Kim H et al. Direct inhibition of GSK3beta by thephosphorylated cytoplasmic domain of LRP6in Wnt/beta-catenin signaling[J].PLoS One,2008,3(12):e4046.
    49. Zeng X, Tamai K, Doble B et al. A dual-kinase mechanism for Wnt co-receptorphosphorylation and activation[J]. Nature,2005,438(7069):873-877.
    50. Davidson G, Wu W, Shen J et al. Casein kinase1gamma couples Wnt receptoractivation to cytoplasmic signal transduction[J]. Nature,2005,438(7069):867-872.
    51. Gao C, Chen Y G. Dishevelled: The hub of Wnt signaling[J]. Cell Signal,2010,22(5):717-727.
    52. Wallingford J B, Habas R. The developmental biology of Dishevelled: anenigmatic protein governing cell fate and cell polarity[J]. Development,2005,132(20):4421-4436.
    53. Yanagawa S, van Leeuwen F, Wodarz A et al. The dishevelled protein is modifiedby wingless signaling in Drosophila[J]. Genes Dev,1995,9(9):1087-1097.
    54. Seidensticker M J, Behrens J. Biochemical interactions in the wnt pathway[J].Biochim Biophys Acta,2000,1495(2):168-182.
    55. Willert K, Brink M, Wodarz A et al. Casein kinase2associates with andphosphorylates dishevelled[J]. EMBO J,1997,16(11):3089-3096.
    56. Sun T Q, Lu B, Feng J J et al. PAR-1is a Dishevelled-associated kinase and apositive regulator of Wnt signalling[J]. Nat Cell Biol,2001,3(7):628-636.
    57. Doughman R L, Firestone A J, Anderson R A. Phosphatidylinositol phosphatekinases put PI4,5P(2) in its place[J]. J Membr Biol,2003,194(2):77-89.
    58. Hsuan J J, Minogue S, dos Santos M. Phosphoinositide4-and5-kinases and thecellular roles of phosphatidylinositol4,5-bisphosphate[J]. Adv Cancer Res,1998,74:167-216.
    59. Pan Q, Shai O, Lee L J et al. Deep surveying of alternative splicing complexity inthe human transcriptome by high-throughput sequencing[J]. Nat Genet,2008,40(12):1413-1415.
    60. van de Wetering M, Cavallo R, Dooijes D et al. Armadillo coactivatestranscription driven by the product of the Drosophila segment polarity genedTCF[J]. Cell,1997,88(6):789-799.
    61. Lustig B, Jerchow B, Sachs M et al. Negative feedback loop of Wnt signalingthrough upregulation of conductin/axin2in colorectal and liver tumors[J]. MolCell Biol,2002,22(4):1184-1193.
    62. Parker D S, Jemison J, Cadigan K M. Pygopus, a nuclear PHD-finger proteinrequired for Wingless signaling in Drosophila[J]. Development,2002,129(11):2565-2576.
    63. Kramps T, Peter O, Brunner E et al. Wnt/wingless signaling requiresBCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCFcomplex[J]. Cell,2002,109(1):47-60.
    64. Stadeli R, Hoffmans R, Basler K. Transcription under the control of nuclearArm/beta-catenin[J]. Curr Biol,2006,16(10):R378-385.
    65. Cruciat C M, Niehrs C. Secreted and transmembrane wnt inhibitors andactivators[J]. Cold Spring Harb Perspect Biol,2013,5(3):a015081.
    66. Niehrs C. Function and biological roles of the Dickkopf family of Wntmodulators[J]. Oncogene,2006,25(57):7469-7481.
    67. Krupnik V E, Sharp J D, Jiang C et al. Functional and structural diversity of thehuman Dickkopf gene family[J]. Gene,1999,238(2):301-313.
    68. Aravind L, Koonin E V. A colipase fold in the carboxy-terminal domain of theWnt antagonists--the Dickkopfs[J]. Curr Biol,1998,8(14):R477-478.
    69. Li L, Mao J, Sun L et al. Second cysteine-rich domain of Dickkopf-2activatescanonical Wnt signaling pathway via LRP-6independently of dishevelled[J]. JBiol Chem,2002,277(8):5977-5981.
    70. Glinka A, Wu W, Delius H et al. Dickkopf-1is a member of a new family ofsecreted proteins and functions in head induction[J]. Nature,1998,391(6665):357-362.
    71. Mao B, Wu W, Li Y et al. LDL-receptor-related protein6is a receptor forDickkopf proteins[J]. Nature,2001,411(6835):321-325.
    72. Niida A, Hiroko T, Kasai M et al. DKK1, a negative regulator of Wnt signaling, isa target of the beta-catenin/TCF pathway[J]. Oncogene,2004,23(52):8520-8526.
    73. Monaghan A P, Kioschis P, Wu W et al. Dickkopf genes are co-ordinatelyexpressed in mesodermal lineages[J]. Mech Dev,1999,87(1-2):45-56.
    74. Min J K, Park H, Choi H J et al. The WNT antagonist Dickkopf2promotesangiogenesis in rodent and human endothelial cells[J]. J Clin Invest,2011,121(5):1882-1893.
    75. Aguilera O, Fraga M F, Ballestar E et al. Epigenetic inactivation of the Wntantagonist DICKKOPF-1(DKK-1) gene in human colorectal cancer[J].Oncogene,2006,25(29):4116-4121.
    76. Gonzalez-Sancho J M, Aguilera O, Garcia J M et al. The Wnt antagonistDICKKOPF-1gene is a downstream target of beta-catenin/TCF and isdownregulated in human colon cancer[J]. Oncogene,2005,24(6):1098-1103.
    77. Caricasole A, Copani A, Caraci F et al. Induction of Dickkopf-1, a negativemodulator of the Wnt pathway, is associated with neuronal degeneration inAlzheimer's brain[J]. J Neurosci,2004,24(26):6021-6027.
    78. Bovolenta P, Esteve P, Ruiz J M et al. Beyond Wnt inhibition: new functions ofsecreted Frizzled-related proteins in development and disease[J]. J Cell Sci,2008,121(Pt6):737-746.
    79. Rehn M, Pihlajaniemi T, Hofmann K et al. The frizzled motif: in how manydifferent protein families does it occur?[J]. Trends Biochem Sci,1998,23(11):415-417.
    80. Banyai L, Patthy L. The NTR module: domains of netrins, secreted frizzledrelated proteins, and type I procollagen C-proteinase enhancer protein arehomologous with tissue inhibitors of metalloproteases[J]. Protein Sci,1999,8(8):1636-1642.
    81. Galli L M, Barnes T, Cheng T et al. Differential inhibition of Wnt-3a by Sfrp-1,Sfrp-2, and Sfrp-3[J]. Dev Dyn,2006,235(3):681-690.
    82. Esteve P, Sandonis A, Ibanez C et al. Secreted frizzled-related proteins arerequired for Wnt/beta-catenin signalling activation in the vertebrate optic cup[J].Development,2011,138(19):4179-4184.
    83. Swain R K, Katoh M, Medina A et al. Xenopus frizzled-4S, a splicing variant ofXfz4is a context-dependent activator and inhibitor of Wnt/beta-cateninsignaling[J]. Cell Commun Signal,2005,3:12.
    84. Jones S E, Jomary C. Secreted Frizzled-related proteins: searching forrelationships and patterns[J]. Bioessays,2002,24(9):811-820.
    85. Wang X, Wang H, Bu R et al. Methylation and aberrant expression of the Wntantagonist secreted Frizzled-related protein1in bladder cancer[J]. Oncol Lett,2012,4(2):334-338.
    86. Ke H Z, Richards W G, Li X et al. Sclerostin and Dickkopf-1as therapeutictargets in bone diseases[J]. Endocr Rev,2012,33(5):747-783.
    87. Avsian-Kretchmer O, Hsueh A J. Comparative genomic analysis of theeight-membered ring cystine knot-containing bone morphogenetic proteinantagonists[J]. Mol Endocrinol,2004,18(1):1-12.
    88. Rubin J S, Barshishat-Kupper M, Feroze-Merzoug F et al. Secreted WNTantagonists as tumor suppressors: pro and con[J]. Front Biosci,2006,11:2093-2105.
    89. Prunier C, Hocevar B A, Howe P H. Wnt signaling: physiology and pathology[J].Growth Factors,2004,22(3):141-150.
    90. Ohlmann A, Tamm E R. Norrin: molecular and functional properties of anangiogenic and neuroprotective growth factor[J]. Prog Retin Eye Res,2012,31(3):243-257.
    91. Sarkar A, Hochedlinger K. A gutsy way to grow: intestinal stem cells as nutrientsensors[J]. Cell,2011,147(3):487-489.
    92. Korinek V, Barker N, Moerer P et al. Depletion of epithelial stem-cellcompartments in the small intestine of mice lacking Tcf-4[J]. Nat Genet,1998,19(4):379-383.
    93. DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcriptioncomplexes during hair follicle development and differentiation[J]. Development,1999,126(20):4557-4568.
    94. Reya T, Duncan A W, Ailles L et al. A role for Wnt signalling in self-renewal ofhaematopoietic stem cells[J]. Nature,2003,423(6938):409-414.
    95. Zeng Y A, Nusse R. Wnt proteins are self-renewal factors for mammary stemcells and promote their long-term expansion in culture[J]. Cell Stem Cell,2010,6(6):568-577.
    96. ten Berge D, Kurek D, Blauwkamp T et al. Embryonic stem cells require Wntproteins to prevent differentiation to epiblast stem cells[J]. Nat Cell Biol,2011,13(9):1070-1075.
    97. Sato T, van Es J H, Snippert H J et al. Paneth cells constitute the niche for Lgr5stem cells in intestinal crypts[J]. Nature,2011,469(7330):415-418.
    98. Snippert H J, Haegebarth A, Kasper M et al. Lgr6marks stem cells in the hairfollicle that generate all cell lineages of the skin[J]. Science,2010,327(5971):1385-1389.
    99. van Amerongen R, Bowman A N, Nusse R. Developmental stage and time dictatethe fate of Wnt/beta-catenin-responsive stem cells in the mammary gland[J]. CellStem Cell,2012,11(3):387-400.
    100.Gong Y, Slee R B, Fukai N et al. LDL receptor-related protein5(LRP5) affectsbone accrual and eye development[J]. Cell,2001,107(4):513-523.
    101.Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism[J]. J BoneMiner Metab,2009,27(3):265-271.
    102.Perdu B, Lakeman P, Mortier G et al. Two novel WTX mutations underscore theunpredictability of male survival in osteopathia striata with cranial sclerosis[J].Clin Genet,2011,80(4):383-388.
    103.Wang Y K, Sporle R, Paperna T et al. Characterization and expression pattern ofthe frizzled gene Fzd9, the mouse homolog of FZD9which is deleted inWilliams-Beuren syndrome[J]. Genomics,1999,57(2):235-248.
    104.Zhang W, Drake M T. Potential role for therapies targeting DKK1, LRP5, andserotonin in the treatment of osteoporosis[J]. Curr Osteoporos Rep,2012,10(1):93-100.
    105.Nishisho I, Nakamura Y, Miyoshi Y et al. Mutations of chromosome5q21genesin FAP and colorectal cancer patients[J]. Science,1991,253(5020):665-669.
    106.Korinek V, Barker N, Morin P J et al. Constitutive transcriptional activation by abeta-catenin-Tcf complex in APC-/-colon carcinoma[J]. Science,1997,275(5307):1784-1787.
    107.Morin P J, Sparks A B, Korinek V et al. Activation of beta-catenin-Tcf signalingin colon cancer by mutations in beta-catenin or APC[J]. Science,1997,275(5307):1787-1790.
    108.Baenziger N L, Brodie G N, Majerus P W. A thrombin-sensitive protein of humanplatelet membranes[J]. Proc Natl Acad Sci U S A,1971,68(1):240-243.
    109.Lawler J, Hynes R O. The structure of human thrombospondin, an adhesiveglycoprotein with multiple calcium-binding sites and homologies with severaldifferent proteins[J]. J Cell Biol,1986,103(5):1635-1648.
    110.Kamata T, Katsube K, Michikawa M et al. R-spondin, a novel gene withthrombospondin type1domain, was expressed in the dorsal neural tube andaffected in Wnts mutants[J]. Biochim Biophys Acta,2004,1676(1):51-62.
    111.Chen J Z, Wang S, Tang R et al. Cloning and identification of a cDNA thatencodes a novel human protein with thrombospondin type I repeat domain,hPWTSR[J]. Mol Biol Rep,2002,29(3):287-292.
    112.Kazanskaya O, Glinka A, del Barco Barrantes I et al. R-Spondin2is a secretedactivator of Wnt/beta-catenin signaling and is required for Xenopusmyogenesis[J]. Dev Cell,2004,7(4):525-534.
    113.Kim K A, Zhao J, Andarmani S et al. R-Spondin proteins: a novel link tobeta-catenin activation[J]. Cell Cycle,2006,5(1):23-26.
    114.Kim K A, Wagle M, Tran K et al. R-Spondin family members regulate the Wntpathway by a common mechanism[J]. Mol Biol Cell,2008,19(6):2588-2596.
    115.Borycki A G, Emerson C P, Jr. Study of skeletal myogenesis in cultures ofunsegmented paraxial mesoderm[J]. Methods Mol Biol,2000,137:351-357.
    116.Lowther W, Wiley K, Smith G H et al. A new common integration site, Int7, forthe mouse mammary tumor virus in mouse mammary tumors identifies a genewhose product has furin-like and thrombospondin-like sequences[J]. J Virol,2005,79(15):10093-10096.
    117.Chadi S, Buscara L, Pechoux C et al. R-spondin1is required for normal epithelialmorphogenesis during mammary gland development[J]. Biochem Biophys ResCommun,2009,390(3):1040-1043.
    118.Chassot A A, Gregoire E P, Magliano M et al. Genetics of ovarian differentiation:Rspo1, a major player[J]. Sex Dev,2008,2(4-5):219-227.
    119.Tomizuka K, Horikoshi K, Kitada R et al. R-spondin1plays an essential role inovarian development through positively regulating Wnt-4signaling[J]. Hum MolGenet,2008,17(9):1278-1291.
    120.Chassot A A, Ranc F, Gregoire E P et al. Activation of beta-catenin signaling byRspo1controls differentiation of the mammalian ovary[J]. Hum Mol Genet,2008,17(9):1264-1277.
    121.Vainio S, Heikkila M, Kispert A et al. Female development in mammals isregulated by Wnt-4signalling[J]. Nature,1999,397(6718):405-409.
    122.Nam J S, Park E, Turcotte T J et al. Mouse R-spondin2is required for apicalectodermal ridge maintenance in the hindlimb[J]. Dev Biol,2007,311(1):124-135.
    123.Friedman M S, Oyserman S M, Hankenson K D. Wnt11promotes osteoblastmaturation and mineralization through R-spondin2[J]. J Biol Chem,2009,284(21):14117-14125.
    124.Aoki M, Kiyonari H, Nakamura H et al. R-spondin2expression in the apicalectodermal ridge is essential for outgrowth and patterning in mouse limbdevelopment[J]. Dev Growth Differ,2008,50(2):85-95.
    125.Bell S M, Schreiner C M, Wert S E et al. R-spondin2is required for normallaryngeal-tracheal, lung and limb morphogenesis[J]. Development,2008,135(6):1049-1058.
    126.Yamada W, Nagao K, Horikoshi K et al. Craniofacial malformation inR-spondin2knockout mice[J]. Biochem Biophys Res Commun,2009,381(3):453-458.
    127.Ishikawa T, Tamai Y, Zorn A M et al. Mouse Wnt receptor gene Fzd5is essentialfor yolk sac and placental angiogenesis[J]. Development,2001,128(1):25-33.
    128.Aoki M, Mieda M, Ikeda T et al. R-spondin3is required for mouse placentaldevelopment[J]. Dev Biol,2007,301(1):218-226.
    129.Ishii Y, Wajid M, Bazzi H et al. Mutations in R-spondin4(RSPO4) underlieinherited anonychia[J]. J Invest Dermatol,2008,128(4):867-870.
    130.Blaydon D C, Philpott M P, Kelsell D P. R-spondins in cutaneous biology: nailsand cancer[J]. Cell Cycle,2007,6(8):895-897.
    131.Bruchle N O, Frank J, Frank V et al. RSPO4is the major gene inautosomal-recessive anonychia and mutations cluster in the furin-likecysteine-rich domains of the Wnt signaling ligand R-spondin4[J]. J InvestDermatol,2008,128(4):791-796.
    132.Hsu S Y, Liang S G, Hsueh A J. Characterization of two LGR genes homologousto gonadotropin and thyrotropin receptors with extracellular leucine-rich repeatsand a G protein-coupled, seven-transmembrane region[J]. Mol Endocrinol,1998,12(12):1830-1845.
    133.Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptorsas markers of adult stem cells[J]. Gastroenterology,2010,138(5):1681-1696.
    134.Caers J, Verlinden H, Zels S et al. More than two decades of research on insectneuropeptide GPCRs: an overview[J]. Front Endocrinol (Lausanne),2012,3:151.
    135.Hsu S Y, Kudo M, Chen T et al. The three subfamilies of leucine-richrepeat-containing G protein-coupled receptors (LGR): identification of LGR6andLGR7and the signaling mechanism for LGR7[J]. Mol Endocrinol,2000,14(8):1257-1271.
    136.Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoproteinhormone receptors[J]. Trends Biochem Sci,2004,29(3):119-126.
    137.McDonald T, Wang R, Bailey W et al. Identification and cloning of an orphan Gprotein-coupled receptor of the glycoprotein hormone receptor subfamily[J].Biochem Biophys Res Commun,1998,247(2):266-270.
    138.Mendive F M, Van Loy T, Claeysen S et al. Drosophila molting neurohormonebursicon is a heterodimer and the natural agonist of the orphan receptorDLGR2[J]. FEBS Lett,2005,579(10):2171-2176.
    139.Carmon K S, Gong X, Lin Q et al. R-spondins function as ligands of the orphanreceptors LGR4and LGR5to regulate Wnt/beta-catenin signaling[J]. Proc NatlAcad Sci U S A,2011,108(28):11452-11457.
    140.de Lau W, Barker N, Low T Y et al. Lgr5homologues associate with Wntreceptors and mediate R-spondin signalling[J]. Nature,2011,476(7360):293-297.
    141.Ohkawara B, Glinka A, Niehrs C. Rspo3binds syndecan4and induces Wnt/PCPsignaling via clathrin-mediated endocytosis to promote morphogenesis[J]. DevCell,2011,20(3):303-314.
    142.Luo W, Rodriguez M, Valdez J M et al. Lgr4is a key regulator of prostatedevelopment and prostate stem cell differentiation[J]. Stem Cells,2013.
    143.Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine andskin[J]. Am J Pathol,2009,174(3):715-721.
    144.Leushacke M, Barker N. Lgr5and Lgr6as markers to study adult stem cell rolesin self-renewal and cancer[J]. Oncogene,2012,31(25):3009-3022.
    145.Barker N, Tan S, Clevers H. Lgr proteins in epithelial stem cell biology[J].Development,2013,140(12):2484-2494.
    146.Birchmeier W. Stem cells: Orphan receptors find a home[J]. Nature,2011,476(7360):287-288.
    147.Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5andR-spondins[J]. EMBO J,2012,31(12):2685-2696.
    148.Koo B K, Spit M, Jordens I et al. Tumour suppressor RNF43is a stem-cell E3ligase that induces endocytosis of Wnt receptors[J]. Nature,2012,488(7413):665-669.
    149.Hao H X, Xie Y, Zhang Y et al. ZNRF3promotes Wnt receptor turnover in anR-spondin-sensitive manner[J]. Nature,2012,485(7397):195-200.
    150.Fearon E R, Spence J R. Cancer biology: a new RING to Wnt signaling[J]. CurrBiol,2012,22(19):R849-851.
    151.Peng W C, de Lau W, Forneris F et al. Structure of Stem Cell Growth FactorR-spondin1in Complex with the Ectodomain of Its Receptor LGR5[J]. Cell Rep,2013,3(6):1885-1892.
    152.Chen P H, Chen X, Lin Z et al. The structural basis of R-spondin recognition byLGR5and RNF43[J]. Genes Dev,2013,27(12):1345-1350.
    153.Wei Q, Yokota C, Semenov M V et al. R-spondin1is a high affinity ligand forLRP6and induces LRP6phosphorylation and beta-catenin signaling[J]. J BiolChem,2007,282(21):15903-15911.
    154.Binnerts M E, Kim K A, Bright J M et al. R-Spondin1regulates Wnt signaling byinhibiting internalization of LRP6[J]. Proc Natl Acad Sci U S A,2007,104(37):14700-14705.
    155.Nam J S, Turcotte T J, Smith P F et al. Mouse cristin/R-spondin family proteinsare novel ligands for the Frizzled8and LRP6receptors and activatebeta-catenin-dependent gene expression[J]. J Biol Chem,2006,281(19):13247-13257.
    156.Huch M, Boj S F, Clevers H. Lgr5(+) liver stem cells, hepatic organoids andregenerative medicine[J]. Regen Med,2013,8(4):385-387.
    157.Gong X, Carmon K S, Lin Q et al. LGR6is a high affinity receptor of R-spondinsand potentially functions as a tumor suppressor[J]. PLoS One,2012,7(5):e37137.
    158.Lieven O, Ruther U. The Dkk1dose is critical for eye development[J]. Dev Biol,2011,355(1):124-137.
    159.Bridgewater D, Di Giovanni V, Cain J E et al. beta-catenin causes renal dysplasiavia upregulation of Tgfbeta2and Dkk1[J]. J Am Soc Nephrol,2011,22(4):718-731.
    160.Holmen S L, Robertson S A, Zylstra C R et al. Wnt-independent activation ofbeta-catenin mediated by a Dkk1-Fz5fusion protein[J]. Biochem Biophys ResCommun,2005,328(2):533-539.
    161.Mao W, Wordinger R J, Clark A F. Focus on molecules: SFRP1[J]. Exp Eye Res,2010,91(5):552-553.
    162.Grentzmann G, Ingram J A, Kelly P J et al. A dual-luciferase reporter system forstudying recoding signals[J]. RNA,1998,4(4):479-486.
    163.Lento W, Congdon K, Voermans C et al. Wnt signaling in normal and malignanthematopoiesis[J]. Cold Spring Harb Perspect Biol,2013,5(2).
    164.de Lau W B, Snel B, Clevers H C. The R-spondin protein family[J]. Genome Biol,2012,13(3):242.
    165.Jin Y R, Yoon J K. The R-spondin family of proteins: emerging regulators ofWNT signaling[J]. Int J Biochem Cell Biol,2012,44(12):2278-2287.
    166.Ayadi L. Molecular modelling of the TSR domain of R-spondin4[J].Bioinformation,2008,3(3):119-123.
    167.Li F, Chong Z Z, Maiese K. Vital elements of the Wnt-Frizzled signaling pathwayin the nervous system[J]. Curr Neurovasc Res,2005,2(4):331-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700