Wnt1在卵巢癌SKOV3细胞系干细胞中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖器三大恶性肿瘤之一,发病率呈上升的趋势。虽然诊断方法得到不断的改进,但是卵巢癌易复发、并且伴随着转移和多药耐药性的出现,影响到卵巢癌的治疗效果。因为发病机制到目前为止还不十分清楚,使卵巢癌的预防和诊疗水平的提高受到了限制。所以,进一步研究卵巢癌发生、发展、耐药复发机制,有助于寻找有效的抑制卵巢癌增殖的治疗方法,也是提高卵巢癌患者生存率的关键。
     干细胞能较长时间存活,这使得它们更易在增殖和分化的过程中发生基因突变。越来越多的研究表明肿瘤是一种干细胞疾病,肿瘤起源于肿瘤干细胞(tumourstem cell TSCs),在干细胞在自我更新过程中很可能因为出现基因突变,从而使细胞生长失控,导致肿瘤发生。自我复制、较长的寿命、抗凋亡信号通路的激活和端粒酶活性等是肿瘤细胞干细胞的重要特征。“肿瘤干细胞”假说认为:虽然在肿瘤组织中肿瘤干细胞只占有极少的比例,可是这些高致瘤性的细胞却最大可能是肿瘤发生、复发、转移和治疗失败的根源。
     Wnt信号通路作用广泛且复杂,一方面负责动物发育模式的调控,另一方面在调控干/祖细胞的正常生长和内外环境稳定方面具有重要作用,在许多实体肿瘤的发生过程中均检测到与这一通路的异常激活有关。Dishevelled (DSH)位于细胞膜上,是相关Wnt受体复合物的主要成分,Wnt蛋白与其结合后被激活,从而抑制下游蛋白质复合物,包括axin、GSK-3与APC蛋白。此三种蛋白形成axin/GSK-3/APC复合体,促进细胞内信号分子β-catenin的降解。而当抑制β-catenin降解复合物,可使细胞胞浆内的β-catenin得以稳定存在,一部分β-catenin进入细胞核,通过TCF/LEF转录因子家族使得某些特定基因得以表达。
     有关Wnt信号通路在卵巢发育及卵巢癌发生发展中的确切作用机制还不十分清楚,但现有的研究结果表明Wnt信号通路活化与肿瘤耐药、肿瘤干细胞的维持以及与其他信号通路相互作用等有关,了解Wnt在卵巢肿瘤发生及恶性进展中的作用将为卵巢癌的防治提供新的靶标。
     本实验首先从卵巢癌SKOV3细胞系中分选出以CD133+为标记的卵巢癌细胞,检测Wnt1信号通路分子在CD133+细胞和CD133-细胞中的表达情况,了解Wnt信号通路在卵巢癌干细胞中的作用。其次,用表达Wnt1shRNA的真核表达载体pGPU6/GFP/Neo稳定转染SKOV3细胞,诱导Wnt1基因沉默,研究Wnt1基因下调后对不同标记卵巢癌细胞增殖、细胞周期及凋亡的影响,探讨其在卵巢癌发生发展中的作用,从而为卵巢癌的防治提供新的靶标。
     第一部分Wnt1在卵巢癌SKOV3细胞系干细胞中的表达及其作用机制
     目的:了解Wnt1在卵巢癌干细胞中的表达和作用。
     方法:采用免疫磁珠法从无血清培养的卵巢癌悬浮细胞中分选CD133+细胞和CD133-细胞。采用real-time RT-PCR技术检测Wnt1和β-catenin的mRNA和蛋白在CD133+细胞和CD133-细胞中的表达情况。
     结果:分选出的CD133+细胞约占细胞总数的7.25%,分选出的CD133+细胞表达干细胞标志蛋白CD133和Oct-4。Wnt1和β-catenin的mRNA及蛋白在CD133+细胞中的表达量与CD133-细胞中的表达量相比,均有显著性增加(P均<0.05)。
     结论:在CD133+细胞中,Wnt1可能处于活化状态,活化的Wnt1可能有助于CD133+细胞形态及功能的维持。
     第二部分RNAi沉默Wnt1基因对卵巢癌SKOV3细胞影响的研究
     目的:探讨Wnt1基因表达在卵巢癌发生发展中的作用。
     方法:设计Wnt-shRNA,用于干扰并下调卵巢癌中目的基因的表达。以脂质体LipofectamineTM2000介导转染卵巢癌SKOV3细胞。转染后48h,采用实时定量RT-PCR技术检测转染细胞中Wnt1基因mRNA的转录水平,筛选有效的Wnt1shRNA质粒,Western blot检测Wnt1蛋白在卵巢癌SKOV3细胞中的表达。
     结果:4个Wnt1shRNA表达载体Wnt1-shRNA-1、Wnt1-shRNA-2、Wnt1-shRNA-3和Wnt1-shRNA-4经测序鉴定证明插入正确。转染48h后,在SKOV3细胞中Wnt1shRNA-1组、Wnt1shRNA-2组、Wnt1shRNA-3组、Wnt1shRNA-4组、空白对照组、阴性对照组的标化Wnt1mRNA水平分别为0.77±0.07、0.98±0.08、0.71±0.05、0.57±0.05、0.96±0.08、1.01±0.08,与Control组相比,Wnt1-shRNA-1、Wnt1-shRNA-2、Wnt1-shRNA-3、Wnt1-shRNA-4组Wnt1mRNA表达量均下降(p均<0.05),其中转染Wnt-shRNA-4的SKOV3细胞中Wnt1-mRNA表达水平低于Wnt1shRNA-1、Wnt1-shRNA-2、Wnt1-shRNA-3组(p=0.007,0.002,0.046)。Wnt1-shRNA-4干扰抑制效率为64.3%。Western blot可检测到Wnt1蛋白在SKOV3中的表达,干扰片段Wnt1-shRNA-4的抑制效果较好。
     结论:载体构建成功,shRNA可明显下调Wnt1mRNA和蛋白在SKOV3表达。
     第三部分Wnt1siRNA抑制卵巢癌SKOV3细胞系干细胞增殖机制的研究
     目的:探讨下调Wnt1基因表达后卵巢癌干细胞增殖的机制
     方法:通过筛选得到稳定下调Wnt1的卵巢癌SKOV3细胞,克隆形成实验和CCK8实验检测干扰Wnt1表达对卵巢癌的增殖作用,流式细胞仪检测转染前后细胞周期的改变,AV/PI双染检测shRNA干扰对卵巢癌SKOV3细胞诱导的凋亡情况。流式细胞仪法检测shRNA干扰后CD133+卵巢癌干细胞比例,Western blot检测Wnt1、β-catenin、Sox2及CD133蛋白的表达水平。
     结果:下调Wnt1表达后,对SKOV3细胞增殖抑制作用明显, G2/M期细胞增多;下调Wnt1的表达后, SKOV3凋亡细胞的比例增加。SKOV3细胞系中CD133+卵巢癌干细胞在卵巢癌细胞中的比例下降,Wnt1,Sox2及CD133蛋白的表达降低。
     结论:下调Wnt1可以抑制SKOV3细胞的增殖促进细胞凋亡,使细胞停滞在G2/M期。Sox2可能位于卵巢癌Wnt1信号通路的下游,通过下调Wnt1蛋白的表达,抑制Sox2转录作用,抑制卵巢癌干细胞的增殖。
Ovarian cancer is one of the commonest malignancies of females’ reproductivesystem with high morbidity in the world. Although the diagnostic methods have beenimproved, the recurrence, metastasis and multi-drug resistance still lead to the low5-year survival rate of less than30%. Meanwhile, the pathogenesis of ovarian cancer isunclear which limited the advancement of the treatment and prevention. Therefore, toexplore the mechanisms of the occurrence, recurrence and metastasis of ovarian cancerand to figure out effective pathways to suppress the tumor formation would be of greatimportance in improving the survival rate of ovarian cancer patients.
     Stem cells might survive for a long time, which make it possible for the genemutation occurring during their proliferation or differentiation. More and more studieshave shown that the tumors originate from cancer stem cells. Tumor is thought to be akind of disease resulted from gene mutation during the process of the renewal of stemcells. Tumor cells share the similar characteristics with the stem cells: the capacity ofself renewing and proliferating infinitely, longer life, the activation of anti-apoptoticsignal paths and telomerase stimulation."Cancer stem cell" hypothesis deems: the smallamount of stem cells which act as high carcinogenesis subgroups play key roles in thetumor occurrence, recurrence, metastasis as well as the failure of treatments.
     Wnt signaling pathway is complicated with double functions as be responsible forthe regulation of animals’ development mode and play a crucial role in the regulation ofnormal growth and homeostasis of stem/progenitor cells. It is reported that manycarcinogenesis exist abnormal activation of this pathway. DSH is a key component ofthe membrane-associated Wnt1receptor complex. It is activated after combined withWnt and then inhibits the downstream protein complexes, including axin, GSK-3andAPC protein. The complex of axin/GSK-3/APC might promote the degradation ofβ-catenin, which are signaling molecules within the cell. When “β-catenin degradation complex” is inhibited, β-catenin in the cytoplasm stably exists. Parts of the β-cateninmight move into the nucleus and interact with the TCF/LEF transcription factor familyto initiate the expression of the genes.
     The exact mechanism of Wnt signaling pathway in the development of ovary andthe occurrence of ovarian cancer is still unclear, but the researches have proved that theactivation of Wnt signaling is closely related to drug resistance, maintenance of cancerstem cells and interactions with other signaling pathways. To explore the role of Wnt information and progression of ovarian cancer will provide a new target for the preventionand treatment of ovarian cancer.
     In this study, we first selected ovarian cancer cells marked by CD133+fromovarian cancer SKOV3cell lines and then detected the expression of molecules of Wnt1signal pathway in CD133+and CD133-cells. Secondly induced the Wnt1gene silencein SKOV3cell by eukaryotic vector pGPU6/GFP/Neo with Wnt1shRNA stablytransfection. The impacts of Wnt1gene down-regulation on proliferation, cell cycle andapoptosis of ovarian cancer cells were studied to explore the mechanism of drugresistance in ovarian cancer cells and its action in the carcinogenesis of ovarian cancer.
     Part I Expression and mechanism of Wnt1Signaling Molecule in ovariancancer SKOV3cell
     Objective: To explore the function of Wnt signal pathway in CD133+andCD133-ovarian cancer stem cells.
     Methods: CD133+and CD133-cells were selected by magnetic activated cellsorting system (MACS). Real-time RT-PCR to detect the expression of mRNA andprotein of Wnt1signal molecules in the two types of cells, respectively.
     Results: CD133+cells accounted for7.25%of the total ovarian cancer cells andCD133and Oct-4expressed. The expression of wnt1mRNA and protein in CD133+cells were significant higher compared with CD133-cells (p<0.05). The expression ofβ-catenin mRNA and protein in CD133+cells were significant higher compared withCD133-cells(p<0.05).
     Conclusions: Wnt1is activated in ovarian cancer CD133+cells and it may playroles in the maintenance of cellular morphology and function of CD133+cells.
     PartⅡ The Effect of RNAi applied to silent Wnt1on Carcinogenesis ofovarian Cancer
     Objective: To explore the action of the expression of Wnt gene in carcinogenesisof ovarian cancer.
     Methods: The Wnt-shRNA probe was designed to interfere and knockdown thetarget gene expression in SKOV3cells. The RT-PCR and western blot were used todetect transcription level of mRNA and expression of protein of Wnt1in ovarian cancerSKOV3cells after LipofectamineTM2000transfection48hours.
     Results: The correct insertion was verified by partial nucleotide sequencing of the4constructed eukaryotic vectors expressing shRNA of Wnt1. In the Wnt1shRNA-1group, Wnt1shRNA-2group, Wnt1shRNA-3group, Wnt1shRNA-4group, blankgroup, negative control group and MOCK group of SKOV3cells, the expression ofWnt1mRNA compared to GAPDH was0.77±0.07,0.98±0.08,0.71±0.05,0.57±0.05,0.96±0.08,1.01±0.08,1.00±0.11, respectively. Contrast to MOCK group, the Wnt1mRNA expression in Wnt1shRNA-1group, Wnt1shRNA-3group and Wnt1shRNA-4group decreased (p=0.007,0.002,0.046), moreover the Wnt1mRNA expressioninWnt1shRNA-4group is significantly lower than the other3groups. The interferingand inhibiting efficiency of Wnt1-shRNA-4was comparatively ideal with the downregulation rate of64.3%. The expression of Wnt1protein was detected in SKOV3byWestern blot, and the protein of Wnt1-shRNA-4showed inhibited.
     Conclusions: construction is successful, and Wnt1shRNA significantly inhibitthe expression of Wnt1..
     Part Ⅲ Wnt1siRNA inhibit the proliferation of ovarian cancer cells and thes ovarian cancer stem cells
     Objective: Explore the impact on proliferation by Wnt1gene down-regulating inovarian cancer cells.
     Methods: Wnt1knockdown SKOV3cells were selected and colony formationexperiment and CCK8examination were adopted to check the effect of Wnt1deficiencyon proliferation of ovarian cancer cells. The flow cytometre examined cellular cycle andAV/PI double staining detect apoptosis. The proportion of CD133+stem cells wasdetect by flow cytometry, and Wnt1、β-catenin、CD133and Sox2protein expression were examined by western blot.
     Results: Knockdown Wnt1in ovarian cancer SKOV3cells induced significantinhibition on cell proliferation and increased proportion of apoptosis and the G2/Mphase cells. The SKOV3stem cells showed low capacity of self-renew and theproportion of cancer stem cells in ovarian cancer cells declined. The expression of Wnt1,Sox2and CD133protein decreased.
     Conclusion: Knockdown Wnt1inhibits the SKOV3cell proliferation, promotesthe apoptosis and maintains the cell in the G2/M stage. The Sox2may be downstreamgene of Wnt1signaling pathway and it can inhibit the proliferation of ovarian cancerstem cells after the transcript inhibition by the expression of Wnt1protein.
引文
[1] Arap, W, Nishikawa, R, Furnari, F.B, Cavenee, W.K, and Huang, H.J. Replacementof the p16/CDKN2gene suppresses uman glioma cell growth. Cancer Res.1995,55:1351–1354
    [2] Gomez-Manzano, C, Fueyo, J, Kyritsis, A.P, McDonnell, T.J, Steck, P.A.,Levin,V.A, and Yung, W.K. Characterization of p53and p21functional interactions inglioma cells en route to apoptosis. J. Natl. Cancer.Inst.1997,89:1036–1044
    [3] Cote, R.J, Esrig, D, Groshen, S, Jones, P.A, and Skinner, D.G. p53and treatment ofbladder cancer. Nature,1997.385,123–125.
    [4] Aletti, G.D., Gallenberg, M.M., Cliby, W.A., Jatoi, A., and Hartmann, L.C. Currentmanagement strategies for ovarian cancer. Mayo Clin. Proc.2007,82:751–770.
    [5] Ozols RF. Recurrent ovarian cancer: evidence-based treatment. J ClinOncol.2002,20:1161–1163
    [6] Human acute myeloid leukemia is organized as a hierarchy that originates from aprimitive hematopoietic cell.Bonnet D, Dick JE.Nat Med.1997,3(7):730-7
    [7] John E. Dick. Breast cancer stem cells revealed. PNAS,2003,100(7):3547-3549.
    [8] Sheila K. Singh, Ian D. Clarke, Mizuhiko Terasaki, Victoria E. Bonn, CynthiaHawkins, Jeremy Squire, and Peter B. Dirks. Identification of a Cancer Stem Cellin Human Brain Tumors. Cancer Res.2003,63(7):5821.
    [9] Patrick C. Hermann, Stephan L. Huber, Tanja Herrler, Alexandra Aicher, JoachimW. Ellwart, Markus Guba, Christiane J. Bruns, Christopher Heeschen DistinctPopulations of Cancer Stem Cells Determine Tumor Growth and MetastaticActivity in Human Pancreatic Cancer.Cell stem cell.2007,1(3)313-323.
    [10]Piero Dalerba, Scott J. Dylla, In-Kyung Park, Rui Liu, Xinhao Wang, Robert W.Cho, Timothy Hoey, Austin Gurney, Emina H. Huang, Diane M. Simeone, AndrewA. Shelton, Giorgio Parmiani, Chiara Castelli, and Michael F. Clarke. Phenotypiccharacterization of human colorectal cancer stem cells. PNAS,2007,104(24):10158–10163.
    [11]A Eramo, F Lotti, G Sette, E Pilozzi, M Biffoni, A Di Virgilio, C Conticello,L Ruco, C Peschle and R De Maria. Identification and expansion of the tumorigeniclung cancer stem cell population.Cell Death and Differentiation,2008,15(4)504–514
    [12]Jean C.Y. Wang and John E. Dick. Cancer stem cells:lessons from leukemia.TRENDS in Cell Biology,2005,15(9):494-501.
    [13]3. Auersperg, N.; Wong, A.S.; Choi, K.C.; Kang, S.K.; Leung, P.C. Ovarian surfaceepithelium:Biology, endocrinology, and pathology. Endocr. Rev.2001,22,255–288
    [14]Virant-Klun, I, Rozman, P, Cvjeticanin, B, Vrtacnik-Bokal, E, Novakovic, S,Rülicke, T, Dovc, P, and Meden-Vrtovec, H. Parthenogenetic embryo-likestructures in the human ovarian surface epithelium cell culture in postmenopausalwomen with no naturally present follicles and oocytes. Stem Cells Dev.2009,18:137–149.
    [15]Szotek, P.P., Chang, H.L., Brennand, K., Fujino, A., Pieretti-Vanmarcke, R., LoCelso, C., Dombkowski, D., Preffer, F., Cohen, K.S., Teixeira, J., and Donahoe,P.K. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitorcell characteristics. Proc. Natl. Acad. Sci.2008,105:12469–12473.
    [16]Bukovsky, A., Caudle, M.R., Svetlikova, M., and Upadhyaya, N.B. Origin of germcells and formation of new primary follicles in adult human ovaries. Reprod. Biol.Endocrinol.20042,20.
    [17]Bukovsky, A., Svetlikova, M., and Caudle, MR. Oogenesis in cultures derived fromadult human ovaries. Repro Biol. Endocrinol.2005,3,17
    [18]Dubeau, L. The cell of origin of ovarian epithelial tumours. Lancet Oncol.2008,9:1191–1197.
    [19]18Karst A.M. and Drapkin, R. Ovarian cancer pathogenesis: a model in evolution.J. Oncol.2010,932371.
    [20]Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M,Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G. Expressionof CD133-1and CD133-2in ovarian cancer. Int J Gynecol Cancer.2008,18:506–514.
    [21]Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, Shevde L,RocconiRP. CD44t/CD24-ovarian cancer cells demonstrate cancer stem cell properties andcorrelate to survival. Clin Exp Metastasis.2012,18:506–514.
    [22]21Auersperg, N., Wong, A.S., Choi, K.C., Kang, S.K., and Leung, P.C. Ovariansurface epithelium: biology, endocrinology, and pathology. Endocr. Rev.2001,22:255–288.
    [23]Murdoch, W.J. and McDonnel, A.C. Roles of the ovarian surface epithelium inovulation and carcinogenesis. Reproduction.2002,123:743–750.
    [24]Zhang S,Balch C,Chan MW,LaiHC,Mater D,Schilder JM,Yan PS,Huang TH andNephew KP.Identification and characterization of ovarian cancer-initiating cellsfrom primary human tumors.Cancer Res.2008,68:4311-4320
    [25]Al-Hajj M,Wicha MS,Benito-Hernandez A,Morrison SJ and ClarkeMF.Prospective identification of tumorigenic breast cancer cells.Proc Natl AcadSci.2003,100:3983-3988
    [26]Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1breast tumors contain distinct CD44+/CD24-and CD133+cells with cancer stem cell characteristics. Breast Cancer Res.2008,10(1):R10.
    [27]Shi C, Tian R, Wang M, Wang X, Jiang J, Zhang Z, Li X, He Z, Gong W, Qin RCD44+CD133+population exhibits cancer stem cell-like characteristics in humangallbladder carcinoma.Cancer Biol Ther.2010,10(11):1182-90.
    [28]Chao YL, Shepard CR, Wells A. Breast carcinoma cells re-express Ecadherinduring mesenchymal to epithelial reverting transition. Mol Cancer.2010,9:179.
    [29]Pan GJ, Chang ZY, Sch ler HR, Pei D.Stem cell pluripotency and transcriptionfactor Oct4.Cell Res.2002,12(5-6):321-9. Review
    [30]Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE.Oct4expressionin adult human stem cells: evidence in support of the stem celltheory ofcarcinogenesis.Carcinogenesis.2005,26(2):495-502.
    [31]Monk M, Holding C Human embryonic genes re-expressed in cancer cells.Oncogene.2001,20(56):8085-91
    [32]Sakanaka C, Sun TQ, Williams LT New steps in the Wnt/beta-catenin signaltransduction pathway.Recent Prog Horm Res.2000,55:225-36. Review.
    [33]D lek FH, Topak N, Tokyol, Akbulut G, D lek ON.β-Catenin and its relationto VEGF and cyclin D1expression in pT3rectosigmoid cancers.Turk JGastroenterol.2010,21(4):365-71
    [34]Gougelet A, Colnot S A. Complex Interplay between Wnt/β-Catenin Signalling andthe Cell Cycle in the Adult Liver..Int J Hepatol.2012;2012:816125
    [35]Jingushi K, Nakamura T, Takahashi-Yanaga F, Matsuzaki E, Watanabe Y,Yoshihara T, Morimoto S, Sasaguri T.Differentiation-inducing factor-1suppressesthe expression of c-Myc in the humancancer cell lines.J Pharmacol Sci.2013,121(2):103-9.
    [36]Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z,Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK. Epigeneticregulation of CD133and tumorigenicity of CD133t ovarian cancer cells. Oncogene.2009,28:209–218
    [37]Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins aresecreted and associated with the cell surface..Mol Biol Cell.1993,4(12):1267-75.
    [38]Shimizu H, Julius MA, Giarré M, Zheng Z, Brown AM, Kitajewski Transformationby Wnt family proteins correlates with regulation of beta-catenin.JCell GrowthDiffer.1997,8(12):1349-58.
    [1] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer JClin.2005,55:74–108.
    [2] Garc a Campelo MRACG, Aparicio Gallego G, Grande Pulido E, Anto n AparicioLM. Stem cell and lung cancer development: Blaming the Wnt, Hh and Notchsignalling pathway. Clin Transl Oncol.2011,13:77–83.
    [3] Akil Merchant, William Matsui。 Targeting Hedgehog-a Cancer StemCell Pathway Clin Cancer Res.2010,16(12):3130–3140.
    [4] T.A. GATCLIFFE, B.J. MONK, K. PLANUTIS, R.F. HOLCOMBE.Wnt signaling in ovarian tumorigenesis.Int J Gynecol Cancer.2008,18(5):954–962.
    [5] Resham Bhattacharya, Junhye Kwon, Bushra Ali, EnfengWang, Sujata Patra, VijiShridhar, and PriyabrataMukherjee1. Role of Hedgehog Signaling in OvarianCancer.Clin Cancer Res.2008,14(23):7659-7666
    [6] Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF. Wnt signaling in ovariantumorigenesis. Int J Gynecol Cancer.2008,18:954–962
    [7] Seraina Schmid, Marcia Bieber, Fang Zhang, Mallory Zhang, Biao He, DavidJablons, Nelson N.H. Wnt and Hedgehog Gene Pathway Expression inSerous Ovarian Cancer.Int J Gynecol Cancer.2011,21(6):975–980.
    [8] Adam D. Steg, Kerri S. Bevis, Ashwini A. Katre, Angela Ziebarth, RonaldD. Alvarez, Kui Zhang, Michael Conner, Charles N. Landen.Stem cell pathways contribute to clinical chemoresistance in ovarian cancer.Clin Cancer Res.2012,1;18(3):869–881.
    [9] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent andspecific genetic interference by double-stranded RNA in Caenorhabditiselegans. Nature.1998,391:806–11.
    [10]Croce CM. Causes and consequences of microRNA dysregulation in cancer. NatRev Genet.2009,10:704–14.
    [11]Medina PP, Slack FJ. microRNAs and cancer: an overview. CellCycle.2008,7:2485–92.
    [12]Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer-new paradigms inmolecular oncology.Curr Opin Cell Biol.2009,21:470–9.
    [13]Shah PP, Hutchinson LE, Kakar SS. Emerging role of microRNAs in diagnosis andtreatment of various diseases including ovarian cancer. J Ovarian Res.2009,2:11.
    [14]14Yao, H.H, Matzuk, M.M, Jorgez, C.J, Menke, D.B, Page, D.C, Swain, A, andCapel, B. Follistatin operates downstream of Wnt4in mammalian ovaryorganogenesis. Dev. Dyn.2004,230;210–215
    [15]Chassot, A.A., Ranc, F., Gregoire, E.P., Roepers-Gajadien, H.L., Taketo, M.M.,Camerino, G., de Rooij, D.G., Schedl, A., and Chabiossier, M.C. Activation ofbeta-catenin signaling by Rspo1controls differentiation of the mammalian ovary.Hum. Mol. Genet..2008,17:1264–1277.
    [16]Vainio, S., Heikkil, M., Kispert, A., Chin, N., and McMahon, A.P. Femaledevelopment in mammals is regulated by Wnt-4signaling. Nature.1999,397:405–409.
    [17]Gamallo, C., Palacios, J., Moreno, G., Calvo de Mora, J., Suarez, A., and Armas, A.Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationshipwith beta-catenin gene mutations, clinicopathological features, and clinical outcome.Am. J. Pathol.1999,155:527–536.
    [18]Wright, K., Wilson, P., Morland, S., Campbell, I., Walsh, M., Hurst, T., Ward, B.,Cummings, M., and Chenevix-Trench, G. beta-Catenin mutation and expressionanalysis in ovarian cancer: exon3mutations and nuclear translocation in16%ofendometrioid tumours. Int. J. Cancer.1999,82:625–629.
    [19]Rask, K., Nilsson, A., Br nnstr m, M., Carlsson, P., Hellberg, P., Janson, P.O.,Hedin, L., and Sundfeldt, K. Wnt-signalling pathway in ovarian epithelial tumours:increased expression of beta-catenin and GSK3beta. Br. J. Cancer.2003,89:1298–1304.
    [20]Takada, T., Yagi, Y., Maekita, T., Imura, M., Nakagawa, S., Tsao, S.W., Miyamoto,K., Yoshino, O., Yasugi, T., Taketani, Y., and Ushijima, T. Methylation-associatedsilencing of the Wnt antagonist SFRP1gene in human ovarian cancers. CancerSci..2004,95:741–744.
    [21]Wu, R., Hendrix-Lucas, N., Kuick, R., Zhai, Y., Schwartz, D.R., Akyol, A., Hanash,S., Misek, D.E., Katabuchi, H., Williams, B.O., Fearon, E.R., and Cho, K.R. Mousemodel of human ovarian endometrioid adenocarcinoma based on somatic defects inthe Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell,2007,11:321–333.
    [22]Weber-Hall SJ, Phippard DI, Niemeyer CC, Dale TC.Developmental and hormonalregulation of Wnt gene expression in the mouse mammary gland. Differentiation.1994,57:205-214.
    [23]Weber-Hall SJ, Phippard DI, Niemeyer CC, Dale TC.Developmental and hormonalregulation of Wnt gene expression in the mouse mammary gland.Differentiation.1994,57:205-214.
    [24]Lo Muzio L, Pannone G, Stefania S, Mignogna M, Grieco M, Fanali.S, et al.WNT-1expression in basal cell carcinoma of head and neck region. Animmunohistochemical and confocal study with regard to the intracellulardistribution of betacatenin. Anticancer Res.2002:22(2A):565-76
    [25]Papkoff1J Aikawa M. WNT-1and HGF regulate GSK3beta activity andbeta-catenin signaling in mammary epithelial cells. Biochem Biophys ResCommun.1998,247:851-858.
    [26]Clevers H. Wnt/β-catenin signaling in development and disease. Cell.2006,127:469–480.
    [27]Logan CY, Nusse R. The Wnt signaling pathway in development and disease. AnnuRev Cell Dev Biol.2004,20:781–810.
    [28]Polakis P. Wnt signaling and cancer. Genes Dev.2000,14:1837–1851.
    [29]Berthon A, Martinez A, Bertherat J, Val P. Wnt/β-catenin signalling in adrenalphysiology and tumour development.Mol Cell Endocrinol.2012,351(1):87-95.
    [30]Wieczorek M, Paczkowska A, Guzenda P, Majorek M, Bednarek AK, Lamparska-Przybysz M.Silencing of Wnt-1by siRNA induces apoptosis of MCF-7humanbreast cancer cells.Cancer Biol Ther.2008,;7(2):268-74..
    [31]Corrêa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay EWnt/β-catenin pathway regulates ABCB1transcription in chronic myeloidleukemia.BMC Cancer.2012,12:303
    [32]Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H (1984). Mode of proviralactivation of a putative mammary oncogene (int-I) on mouse chromosome15.Nature307:131-136.
    [33]Julius MA, Rai SD, Kitajewski J. Chimeric Wnt proteins define the amino-terminusof Wnt-1as a transformation-specific determinant. Oncogene.1999,18:149-156.
    [34]Nusse R, Varmus HE. Wnt genes. Cell.1992,69:1073-1087.
    [35]Bergstein1, Schultz R, Osborne MP, Welcsh PL, Bowcock AM,Brown AM.Investigation of the possible role of WNT genes in human breast cancer (abstract).Ann NY Acad Sci.1995,768:257.
    [36]Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski I.Transformation by Wnt family proteins correlates with regulation of beta-catenin.Cell Growth Differ.1997,8:1349-1358.
    [37]Ashihara E, Kawata E, and Maekawa T. Future prospect of RNA interference forcancer therapies. Current drug targets.2010,11(3):345.
    [38]Walters DK, Jelinek DF.The effectiveness of double-stranded short inhibitoryRNAs (siRNAs) may depend on the method of transfection.Antisense Nucleic AcidDrug Dev.2002,12(6):411-8
    [1] Garc a Campelo MRACG, Aparicio Gallego G, Grande Pulido E, Anto n AparicioLM. Stem cell and lung cancer development: Blaming the Wnt, Hh and Notchsignalling pathway. Clin Transl Oncol.2011,13:77–83.
    [2] Akil Merchant, William Matsui.Targeting Hedgehog-a Cancer Stem Cell PathwayClin Cancer Res.2010,16(12):3130–3140.
    [3] T.A. GATCLIFFE, B.J. MONK, K. PLANUTIS, R.F. HOLCOMBE.Wnt signaling in ovarian tumorigenesis.Int J Gynecol Cancer.2008,18(5):954–962.
    [4] Resham Bhattacharya, Junhye Kwon, Bushra Ali, EnfengWang, Sujata Patra, VijiShridhar, and PriyabrataMukherjee1. Role of Hedgehog Signaling in OvarianCancer.Clin Cancer Res.2008,14(23):7659-7666
    [5] Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF. Wnt signaling in ovariantumorigenesis. Int J Gynecol Cancer.2008,18:954–962
    [6] Seraina Schmid, Marcia Bieber, Fang Zhang, Mallory Zhang, Biao He, DavidJablons, Nelson N.H. Wnt and Hedgehog Gene Pathway Expression inSerous Ovarian Cancer.Int J Gynecol Cancer.2011,21(6):975–980.
    [7] Yao, H.H., Matzuk, M.M., Jorgez, C.J., Menke, D.B., Page, D.C., Swain, A., andCapel, B.(2004) Follistatin operates downstream of Wnt4in mammalian ovaryorganogenesis. Dev. Dyn.230,210–215
    [8] Chassot, A.A., Ranc, F., Gregoire, E.P., Roepers-Gajadien, H.L., Taketo, M.M.,Camerino, G., de Rooij, D.G., Schedl, A., and Chabiossier, M.C. Activation ofbeta-catenin signaling by Rspo1controls differentiation of the mammalian ovary.Hum. Mol. Genet.2008,17:1264–1277.
    [9]9.Vainio, S., Heikkil, M., Kispert, A., Chin, N., and McMahon, A.P. Femaledevelopment in mammals is regulated by Wnt-4signaling. Nature.1999,397:405–409.
    [10]Gamallo, C., Palacios, J., Moreno, G., Calvo de Mora, J., Suarez, A., and Armas, A.Beta-catenin expression pattern in stage I and II ovarian carcinomas: relationshipwith beta-catenin gene mutations, clinicopathological features, and clinical outcome.Am. J. Pathol.1999,155:527–536.
    [11]Wright, K., Wilson, P., Morland, S., Campbell, I., Walsh, M., Hurst, T., Ward, B.,Cummings, M., and Chenevix-Trench, G. beta-Catenin mutation and expressionanalysis in ovarian cancer: exon3mutations and nuclear translocation in16%ofendometrioid tumours. Int. J. Cancer.1999,82:625–629.
    [12]Rask, K., Nilsson, A., Br nnstr m, M., Carlsson, P., Hellberg, P., Janson, P.O.,Hedin, L., and Sundfeldt, K. Wnt-signalling pathway in ovarian epithelial tumours:increased expression of beta-catenin and GSK3beta. Br. J.Cancer.2003,89:1298–1304.
    [13]Takada, T., Yagi, Y., Maekita, T., Imura, M., Nakagawa, S., Tsao, S.W., Miyamoto,K., Yoshino, O., Yasugi, T., Taketani, Y., and Ushijima, T. Methylation-associatedsilencing of the Wnt antagonist SFRP1gene in human ovarian cancers. Cancer Sci.2004,95:741–744.
    [14]Wu, R., Hendrix-Lucas, N., Kuick, R., Zhai, Y., Schwartz, D.R., Akyol, A., Hanash,S., Misek, D.E., Katabuchi, H., Williams, B.O., Fearon, E.R., and Cho, K.R. Mousemodel of human ovarian endometrioid adenocarcinoma based on somatic defects inthe Wnt/beta-catenin and PI3K/Pten signaling pathways. CancerCell.2007.11:321–333
    [15]Clevers H. Wnt/β-catenin signaling in development and disease. Cell.2006,127:469–480.
    [16]Logan CY, Nusse R. The Wnt signaling pathway in development and disease. AnnuRev Cell Dev Biol.2004,20:781–810.
    [17]Lim X, Nusse R Wnt signaling in skin development, homeostasis, and disease.ColdSpring Harb Perspect Biol.2013,1;5(2).
    [18]Lento W, Congdon K, Voermans C, Kritzik M, Reya T Wnt signaling in normaland malignant hematopoiesis..Cold Spring Harb Perspect Biol.2013,1;5(2)
    [19]Price FD, Yin H, Jones A, van Ijcken W, Grosveld F, Rudnicki MA.Canonical wnt signaling induces a primitive endoderm metastable state inmouseembryonic stem cells.Stem Cells.2012,31(4):752-64.
    [20]Mimeault M, Batra SK. Targeting of cancer stem/progenitor cells plus stemcell-based therapies: The ultimate hope for treating and curing aggressive andrecurrent cancers. Panminerva Med.2008,50:3–18
    [21]Guddati AM. Ovarian cancer stem cells: Elusive targets for chemotherapy.MedOncol.2012,May26.
    [22]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospectiveidentification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA.2003,100:3983–3988.
    [23]Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT, Nieman MT,Fearon ER, Cho KR Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas.Am J Pathol.2002,160(4):1229-38.24.
    [24]Chan DW, Mak CS, Leung TH, Chan KK, Ngan HY.Down-regulation of Sox7isassociated with aberrant activation of Wnt/b-catenin signaling inendometrial cancer.Oncotarget.2012,3(12):1546-56.
    [25]Yoshioka S, King ML, Ran S, Okuda H, MacLean JA2nd, McAsey ME, Sugino N,Brard L, Watabe K, Hayashi K.WNT7A regulates tumor growth and progressionin ovarian cancer through theWNT/β-catenin pathway.Mol Cancer Res.2012,10(3):469-82
    [26]D lek FH, Topak N, Tokyol, Akbulut G, D lek ON.β-Catenin and its relationto VEGF and cyclin D1expression in pT3rectosigmoid cancers.Turk JGastroenterol.2010,21(4):365-71
    [27]Gougelet A, Colnot S A. Complex Interplay between Wnt/β-Catenin Signalling andthe Cell Cycle in the Adult Liver..Int J Hepatol.2012;2012:816125
    [28]Jingushi K, Nakamura T, Takahashi-Yanaga F, Matsuzaki E, Watanabe Y,Yoshihara T, Morimoto S, Sasaguri T.Differentiation-inducing factor-1suppressesthe expression of c-Myc in the humancancer cell lines.J Pharmacol Sci.2013,121(2):103-9.
    [29]Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K Wnt antagonistDKK1acts as a tumor suppressor gene that induces apoptosis and inhibitsproliferation in human renal cell carcinoma.Int J Cancer.2011,128(8):1793-803.
    [30]99.Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cellscontribute to the aggressive behavior of human epithelial ovarian cancer. CancerRes.2005,65:3025–3029.
    [31]Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo Celso C,Dombkowski D, Preffer F, Cohen KS, Teixeira J, Donahoe PK. Normal ovariansurface epithelial label-retaining cells exhibit stem/progenitor cell characteristics.Proc Natl Acad Sci USA.2008,105:12469–12473.
    [32]Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, Birrer MJ.Identification of a potential ovarian cancer stem cell gene expression profile fromadvanced stage papillary serous ovarian cancer. PLoS.2012.7:e29079.
    [33]Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B.Clinical significance of side population in ovarian cancer cells. Hum Cell.2011,24:9–12.
    [34]Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28and Oct4identify asub-population of stem cell-like cells in ovarian cancer. Oncogene.2010,29:2153–2159
    [35]Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, JaenischR.Wnt signaling promotes reprogramming of somatic cells to pluripotency.CellStem Cell.2008,3(2):132-5
    [1] Clark, A.M., Garland, K.K., and Russell, L.D.(2000) Deserthedgehog (Dhh) gene is required in the mouse testis for formation ofadult-type Leydig cells and normal development of peritubular cellsand seminiferous tubules. Biol. Reprod.63,1825–1838.
    [2] Chiang, C., Litingtung, Y., Harris, M.P., Simandl, B.K., Li, Y.,Beachy, P.A., and Fallon, J.F.(2001) Manifestation of the limbprepattern: limb development in the absence of sonic hedgehogfunction. Dev. Biol.236,421–435.
    [3] Sekiya, I., Vuoristo, J.T., Larson, B.L., and Prockop, D.J.(2002) Invitro cartilage formation by human adult stem cells from bonemarrow stroma defines the sequence of cellular and molecular eventsduring chondrogenesis. Proc. Natl. Acad. Sci. U. S. A.99,4397–4402.
    [4] Karhadkar, S.S., Bova, G.S., Abdallah, N., Dhara, S., Gardner, D.,Maitra, A., Isaacs, J.T., Berman, D.M., and Beachy, P.A.(2004)Hedgehog signalling in prostate regeneration, neoplasia andmetastasis. Nature431,707–712
    [5] Silva-Vargas, V., Lo Celso, C., Giangreco, A., Ofstad, T., Prowse,D.M., Braun, K.M, and Watt, F.M.(2005) Beta-catenin and Hedgehogsignal strength can specify number and location of hair follicles inadult epidermis without recruitment of bulge stem cells. Dev. Cell9,121–131.
    [6] Ahn, S. and Joyner, A.L.(2005) In vivo analysis of quiescent adultneural stem cells responding to Sonic hedgehog. Nature437,894–897.
    [7] Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W.,Suri, P., and Wicha, M.S.(2006) Hedgehog signaling and Bmi-1regulate self-renewal of normal and malignant human mammary stemcells. Cancer Res.66,6063–6071.
    [8] Dierks C, Beigi R, Guo GR, et al. Expansion of bcr-abl-positiveleukemic stem cells is dependent on hedgehog pathway activation [J].Cancer Cell.2008;14(3):238–249.
    [9] Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essentialfor maintenance of cancer stem cells in myeloid leukaemia [J].Nature.2009;458(7239):776–779.
    [10] Read TA, Fogarty MP, Markant SL, et al. Identification of cd15as amarker for tumorpropagating cells in a mouse model ofmedulloblastoma [J]. Cancer Cell.2009;15(2):135–147.
    [11] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancerstem cells [J]. Nature.2001;414(6859):105–111.
    [12] Krauss S, Concordet JP, Ingham PW. A functionally conservedhomolog of the drosophila segment polarity gene hh is expressed intissues with polarizing activity in zebrafish embryos [J]. Cell.1993;75(7):1431–1444.
    [13] Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, amember of a family of putative signaling molecules, is implicated inthe regulation of cns polarity [J]. Cell.1993;75(7):1417–1430.
    [14] Riddle RD, Johnson RL, Laufer E, et al. Sonic hedgehog mediates thepolarizing activity of the zpa [J]. Cell.1993;75(7):1401–1416.
    [15] Roelink H, Augsburger A, Heemskerk J, et al. Floor plate and motorneuron induction by vhh-1, a vertebrate homolog of hedgehogexpressed by the notochord [J]. Cell.1994;76(4):761–775.
    [16] Epstein EH. Basal cell carcinomas: Attack of the hedgehog [J]. NatRev Cancer.2008;8(10):743–754.
    [17] Xie J. Hedgehog signaling in prostate cancer [J]. Future Oncol.2005;1(3):331–338.
    [18] Xie J. Hedgehog signaling pathway: Development of antagonists orcancer therapy [J]. Curr Oncol Rep.2008;10(2):107–113.
    [19] Xie J. Molecular biology of basal and squamous cell carcinomas [J].Adv Exp Med Biol.2008;624:241–251.
    [20] Jiang J, Hui CC. Hedgehog signaling in development and cancer [J].Dev Cell.2008;15(6):801–812.
    [21] Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA.Autoproteolysis in hedgehog protein biogenesis. Science.1994;266:1528–1537.
    [22] Porter JA, Young KE, Beachy PA. Cholesterol modification ofhedgehog signaling proteins in animal development. Science.1996;274:255–259.
    [23] Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K,Beachy PA. The product of hedgehog autoproteolytic cleavage activein local and long-range signaling. Nature.1995;374:363–366.
    [24] Ingham PW, Placzek M. Orchestrating ontogenesis: variations on atheme by sonic hedgehog. Nat Rev Genet.2006;7:841–850.
    [25] Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gliproteins is essential for HNF-3βfloor plate enhancer activity intransgenics and can respond to Shh in vitro. Development.1997;124:1313–1322.
    [26] Kinzler KW, Vogelstein B. The GLI gene encodes a nuclear proteinwhich binds specificsequences in the human genome. Mol Cell Biol.1990;10:634–642.
    [27] Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL,Scott MP, et al. The tumorsuppressor gene patched encodes acandidate receptor for Sonic hedgehog. Nature.1996;384:129–134.
    [28] Chuang PT, McMahon AP. Vertebrate hedgehog signaling modulatedby induction of a hedgehogbinding protein. Nature.1999;397:617–621.
    [29] Martinelli DC, Fan CM. Gas1extends the range of Hedgehog actionby facilitating its signaling.Genes Dev.2007;21:1231–1243.
    [30] Seppala M, Depew MJ, Martinelli DC, Fan CM, Sharpe PT, CobourneMT. Gas1is a modifier for holoprosencephaly and geneticallyinteracts with sonic hedgehog. J Clin Invest.2007;117:1575–1584.
    [31] Allen BL, Tenzen T, McMahon AP. The Hedgehog-binding proteinsGas1and Cdo cooperate to positively regulate Shh signaling duringmouse development. Genes Dev.2007;21:1244–1257.
    [32] Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF.Vertebrate Smoothened functions at the primary cilium. Nature.2005;437:1018–1021.
    [33] May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, ReiterJ, Ericson J, Peterson AS.Loss of the retrograde motor for IFTdisrupts localization of Smo to cilia and prevents theexpression ofboth activator and repressor functions of Gli. Dev Biol.2005;287:378–389.
    [34] Huangfu D, Anderson KV. Cilia and hedgehog responsiveness in themouse. Proc Natl Acad Sci USA.2005;102:11325–11330.
    [35] Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK.Disruption of IFT results in both exocrine and endocrineabnormalities in the pancreas of Tg737(orpk) mutant mice. LabInvest.2005;85:45–64.
    [36] Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, YoderBK. Gli2and Gli3localize to cilia and require the intraflagellartransport protein polaris for processing and function. PloS Genet.2005;1:e53.
    [37] Incardona JP, Gruenberg J, Roelink H. Sonic hedgehog induces thesegregation of patched and smoothened in endosomes. Curr Biol.2002;12:983–995.
    [38] Eggenschwiler JT, Espinoza E, Anderson KV. Rab23is an essentialnegative regulator of the mouse Sonic hedgehog signaling pathway.Nature.2001;412:194–198.
    [39] Reiter JF, Skarnes WC. Tectonic, a novel regulator of the Hedgehogpathway required for both activation and inhibition. Genes Dev.2006;20:22–27.
    [40] Svard J, Henricson KH, Persson-Lek M, Rozell B, Lauth M,Bergstrom A, Ericson J, et al. Genetic elimination of suppressor offused reveals an essential repressor function in the mammalianhedgehog signaling pathway. Dev Cell.2006;10:187–197.
    [41] Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B. The GLI gene is amember of the Kruppel family of zinc finger proteins. Nature.1988;332:371–374.
    [42] Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML,Seuanez HN, et al. The GLIKruppel family of human genes. Mol CellBiol.1988;8:3104–3113.
    [43] Sheng T, Chi S, Zhang X, Xie J. Regulation of Gli1localization bythe cAMP/protein kinase A signaling axis through a site near thenuclear localization signal. J Biol Chem.2006;281:9–12.
    [44] Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V,Beermann F, Ruiz IAA. Melanomas require HEDGEHOG-GLIsignaling regulated by interactions between GLI1and theRAS-MEK/AKT pathways. Proc Natl Acad Sci USA.2007;104:5895–5900.
    [45] Pan Y, Bai CB, Joyner AL, Wang B. Sonic hedgehog signalingregulates Gli2transcriptional activity by suppressing its processingand degradation. Mol Cell Biol.2006;26:3365–3377.
    [46] Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE.Dual degradation signals control Gli protein stability and tumorformation. Genes Dev.2006;20:276–281.
    [47] Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA,Alimandi M, et al. Numb is a suppressor of Hedgehog signaling andtargets Gli1for Itch-dependent ubiquitination. Nat Cell Biol.2006;8:1415–1423.
    [48] Wang B, Li Y. Evidence for the direct involvement of βTrCP in Gli3protein processing. Proc NatlAcad Sci USA.2006;103:33–38.
    [49] huang PT, McMahon AP. Vertebrate hedgehog signalling modulatedby induction of a hedgehogbinding protein [J]. Nature.1999;397(6720):61
    [50] Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli:conservation and divergence of hedgehog pathways from Drosophilato vertebrates. Development.2006;133:3–14.
    [51] asper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L,Schmid C, et al. Selective modulation of hedgehog/GLI target geneexpression by epidermal growth factor signaling in humankeratinocytes. Mol Cell Biol.2006;26:6283–6298.
    [52] ng SY, Bishop JM. Suppressor of Fused represses Gli-mediatedtranscription by recruiting the SAP18-mSin3corepressor complex.Proc Natl Acad Sci USA.2002;99:5442–5447.
    [53] Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, acandidate gene for the basal cell nevus syndrome. Science.1996;272:1668–71.
    [54] Xie J, Johnson RL, Zhang X, et al. Mutations of the PATCHED genein several types of sporadic extracutaneous tumors. Cancer Res.1997;57:2369–72.
    [55] Xie J, Murone M, Luoh SM, et al. Activating Smoothened mutationsin sporadic basal-cell carcinoma. Nature.1998;391:90–2.
    [56] Pietsch T, Waha A, Koch A, et al. Medulloblastomas of thedesmoplastic variant carry mutations of the human homologue ofDrosophila patched. Cancer Res.1997;57:2085–8.
    [57] Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancerformation and maintenance. Nat Rev Cancer.2003;3:903–11.
    [58] Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose tomedulloblastoma. Nat Genet.2002;31:306–10.
    [59] Jones S, Zhang X, Parsons DW, et al. Core signaling pathways inhuman pancreatic cancers revealed by global genomic analyses.Science.2008;321:1801–6.
    [60] Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelialcells harbour active HEDGEHOG-GLI signalling that is essential fortumour growth, recurrence, metastasis and stem cell survival andexpansion. Embo Mol Med.2009:1.
    [61] Clement V, Sanchez P, de TN, Radovanovic I, Altaba A.HEDGEHOG-GLI1signaling regulates human glioma growth, cancerstem cell self-renewal, and tumorigenicity. Curr Biol.2007;17:165–72.
    [62] Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ. SonicHedgehog regulates Hes1through a novel mechanism that isindependent of canonical Notch pathway signalling. Oncogene.2008;27:1489–500.
    [63] Wall D, Mears A, McNeill B, et al. Progenitor cell proliferation in theretina is dependent on Notch-independent Sonic Hedgehog/Hes1activity. J Cell Biol.2009
    [64] Stecca B, Ruiz i Altaba A. A GLI1-p53inhibitory loop controlsneural stem cell and tumour cell numbers. EMBO J.2009;28:663–76.
    [65] Abe Y, Oda-Sato E, Tobiume K, et al. Hedgehog signaling overridesp53-mediated tumor suppression by activating Mdm2. Proc Natl AcadSci USA.2008;105:4838–43.
    [66] Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally inducedHedgehog signaling in B-cell malignancies. Nat Med.2007;13:944–51.
    [67] Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement forHedgehog signalling in cancer.Nature.2008;455:406–10.
    [68] Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling isrestricted to the stromalcompartment during pancreaticcarcinogenesis. Proc Natl Acad Sci USA.2009;106:4254–9.
    [69] Theunissen J-W, de Sauvage FJ. Paracrine Hedgehog signaling incancer. Cancer Res.2009;69:6007–10.
    [70] Kanda S, Mochizuki Y, Suematsu T, Miyata Y, Nomata K, Kanetake H.Sonic hedgehog induces capillary morphogenesis by endothelial cellsthrough phosphoinositide3-kinase. J Biol Chem.2003;278:8244–9.
    [71] Dierks C, Beigi R, Guo GR, et al. Expansion of Bcr-Abl-positiveleukemic stem cells is dependent on Hedgehog pathway activation.Cancer Cell.2008;14:238–49.]
    [72] Hofmann I, Stover EH, Cullen DE, et al. Hedgehog signaling isdispensable for adult murine hematopoietic stem cell function andhematopoiesis. Stem Cell.2009;4:559–67.
    [73] Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehogsignaling inhibits pancreatic cancer invasion and metastases: a newparadigm for combination therapy in solid cancers. Cancer Res.2007;67:2187–96.]
    [74] Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintainsa tumor stem cell compartment in multiple myeloma. Proc Natl AcadSci USA.2007;104:4048–53.
    [75] Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essentialfor maintenance of cancer stem cells in myeloid leukaemia. Nature.2009;458:776–9.
    [76] O’Brien C, Kreso A, Jamieson C. Cancer stem cells and self-renewal.Clin Cancer Res.2010:16..
    [77] Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1regulate self-renewal of normal and malignant human mammary stemcells. Cancer Res.2006;66:6063–71.
    [78] LaBarge M. Pinning down cancer stem cell niches. Clin Cancer Res.2010:16.
    [79] Mani S, Guo W, Liao M, et al. The epithelial-mesenchymal transitiongenerates cells with properties of stem cells. Cell.2008;133:704–15.
    [80] Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance oftumorigenic cells withmesenchymal features in pancreaticadenocarcinoma. J Natl Cancer Inst.2010;102:340–51.
    [81] Pannuti A, Foreman K, Rizzo P, et al. Targeting cancer stem cellsthrough notch signaling. Clin Cancer Res.2010:16..
    [82] Takahashi-Yanaga F, Kahn M. Cancer stem cell therapeutics WNT.Clin Cancer Res.2010:16.
    [83] Chen, X.; Horiuchi, A.; Kikuchi, N.; Osada, R.; Yoshida, J.;Shiozawa, T.; Konishi, I. Hedgehog signal pathway is activated inovarian carcinomas, correlating with cell proliferation: It’s inhibitionleads to growth suppression and apoptosis. Cancer Sci.2007;98,68–76.
    [84] Liao, X., Siu, M.K., Au, C.W., Wong, E.S., Chan, H.Y., Ip, P.P., Ngan,H.Y., and Cheung, A.N. Aberrant activation of hedgehog signalingpathway in ovarian cancers: effect on prognosis, cell invasion anddifferentiation. Carcinogenesis.2009;30,131–140.
    [85]85Bhattacharya, R., Kwon, J., Ali, B., Wang, E., Patra, S., Shridhar,V., and Mukherjee, P. Role of hedgehog signaling in ovarian cancer.Clin. Cancer Res.2008;14,7659–7666.
    [86] Sodek,K.L. et al. MT1-MMP is the critical determinant of matrixdegradation and invasion by ovarian cancer cells. Br. J. Cancer,2007,97,358–367
    [87] Naora,H. et al. Ovarian cancer metastasis: integrating insights fromdisparate model organisms. Nat. Rev. Cancer,2005,5,355–366.
    [88] Davidson,B. et al. Effusion cytology in ovarian cancer: newmolecularmethods as aids to diagnosis and prognosis. Clin. Lab.Med.2003;23,729–754, viii
    [89] Byrne,A.T. et al. Vascular endothelial growth factor-trap decreasestumor burden, inhibits ascites, and causes dramatic vascularremodeling in an ovarian cancer model. Clin. Cancer Res.2003;9,5721–5728.
    [90] Reed,J.C. Bcl-2family proteins: regulators of apoptosis andchemoresistancein hematologic malignancies. Semin. Hematol.1997;34,9–19.
    [91] Wu,C. et al. The morphogenic function of E-cadherin-mediatedadherens junctions in epithelial ovarian carcinoma formation andprogression. Differentiation.2008;76,193–205.
    [92] Makhija,S. et al. Taxol-induced bcl-2phosphorylation in ovariancancer cell monolayer and spheroids. Int. J. Oncol.1999;14,515–521
    [93] Thiery,J.P. Epithelial-mesenchymal transitions in tumourprogression.Nat. Rev. Cancer,.2002;2,442–454.
    [94] Mimeault M, Batra SK. Targeting of cancer stem/progenitor cells plusstem cell-based therapies: The ultimate hope for treating and curingaggressive and recurrent cancers. Panminerva Med.2008;50:3–18.
    [95] Barker N, Clevers H. Tracking down the stem cells of theintestine:Strategies to identify adult stem cells.Gastroenterology.2007;133:1755–1760.
    [96] Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM,Gasser M,Zhan Q, Jordan S, Duncan LM, Weishaupt C, FuhlbriggeRC, Kupper TS,Sayegh MH, Frank MH. Identification of cellsinitiating human melanomas. Nature.2008;451:345–349.
    [97] Guddati AM. Ovarian cancer stem cells: Elusive targets forchemotherapy.Med Oncol.2012;May26
    [98] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF.Prospective identification of tumorigenic breast cancer cells. ProcNatl Acad Sci USA.2003;100:3983–3988.
    [99] Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem andprogenitor-like cells contribute to the aggressive behavior of humanepithelial ovarian cancer. Cancer Res.2005;65:3025–3029.
    [100] Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R,Lo Celso C, Dombkowski D, Preffer F, Cohen KS, Teixeira J,Donahoe PK. Normal ovarian surface epithelial label-retaining cellsexhibit stem/progenitor cell characteristics. Proc Natl Acad SciUSA.2008;105:12469–12473.
    [101] Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, BirrerMJ. Identification of a potential ovarian cancer stem cell geneexpression profile from advanced stage papillary serous ovariancancer. PLoS.2012. ONE7:e29079.
    [102].Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K,Ishizuka B. Clinical significance of side population in ovarian cancercells. Hum Cell.2011;24:9–12.
    [103] Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28and Oct4identify a sub-population of stem cell-like cells in ovarian cancer.Oncogene.2010;29:2153–2159.
    [104] Garc′a Campelo MRACG, Aparicio Gallego G, Grande Pulido E,Anto′n Aparicio LM. Stem cell and lung cancer development:Blaming the Wnt, Hh and Notch signalling pathway. Clin TranslOncol.2011;13:77–83.
    [105] Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF.2008. Wntsignaling in ovarian tumorigenesis. Int J Gynecol Cancer18:954–962.
    [106] Adam D. Steg1, Kerri S. Bevis1, Ashwini A. Katre1, AngelaZiebarth1, Zachary C. Dobbin1,Ronald D. Alvarez1, Kui Zhang2,Michael Conner3, and Charles N. Landen1Stem Cell PathwaysContribute to Clinical Chemoresistance in Ovarian Cancer. ClinCancer Res;2012,18(3) February1,869-881
    [107] Sanchez, P., Hernandez, A.M., Stecca, B., Kahler, A.J., DeGueme,A.M., Barrett, A., Beyna, M., Datta, M.W., Datta, S., Ruiz, andAltaba, A. Inhibition of prostate cancer proliferation by interferencewith Sonic hedgehog-Gli1signaling. Proc Nat. Acad Sci.2004;101,12561–12566.
    [108] Lauth, M., Bergstrom, A., Shimokawa, T., and Toftgard, R. Inhibitionof GLI-mediated transcription and tumor cell growth bysmall-molecule antagonists. Proc Nat Acad Sci.2007;104,8455–8460.
    [109] Rubin, L.L. and de Sauvage, F.J. Targeting the Hedgehog pathway incancer. Nat Rev Drug Discov.2006;5,1026–1033.
    [110] Resham Bhattacharya, Junhye Kwon, Bushra Ali, EnfengWang,Sujata Patra, Viji Shridhar, and PriyabrataMukherjee1. Role ofHedgehog Signaling in Ovarian Cancer.Clin CancerRes.2008,14(23);7659-7666
    [111] Feldmann,G. et al. Blockade of hedgehog signaling inhibitspancreatic cancer invasion and metastases: a new paradigm forcombination therapy in solid cancers. Cancer Res.,2007;67,2187–2196.
    [112] Liao, X, Siu, M.K, Au, C.W, Wong, E.S, Chan, H.Y, Ip, P.P Ngan,H.Y., and Cheung, A.N. Aberrant activation of hedgehog signalingpathway in ovarian cancers: effect on prognosis, cell invasion anddifferentiation. Carcinogenesis.2009;30,131–140
    [113] Porter, J.A, von Kessler, D.P, Ekker, S.C, Young, K.E, Lee, J.J,Moses, K, and Beachy, P.A. The product of hedgehog autoproteolyticcleavage active in local and long-range signaling. Nature.1995;374,363–366.
    [114] Evangelista,M., Tian, H., and de Sauvage F.J. The hedgehogsignaling pathway in cancer. Clin. Cancer Res.2006;12,5924–5928.
    [115] Steg, A., Wang, W., Blanquicett, C., Grunda, J.M., Eltoum, I.A.,Wang, K., Buchsbaum, D.J., Vickers, S.M., Russo, S., Diasio, R.B.,Frost, A.R., LoBuglio, A.F., Grizzle, W.E., and Johnson, M.R.Multiple gene expression analyses in paraffin-embedded tissues byTaqMan low-density array: application to hedgehog and Wnt pathwayanalysis in ovarian endometrioid adenocarcinoma. J. Mol. Diagn.2006;8,76–83.
    [116] Lauth, M., Bergstrom, A., Shimokawa, T., and Toftgard, R. Inhibitionof GLI-mediated transcription and tumor cell growth bysmall-molecule antagonists. Proc. Natl. Acad. Sci.2007;104,8455–8460.
    [117] Ponnusamy, M.P. and Batra, S.K. Ovarian cancer: emerging concepton cancer stem cells. J. Ovar. Res.2008;1,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700