液相色谱—紫外—质谱联用技术在土壤和水中农药残留的检测及降解研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤和水中的农药残留污染,已成为当今世界备受关注的环境问题,因此建立高效、环保的土壤和水中农残的检测及降解方法迫在眉睫。本文应用超高效液相色谱-紫外(UPLC-UV)技术和超高效液相色谱-质谱(UPLC-MS/MS)技术建立了土壤和水中杀虫剂及除草剂类农药的检测方法,并且将此技术采用于农药的微生物降解及光催化降解研究中。本论文包括三个部分:
     1.应用UPLC-UV技术建立了土壤中杀虫剂DDT及其代谢产物(DDTs)的检测方法。利用超声辅助萃取和固相萃取技术提取、净化和富集目标化合物。采用ACQUITY UPLC BEH C18(50mm×2.1mm I.D.,1.7μm)色谱柱和梯度洗脱方式,经紫外检测器在238nm波长下检测,4种DDTs的出峰时间在3min之内。以外标法定量,DDTs在12.5-500μg·kg-1内线性关系良好(R>0.999)。25,50和100μg·kg-1三个添加水平下,DDTs的回收率为70-95%,RSD<13%,检出限为2.5μg·kg-1(S/N=3)。通过微生物降解方法对DDTs进行了初步降解研究,经检测3种DDTs可以被降解,降解率最高达到65%。
     2.建立了同时检测土壤中莠去津、苯噻酰草胺、甜菜宁、异丙甲草胺和环嗪酮等五种除草剂的UPLC-MS/MS方法。样品经改进的QuEChERS(快速、简单、廉价、高效、灵活和安全)方法一步完成萃取和净化。实验对前处理方法的萃取步骤、吸附剂种类及基质效应进行了考察和优化。经优化,改进的QuEChERS前处理方法采用简化的实验步骤、不使用缓冲盐溶液,以乙腈为萃取试剂,以N-丙基乙二胺(PSA)和C18吸附剂填料净化,萃取液无需浓缩,直接上机检测。检测方法使用Waters ACQUITY UPLCTM BEH C18(50mmx2.1mm i.d.,1.7μm)色谱柱,柱温30℃,流动相为甲醇和水,梯度洗脱,流速0.25mL·min-1以电喷雾质谱的多反应监测模式检测。五种常用除草剂在0.5-200μg.kg-1浓度范围,线性关系良好,其相关系数大于0.99。在4和40μg.kg-1水平下的平均加标回收率为75.4%-98.5%,相对标准偏差为3.2%-11.8%。方法的检出限(S/N=3)为0.005-0.020μg'kg-1,定量限(S/N=10)为0.017-0.067μg'kg-1。
     3.以新型混晶相纳米二氧化钛为光催化剂,对水中除草剂环嗪酮的光催化降解方法进行了研究。考察了吸附过程、纳米二氧化钛的浓度、溶液pH值以及光照时间等光催化降解过程的主要参数对水中环嗪酮光催化降解过程的影响。研究发现添加较低浓度的纳米二氧化钛,中性pH值条件下,经40分钟光照,环嗪酮可以完全降解。这个结果比在相同的实验条件下,以商业化的二氧化钛Degussa P25为催化剂的光催化降解效果更好。通过对环嗪酮的光催化降解动力学研究,发现环嗪酮的光催化降解过程符合Langmuir-Hinshelwood模型的准一级形式。本研究建立了一个快速、灵敏、准确的UPLC-MS/MS检测方法来支撑光催化降解动力学研究。该方法的最低检出限(LOD)为0.05μg·L-1,加标回收率在90.2%到98.5%之间,相对标准偏差(RSD)小于12%。应用LC-MS/MS技术,对降解过程的降解产物进行跟踪检测,对主要的降解产物的化学结构进行了推断,同时提出了可能的水中环嗪酮的光催化降解途径及机理。应用本研究所建立的光催化降解方法可以使水中除草剂环嗪酮快速的完全降解,最终产物为无毒无害的水、二氧化碳和尿素。
Nowadays, environmental contamination caused by pesticide residuespersist in soil and water has become a global concern. It is increasinglyimportant to develop effective and green determination method anddegradation method for pesticide residues in soil and water. Present workdeveloped determination methods based on ultra performance liquidchromatography with UV detector (UPLC UV) and ultra performance liquidchromatography tandem with MS detector (UPLC MS/MS) methodologies forpesticides and herbicides in soil and water samples. Also, the UPLC UV andUPLC MS/MS thechnology were applied for the studies of micro biologicaldegradation and photocatalytic degradation of the pesticides. This thesisincludes the following three contents:
     1. A simultaneous quantification method based on UPLC UV for DDTsin soil samples was developed. The soil sample preparation involved an ultrasonic extraction and a solid phase extraction technology to extract cleanup and concentrate the extracts. Using a Waters ACQUITY UPLC UV systemwith an ACQUITY UPLC BEH C_(18)(50mm×2.1mm I.D.,1.7m) columnand a gradient elution, the run time of four DDTs was within3min under thewavelength of238nm. The external standard method was used forquantification, and the calibration curves showed good linear relations in theconcentration range of12.5500μg kg~(-1)(R~2>0.999). The average recoveries ofthree spiked concentration levels of25,50and100g kg~(-1)were between7095%, and the RSD values were less than12%. The limit of detection (LOD)in soil ranged from2.5μg kg~(-1)(S/N=3). A primary micro biologicaldegradation study for DDTs was investigated and the degradation rate was upto65%.
     2. A simultaneous UPLC MS/MS determination method for atrazine,phenmedipham, mefenacet, metholachlor, and hexazinone five currently usedherbicides residues in soil five herbicides in soil was established. The samplepreparation using the modified QuEChERS (quick, easy, cheap, effective,rigged, and safe) method completed the extraction and clean up steps in oneprocedure. The sample preparation method investigated and optimized theextraction procedures, absorbents and matrix effect. The optimizedQuEChERS sample pretreatment used none buffer, extracted with acetonitrile,and cleaned up with primary secondary amine (PSA) and C18sorbent, thencentrifugated and filtrated before determination. The UPLC MS/MS method was performed on Waters ACQUITY UPLCTM BEH C18(50mm×2.1mmi.d.,1.7m) and the column temperature was30, the gradient elution withmethanol and pure water as the mobile phase and the flow rate was0.25mL min1. The analysis used positive electro spray ionization (ESI~+) sourceunder the multiple reaction monitoring (MRM) mode and external standardmethod for quantification. The results showed that the correlation coefficientsup to0.9984were obtained across a concentration range of0.5200g kg~(-1).The method was validated with soil samples spiked at two fortification levels(4and40g kg~(-1)) and recoveries were in the range of75.4%98.5%withrelative standard deviations (RSD) of3.2%11.8%. Limits of detection (LOD)ranged0.0050.020g kg~(-1)(S/N=3), the limits of quantification (LOQ) were0.0170.067g kg~(-1)(S/N=10).
     3. Degradation of hexazinone has been investigated by means ofphotocatalysis of mixed phase crystal nano TiO_2. Influences of adsorption,amount of nano TiO_2, pH and irradiation time on the photocatalytic processare studied. Results show that hexazinone is totally degraded within40min ofirradiation under pH neutral conditions. This compares favorably withDegussa P25TiO_2when conducted under the same experimental conditions.Preliminary photocatalytic kinetic information for hexazinone degradation isproposed. First order kinetics is obtained for the adsorption and photocatalyticdegradation reactions, which fit the Langmuir–Hinshelwood model. A rapid,sensitive and accurate UPLC–MS/MS technique is developed and utilized to determine the level of hexazinone in water in support of the degradationkinetics study. The results indicate a limit of detection (LOD) at0.05g L~(-1)and the recoveries between90.2and98.5%with relative standard deviations(RSD) lower than12%. A LC–MS/MS technique is used to trace thedegradation process. Complete degradation is achieved into final productsincluding nontoxic water, carbon dioxide and urea. A probable pathway for thetotal photocatalytic degradation of hexazinone is proposed.
引文
[1]刘兆民,隋利军.环境激素研究进展概述[J].西北民族大学学报(自然科学版),2007,28[6]:55-58
    [2]黄培东,于芳芳.环境激素及其污染防治研究进展[J].广东化工,2007,34(12):86-89
    [3]]邹芳玉,李惠.土壤环境激素污染现状及其防治措施[J].现代农业科技,2009,(6):251-254
    [4]朱国念.农药残留快速检测技术[M].北京:化学工业出版社,2008,4-46
    [5]黄卫平.食品中有机氯农药残留分析方法[J].中国卫生检验杂志,2001,11(6):739-741
    [6]杨水岗,彭锰欣.农药与未来农业的发展[J].环境导报,1997,(6):35-38
    [7]郭立,张清敏.氨基甲酸酷类农药残留分析方法的研究进展[J].天津农学院学报,2001,8(4):15-18
    [8]梅梅,杜振霞QuEChERS-超高效液相色谱串联质谱法同时测定土壤中5种常用除草剂[J].分析化学,2011,39(11):1659-1664
    [9]江桂斌.环境样品前处理技术[M].北京:化学工业出版社,2006,18-198
    [10]王爽,杨益众.土壤中农药残留分析方法概述[J].安徽农学通报,2007,13(21):90-93
    [11]Tor A, Aydin M E. Ultrasonic solvent extraction of organochlorine pesticides from soil[J]. Analyt. Chim.,2006,2(559):173-180
    [12]Sanchez B C, Rodriguez A, Tadeo J L. Muhiresidue analysis of carbamate pesticides in soil sonication assisted extraction in small columns and liquid chromatography[J]. Chromat. A,2003,1007,(1-2):85-91
    [13]Brunete C S, Miguel E, Tadeo J L. Muhiresidue analysis of fungicides in soil by sonication-assisted extraction in small columns and gas chromatography[J]. Chromat. A.2002,976,(1-2):319-327Brunete C S, Tadeo J L. Muhiresidue analysis of insecticides in soil by gas
    [14]chromatography with electron capture detection and confirmation by gas chromatography mass spectrometry[J]. Chromat. A,2001,918(2):371-380
    [15]褚亮亮,薛文平,徐恒振.超声提取液相色谱测定环境固体样品中多环芳烃[J].大连工业大学学报,2009,28(6):448-451
    [16]封棣,阎正,赵亚奎,等.固相萃取-毛细管气相色谱法测定中草药及其土壤中多种有机氯农药残留量[J].分析试验室,2005,24(10):8-12
    [17]佟玲,黄园英,张玲金,等.土壤中持久性有机污染物分析的前处理方法[J].岩矿测试,2008,27(2):81-86
    [17]Majors R E. An overview of sample preparation methods for solids[J]. LC-GC,1999,17(6):8-13
    [18]Hu B Z, Song W H, Xie L P, Shao T F. Determination of33pesticides in tea using accelerated solvent extraction/gel permeation chromatography and solid phase extraction/gas chromatography-mass spectrumetry[J]. Chin. J. Chromat.,2008,26(1):22-28
    [19]Halbert A, Wenzal K D, Manz M, Weissflog L, W, Schtitirmann G. High extraction efficiency for POPs in real contaminated soil samples using accelerated solvent extraction[J]. Analyt. Chem.,2000,72(6):1294-1300
    [20]刘凌,裴志国.微波辅助溶剂提取法对土壤中残留苯并咪唑类农药的测定[J].分析实验室,2004,23(4):34-37
    [21]Marta E, Dana R. Microwave assisted extraction through an aqueous medium and simultaneous clean up by partition on hexane for determining pesticides in agricultural soils by gas chromatography:A critical study[J]. Analyt. Chim..2006,2(578):122-130
    [22]Turrillas F A, Aman C S. Microwave-assisted extraction of pyrethmid insecticides from soil[J]. Analyt. Chim.,2004,1(522):73-78
    [23]崔兆杰,赵士燕.超临界CO2流体萃取—气相色谱法测定土壤中的类二嗯英类多氯联苯[J].山东大学学报(理学版),1998,21(8):124-128
    [24]杨云,栾伟,罗学军,等.微波辅助萃取-固相微萃取联用气相色谱-质谱法测定土壤中的扑草净[J].分析化学研究报告,2004(6):775-778
    [25]Chang S M, Dong R. Concentration and fate of persistent organoc hlorine pesticides in estuarine sediments using head space solid-phase microextraction[J]. Chemosphere,2006,11(62):1869-1878
    [26]杨秀敏,王志.中空纤维液相微萃取-高效液相色谱法测定水中残留的氨基甲酸酯类农药[J].色谱,2007,25(3):362-367
    [27]邵焰,张丽君,张占恩.中空纤维膜-液相微萃取-气相色谱/质谱法测定土壤中拟除虫菊酯类农药[J]. Chromatography,2000,889(1):59-67
    [28]崔淑华,许美玲,钱家亮,等.液相色谱-串联质谱法测定果蔬中4种新型卵菌纲杀菌剂残留[J].分析化学,2011,39(12):1836-1840
    [29]傅若农.色谱分析概论[M].北京:化学工业出版社,2005,257-272
    [30]何艳,徐颖华,马淳安.氯代有机污染物的电化学还原脱氯降解技术研究进展[J].广州化工,2011,39(9):27-30
    [31]朱卫华,沈薇,房媛媛,等.卟啉锰电催化还原降解滴滴涕[J].江苏大学学报(自然科学版),2000,12(2):219-231
    [32]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2007.40-113
    [33]刘渊,夏本立,丛继信.酸性氧化还原电位水降解偏二甲肼废水[J].含能材料,2010,18(3):359-360
    [34]李岩,蒋继志,刘翠芳.微生物降解农药研究的新进展[J].生物学杂志,2007,24(2):59-62
    [35]Murthy H M, Manonmani H K. Aerobic degradation of technical hexachlorocyclo-hexane by a defined microbial consortium [J]. Hazard. M.,2007,149(1):18-25
    [36]Bidlan R, Manonmani H K. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P[J]. Process Bio.,2002,38(1):49-56
    [37]Gaw S K, Palmer G, Kim N D, Wilkins A L. Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand[J]. Envir. Pollu.,2003,122(1):1-5
    [38]Bahena C L, Martinez S S, Guzman D M, et al. Sonophotocatalytic degradation of alazine and gesaprim commercial herbicides in TiO2slurry[J]. Chemosphere,2008,71(1):982-989
    [39]Erdemoglu S, Aksu S K, Sayilkan F, et al. Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2and identification of degradationproducts by LC–MS[J]. Hazard. M,2008,155(2):469476
    [40] Chusaksri S, Lomda J, Saleepochn T, et al, Photocatalytic degradation of3,4dichlorophenylurea in aqueous gold nanoparticles modified titanium dioxidesuspension under simulated solarlight[J]. Hazard. M,2011,190(1):930937
    [41] Parra S, Stanca S E, Guasaquillo I, et al. Photocatalytic degradation of atrazine usingsuspended and supported TiO2[J]. App. Catal. B: Environmental,2004,51(2):107–116
    [42] Gu L, Chen Z, Sun C, et al. Photocatalytic degradation of2,4dichlorophenol usinggranular activated carbon supported TiO2[J]. Desalinatn.,2010,263(13):107–112
    [43] Karakus P B, Bidleman T F, Staebler R M, et al. Measurement of DDT Fluxes from aHistorically Treated Agricultural Soil in Canada[J]. Environ. Sci. Technol.,2006,40(1):45784585
    [44] Fitzpatrick L J, Dean J R. Extraction Solvent Selection in Environmental Analysis [J].Analy. Chem.,2002,74(1):7479
    [45] Hoff G R, Zoonen P V. Trace analysis of pesticides by gas chromatography [J].Chromatogr. A1999,843(12):301322
    [46] The United Nations Stockholm Convention [EB/OL]. http://www.pops.int,2001
    [47] Cai Q Y, Mo C H, Wu Q T, et al. The status of soil contamination by semivolatile organicchemicals (SVOCs) in China: A review [J]. Sci. Total Environ.2008,389(23):209224
    [48] Katsoyiannis A, Samara C. Comparison of active and passive sampling for thedetermination of persistent organic pollutants (POPs) in sewage treatment plants [J].Chemosphere2007,67(7):13751382
    [49] Li J, Zhang G, Qi S, et al. Concentrations, enantiomeric compositions, and sources ofHCH, DDT and chlordane in soils from the Pearl River Delta, South China[J]. Sci. TotalEnviron.2006,372(1):215224
    [50] Bai H, Zhou Q, Xie G, et al. Enrichment and sensitive determination ofdichlorodiphenyltrichloroethane and its metabolites with temperature controlled ionicliquid dispersive liquid phase microextraction prior to high performance liquid phasechromatography[J]. Anal. Chim. Acta.2009,651(1):6468
    [51] Chen L, Ding L, Jin H, et al. The determination of organochlorine pesticides based ondynamic microwave assisted extraction coupled with on line solid phase extraction ofhigh performance liquid chromatography[J]. Anal. Chim. Acta.2007,589(2):239246
    [52] Ye C L, Zhou Q X, Wang X M. Headspace liquid phase microextraction using ionic liquidas extractant for the preconcentration of dichlorodiphenyltrichloroethane and itsmetabolites at trace levels in water samples[J]. Anal. Chim. Acta.2006,572(2):165171
    [53] Zhou Q, Pang L, Xiao J. Trace determination of dichlorodiphenyltrichloroethane and itsmain metabolites in environmental water samples with dispersive liquid–liquidmicroextraction in combination with high performance liquid chromatography andultraviolet detector[J]. Chromatogr. A2009,1216(39):66806684
    [54] Schenker U, Scheringer M, Hungerbühler K. Investigating the Global Fate of DDT: ModelEvaluation and Estimation of Future Trends[J]. Environ. Sci. Technol.2008,42(4):11781184
    [55] WHO. News release [EB/OL]. http://www.who.int/mediacentre/news/releases/2006/pr50/en/. html,2006.09.15
    [56] Moreno D V, Ferrera Z S, Rodríguez J. Microwave assisted micellar extraction coupledwith solid phase microextraction for the determination of organochlorine pesticides in soilsamples[J]. Anal. Chim. Acta.2006,571(1):5157
    [57] Ozcan S, Tor A, Aydin M E. Application of miniaturised ultrasonic extraction to theanalysis of organochlorine pesticides in soil[J]. Anal. Chim. Acta.2009,640(1):5257
    [58] Hussen A, Westbom R, Megersa N, etal. Selective pressurized liquid extraction formulti residue analysis of organochlorine pesticides in soil[J]. Chromatogr. A2007,1152(12):247253
    [59] Carrera E P, Víctor M, León L, etal. Simultaneous determination of pesticides, polycyclicaromatic hydrocarbons and polychlorinated biphenyls in seawater and interstitial marinewater samples, using stir bar sorptive extraction–thermal desorption–gaschromatography–mass spectrometry[J]. Chromatogr. A2007,1170(12):8290
    [60] Lesueur C, Gartner M, Mentler A, et al. Comparison of four extraction methods for theanalysis of24pesticides in soil samples with gas chromatography–mass spectrometry andliquid chromatography–ion trap–mass spectrometry[J]. Talanta2008,75(1):284293
    [61] Gfrerer M, Lankmayr E. Screening, optimization and validation of microwave assistedextraction for the determination of persistent organochlorine pesticides[J]. Anal. Chim.Acta.2005,533(2):203211
    [62] Stephen A C, Tchelitcheff W P. Use of ultra performance liquid chromatography inpharmaceutical development[J]. Chromatogr. A2006,1119(12):140146
    [63] Yamashita T, Dohta Y, Nakamura T, et al. High speed solubility screening assay usingultra performance liquid chromatography/mass spectrometry in drug discovery[J].Chromatogr. A2008,1182(1):7276
    [64] Nagumo Y, Tanaka K, Tewari K, et al. Rapid quantification of cyanamide byultra high pressure liquid chromatography in fertilizer, soil or plant samples[J].Chromatogr. A,2009,1216(29):56145618
    [65] Liu H, Du Z H, Yuan Q P. A novel rapid method for simultaneous determination of eightactive compounds in silymarin using a reversed phase UPLC UV detector[J]. Chromatogr.B2009,877(32):41594163
    [66] Cristiana C, Leandro P H, Richard J, et al. Comparison of ultra performance liquidchromatography and high performance liquid chromatography for the determination ofpriority pesticides in baby foods by tandem quadrupole mass spectrometry[J].Chromatogr. A2006,1103(1):94101
    [67] Li X, Xiong Z, Ying X, et al. A rapid ultra performance liquidchromatography electrospray ionization tandem mass spectrometric method for thequalitative and quantitative analysis of the constituents of the flower of Trollius ledibouriReichb[J]. Anal. Chim. Acta.2006,580(2):170180
    [68] Fitzpatrick L J, Dean J R, Michael H I, et al. Extraction of DDT [1,1,1, trichloro2,2bis(pchlorophenyl)ethane] and its metabolites DDE [1,1dichloro2,2bis(p chlorophenyl)ethylene] and DDD [1,1dichloro2,2bis(p chlorophenyl)ethane]) from agedcontaminated soil[J]. Chromatogr. A2000,874(2):257264
    [69] Turiel E, Esteban A M, Tadeo J L. Multiresidue analysis of quinolones andfluoroquinolones in soil by ultrasonic assisted extraction in small columns andHPLC UV[J]. Anal. Chim. Acta.2006,562(1):3035
    [70]贺敏,贾春虹,余平中,等.土壤和葵花籽中竟异丙甲草胺的残留分析[J].农药, 2009,48(12):902-903
    [71]Pinto C G, Laespada M E, Martin S H, et al. Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples[J]. Talanta,2010,81(1-2):385-391
    [72]秦冬梅,秦旭,孙扬,等.氟虫双酰胺在土壤和白菜中的高效液相色谱分析[J].农药,2009,48(10):755-756
    [73]Lesueur C, Gartner M, Mentler A, et al. Comparison of four extraction methods for the analysis of24pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry[J]. Talanta,2008,75(1):284-293
    [74]Rashid A, Nawaz S, Barker H, et al. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry[J]. Chromatogr. A,2010,1217(17):2933-2939
    [75]Ibanez M, Oscar J P, Sancho J V, et al. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Chromatogr. A,2005,1081(11):145-155
    [76]牛增元,罗忻,汤志旭,等.高效液相色谱-电喷雾串联质谱法快速测定纺织品中苯氧羧酸类除草剂残留量[J].分析化学,2009,37(4):505-510
    [77]胡开峰,孙涛,刘圣红,等.土壤中13种磺酰脲类除草剂多残留的超高效液相色谱-串联质谱法测定[J].析测试学报,2010,29(11):1216-1220
    [78]Ye G, Zhang W, Cui X, et al. Determination and Quantitation of Ten Sulfonylurea Herbicides in Soil Samples Using Liquid Chromatography with Electrospray Ionization Mass Spectrometric Detection [J]. Chin. J. Analyt. Chem.,2006,34(9):1207-1212
    [79]Ozcan S, Tor A, Aydin M E. Application of miniaturised ultrasonic extraction to the analysis of organochlorine pesticides in soil[J]. Analyt. Chim.,2009,640(1-2):52-57
    [80]Dagnac T, Bristeau S, Jeannot R, et al. Determination of chloroacetanilides, triazines and phenylureas and some of their metabolites in soils by pressurised liquid extraction, GC-MS/MS, LC-MS and LC-MS/MS [J]. Chromatogr. A,2005,1067(1-2):225-233
    [81]Emmanouil N P, Vryzas Z, Mourkidou E P. Rapid method for the determination of16organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography-mass spectrometry[J]. Chromatogr. A,2006,1127(1-2):6-11
    [82]CEN Standard Method EN15662. Foods of plant origin, Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE, QuEChERS-method[S].2007
    [83]AOAC Official Method2007.01,18th ed. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulphate-Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry[s].2007
    [84]宫小明,董静,孙军,等.动物源性食品中阿维菌素类药物残留的QuEChERS-液质联用法测定[J].分析测试学报,2010,29(9):933-937
    [85]苏少泉.除草剂概论[M].北京:科学出版社,1989,1-8
    [86]张宝莉.农药环境保护[M].北京:化学工业出版社,2002,7
    [87]王铭琦.苯氧轻酸类除草剂的研究与应用进展[J].新农药,2005,39(1):3-6
    [88]苏小泉.除草剂的发展及其前景[J].世界农药,1989,1(11):217
    [89] Peterson H G, Boutin C, Freemark K E, et al. Toxicity of hexazinone and diquat to greenalgae, diatoms, cyanobacteria and duckweed[J]. Aquatic Toxicology,1997,39(2):111l34
    [90] EPA738R94022. USA Environmental Protection Agency. Reregistration EligibilityDecision (RED) Hexazinone[S].1994
    [91] Wilkins R N, Tanner G T, Mulholland R, et al. Use of hexazinone for understoryrestoration of a successionally advanced xeric sandhill in Florida,[J]. Ecol. Eng.1993,2(1):3148
    [92] Kubilius D T, Bushway R J. Determination of hexazinone and its metabolites ingroundwater by capillary electrophoresis[J]. Chromatogr. A,1998,793(2):349355
    [93] Bouchard D C, Lavy T L, High performance liquid chromatographic determination ofhexazinone residues in soil and water[J]. Chromatogra. A,1983,270:396401
    [94] Fischer J B, Michael J L. Thermospray ionization liquid chromatography massspectrometry and chemical ionization gas chromatographymass spectrometry ofhexazinone metabolites in soil and vegetation extracts[J]. Chromatogr. A,1995,704(1,2):131139
    [95] Zhu Y, Li Q X. Movement of bromacil and hexazinone in soils of Hawaiian pineapplefields[J]. Chemosphere,2002,49(6):669674
    [96] Neary D, Bush P, Douglass J. Off site movement of hexazinone in stormflow andbaseflow from forest watersheds[J]. Weed. Sci.1983,31:543547
    [97] Wang H, Xu S, Tan C, et al. Anaerobic biodegradation of hexazinone in four sediments[J].Hazard. M.2009,164(23):806811
    [98] Privman M, Zuman P. The role of protonation, hydration, elimination, and ring opening inthe electroreduction of hexazinone[J]. Electro. Analyt. Chem.,1998,455(12):235246
    [99] Gu L, Chen Z, Sun C, et al. Photocatalytic degradation of2,4dichlorophenol usinggranular activated carbon supported TiO2[J]. Desalination,2010,263(13):107112
    [100] Vulliet E, Chovelon J M, Guillard C, et al. Factors influencing the photocatalyticdegradation of sulfonylurea herbicides by TiO2aqueous suspension Emmanuelle[J].Photoch A,2003,159(1):7179
    [101] Fresno F, Guillard C, Coronado J M, et al. Photocatalytic degradation of a sulfonylureaherbicide over pure and tin doped TiO2photocatalysts[J]. Photoch A,2005,173(1):1320
    [102] Oliviero L, Barbier J, Duprez D, et al. Wet air oxidation of aqueous solutions of maleicacid over Ru/CeO2catalysts[J]. App. Catal. B,2001,35(1):112
    [103] Sivalingam G, Nagaveni K, Hegde M S, et al. Photocatalytic degradation of various dyesby combustion synthesized nano anatase TiO2[J]. App. Catal. B,2003,45(1):23–38
    [104] Spurr R A, Myers H, Quantitative analysis of anatase–rutile mixtures with an X raydiffractometer[J]. Analyt. Chem.,1957,29(5):760–762
    [105] Prasad K, Pinjari D V, Pandit A B, et al. Phase transformation of nanostructured titaniumdioxide from anatase to rutile via combined ultrasound assisted sol–gel technique[J].Ultrason. So.,2010,17(2):409–415
    [106] Tada H, Tanaka M. Dependence of TiO2photocatalytic activity upon its film thickness[J].Langmuir,1997,13(2):360–364
    [107] Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2in heterogeneousphotocatalysis for phenol oxidation in water[J]. Ph. Ch. B,2000,104(19):4815–4820
    [108] Kawahara T, Ozawa T, Iwasaki M, et al. Photocatalytic activity of rutile–anatase coupledTiO2particles prepared by a dissolution–reprecipitation method[J]. Coll. In.,2003,267(2):377–381
    [109] Bakardjieva S, ubrt J, tengl V, et al. Photoactivity of anatase–rutile TiO2nanocrystallinemixtures obtained by heat treatment of homogeneously precipitated anatase[J]. App. Catal.B,2005,58(34):193–202
    [110] Ohno T, Tokieda K, Higashida S, et al. Synergism between rutile and anatase TiO2particles in photocatalytic oxidation of naphthalene[J]. App. Catal. A,2003,244(2):383–391
    [111] Meulen T, Mattson A, sterlund L. A comparative study of the photocatalytic oxidation ofpropane on anatase, rutile, and mixed phase anatase–rutile TiO2nanoparticles: Role ofsurface intermediates[J]. Catal.,2007,251(1):131–144
    [112] Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO2powders prepared bysol–gel method: Characterization and photocatalytic study[J]. Mater. Ch. P.,2008,110(1):166–175
    [113] Bickley R I, Carreno T G, Lees J S, structural investigation of titanium dioxidephotocatalysts[J]. Sol. St. Ch.,1991,92(1):178190
    [114] Zielińska B, Grzechulska J, Kaleńczuk R J, et al. The pH influence on photocatalyticdecomposition of organic dyes over A11and P25titanium dioxide[J]. App. Catal. B,2003,45(4):293300
    [115] Chusaksri S, Lomda J, Saleepochn T, et al. Photocatalytic degradation of3,4dichlorophenylurea in aqueous gold nanoparticles modified titanium dioxidesuspension under simulated solarlight[J]. Hazard. M.,2011,190(13):930937
    [116] Reiser R, Belasco I, Rhodes R, Identification of metabolites of hexazinone by massspectrometry, J. Biomed. Mass.,1983,10:581585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700