基于矩阵摄动理论的微电网小扰动稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将分布式电源以微电网形式接入电网并网运行,并与之互为支撑,是发挥分布式电源效能的有效方式。分布式电源渗透率的逐步提高对微电网的运行提出了更高的要求,微电网的小扰动稳定性是本文关注的重点。本文主要工作如下:
     (1)建立了微电网中通过逆变器/发电机并网的两类典型的分布式电源的小扰动稳定性分析模型,并对逆变器三种典型控制方式下的小扰动分析模型进行了分析。在小扰动稳定性计算中,根据微电网小扰动分析模型的稀疏性和分块性,采用改进十字链表法构建了微电网系统的状态矩阵。在此基础上,阐述了微电网特征值分布的广域性和区域性,以及导致这种分区域现象的影响因素。
     (2)针对特征值和特征向量灵敏度难以准确求解的问题,提出了基于矩阵摄动理论的微电网中特征值和特征向量灵敏度求解的方法。系统性地介绍了矩阵摄动理论,并对微电网系统的状态矩阵进行参数摄动分析。在此基础上分析了微电网中孤立特征值和和重特征值情况下特征值及其所对应特征向量对控制参数的灵敏度计算。此方法具有较高的计算精度,既避免了解析法求解时复杂灵敏度计算公式的推导,又避免了扰动法求解时系统状态矩阵的重复形成和特征值问题的反复求解。
     (3)提出了基于矩阵摄动理论的微电网中逆变器下垂系数协调优化设计的方法,用于提高微电网的小扰动稳定性。从矩阵参数摄动的角度对逆变器下垂系数进行了详细深入的摄动分析,得出了下垂系数对微电网系统状态矩阵的影响形式和影响程度,分析了产生该种影响的不同因素。提出了下垂系数协调优化的目标函数和算法流程,其中目标函数采用考虑多运行场景的综合目标函数,同时涵盖系统小扰动稳定性、阻尼比、稳定裕度等方面的要求,算法流程中分析了矩阵摄动理论如何与序列二次规划算法相结合以实现参数协调优化。算例分别从参数优化分析、时域仿真验证和参数鲁邦性分析等方面验证了矩阵摄动理论在微电网参数优化设计中的有效性、所提参数优化目标函数的可行性和下垂系数协调优化的鲁棒适应性。
Microgrid has attracted increasing attention as an effective means of integratingdistributed generation units into the power systems. The increasing penetration ofdistributed generation units has put forward higher demand for the microgrid stableoperation. This thesis mainly focuses on the small signal stability analysis of amicrogrid. The major work can be summarized as follows:
     (1) Small signal models of distributed generation units are analyzed based on twodifferent grid-connection types, namely inverter-interfaced distributed generationunits and generator-interfaced distributed generation units. Besides, a comparativeanalysis is made on the small signal models of three typical controls ininverter-interfaced distributed generation units. Taking into account the characteristicsof sparsity and partition of the small signal models, a sparse filling and addressingapproach for constructing state matrix based on improved cross chain table method isadopted in the small signal stability calculation. On these basises, the extensive andregional distribution characteristics of eigenvalues in a microgrid are then illustratedin detail, revealing the corresponding influence factors as well.
     (2) A matrix perturbation based approach is proposed for the sensitivity solutionand analysis of eigen-solutions in a microgrid. Matrix perturbation theory isintroduced systematically, based on which parameter perturbations are utilized toanalyze the construction characteristics of the state matrix. The sensitivities ofeigenvalues and eigenvectors to control variables are then obtained and analyzedaccording to different spatial distribution characteristics of eigenvalues, namelydistinct eigenvalues and multiple eigenvalues. Through the proposed approach, thesensitivities of eigen-solutions can be calculated with satisfactory accuracy. Not onlyare the complex derivations of sensitivity formulas concerned in analytical methodavoided, but also repeated solutions of eigenvalue problem involved in numericaldisturbance method is no longer required.
     (3) In order to improve the small signal stability of a microgrid, a novel approachbased on matrix perturbation theory is proposed for the coordinated optimization ofthe droop coefficients in inverter controllers of a microgrid. Rigorous parameterperturbation analysis is applied to the droop coefficients of inverter controllers toidentify the manner and degree of their influence on the system state matrix. Furthermore, the influence factors are investigated as well. An eigenvalue-basedobjective function is proposed, aimed at ensuring the stability of the system,enhancing the damping characteristics, and maintaining the stability margin for a widerange of operating conditions. In the parameter-optimization process, matrixperturbation theory combining with sequential quadratic programming is applied insolving the minimization problem with constraints. In the examples, theparameter-optimization process, the time-domain simulations, and the robustnessanalysis of the optimized coefficients are carried out and analyzed in detail.Theoretical analysis and evaluation results have confirmed the effectiveness of theoptimization approach, the feasibility of the objective function, and the robustness ofthe optimized parameters.
引文
[1]王成山,李鹏.分布式发电、微电网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23.
    [2]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,(12):53-56.
    [3]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.
    [4] European Research Project.IRED-Integration of Renewable Energy Sourcesand Distributed Generation into the European ElectricityGrid[R].http://www.ired-cluster.org/.
    [5] U.S.EPRI.Renewable Energy Technical Assessment Guide-TAG-RE.CA:2005.1010407.
    [6] U.S.EPRI.Distributed Energy Resources:Current Landscape and a Roadmapfor the Future[R].CA:2004.1008415.
    [7] LOPES J A P,HATZIARGYRIOU N,MUTALE J,et al.Integratingdistributed generation into electric power systems: a review of drivers,challenges and opportunities[J].Electric Power Systems Research,2007,77(9):1189-1203.
    [8] European Commission. GREEN PAPER on A European Strategy forSustainable,Competitive and Secure Energy.COM(2006)105final,2006.
    [9] DRIESEN J,KATIRAEI F.Design for distributed energy resources[J].IEEEPower and Energy Magazine,2008,6(3):30-40.
    [10] ACKERMANN T,ANDERSSON G,SODER L.Distributed generation: adefinition[J].Electric Power Systems Research,2001,57(3):195-204.
    [11] THOMAS ACKERMANN, G RAN ANDERSSON, LENNARTS DER.Distributed generation: a definition[J].Electric Power SystemsResearch,2001,57(3):195-204.
    [12] PEPERMANS G,DRIESEN J,HAESELDONCKX D,et al.Distributedgeneration: definition,benefits and issues[J].Energy Policy,2005,33(6):787-798.
    [13] REZA M,SCHAVEMAKER P H,SLOOTWEG J G,et al.Impacts ofdistributed generation penetration levels on power systems transientstability[C].Power Engineering Society General Meeting,2004IEEE,June.
    [14]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [15]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [16] D.Herman,Investigation of the Technical and Economic Feasibility ofMicro-Grid-Based Power Systems,Final Report,2001,Electric PowerResearch Institute,USA.
    [17]蔡声霞,王守相,王成山,等.智能电网的经济学视角思考[J].电力系统自动化,2009,(20):13-16,87.
    [18]王成山,高菲,李鹏,等.可再生能源与分布式发电接入技术——欧盟研究项目述评[J].南方电网技术,2008,2(6):1-6.
    [19]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
    [20] STEVENS J,VOLLKOMMER H,KLAPP D.CERTS MicroGrid systemtests[C].IEEE Power Engineering Society General Meeting,USA,2007,p4275559.
    [21] LASSETER R H,AKHIL A,MARNAY C,et al.The CERTS microgridconcept, white paper on integration of distributed energyresources.[2002-4].http://certs.lbl.gov.
    [22] LASSETER R H,ETO J H,SCHENKMAN B,et al.CERTS microgridlaboratory test bed[J].IEEE Transactions on Electron Devices,2011,26(4):325-332.
    [23] LASSETER R H,PAIGI P.Microgrid:A conceptual solution[C].2004IEEE35th Annual Power Electronics Specialists Conference,Aachen,Germany,2004:4285-4290.
    [24]5th and6th Framework Programme for Research and TechnologicalDevelopment of the European Commission, MicroGrids, and MoreMicroGrids[R].http://MicroGrids.power.ece.ntua.gr/.
    [25]鲁宗相,王彩霞,闵勇等.微电网研究综述[J].电力系统自动化,2007,31(19):100-106.
    [26] MOROZUMI S.Overview of Microgrid Research and Development Activitiesin Japan[C].International Symposium of Microgrids,Montreal,2006,June.
    [27] Milborrow D.Goodbye gas and squaring up to coal [J].Wind power monthlynews magazine,2005,21(1):31-35.
    [28] HATZIARGYRIOUSN D,MELIOPOULOS A P S.Distributed energy sources:Technical challenges[C].IEEE Power Engineering Society Winter Meeting,USA,2002,2:1017-1022.
    [29] LASSETER R H.MicroGrids[C].IEEE Power Engineering Society WinterMeeting,USA,2002,1:305-308.
    [30] ROBERT A P, JOSEPH B G, PIAGI P. Design and Testing of anInverter-Based Combined Heat and Power Module for Special Application ina Micro Grid[C].IEEE Power Engineering Society General Meeting, USA,2007,p4275471.
    [31] BINDUHEWA P J,RENFREW A C,BARNES M.MicroGrid powerelectronics interface for photovoltaics[C]. IET Conference on PowerElectronics,Machines and Drives,UK,2008:260-264.
    [32] BICZEL P,JASINSKI A,LACHECKI J.Power Electronic Devices in ModernPower Systems[C].The International Conference on "Computer as a Tool",Poland,2007:1586-1586.
    [33] MARNAY C,ROBIO F J,SIDDIQUI A S.Shape of the microgrid[C].IEEEPower Engineering Society Winter Meeting,USA,2001,1:150-153.
    [34] ASHABANI S M, MOHAMED Y I. A flexible control strategy forgrid-connected and islanded microgrids with enhanced stability usingnonlinear microgrid stabilizer[J].IEEE Transactions on Smart Grid,2012,3(3):1291-1301.
    [35] VANDOORN T L,MEERSMAN B,DEGROOTE L,et al.A controlstrategy for islanded microgrids with dc-link voltage control[J]. IEEETransactions on Power Delivery,2011,26(2):703-713
    [36] POGAKU N,PRODANOVIC′M,GREEN T C.Modeling,analysis andtesting of autonomous operation of an inverter-based microgrid[J].IEEETransactions on Power Electronics,2007,22(2):613-625.
    [37] LI Y W, KAO C N. An accurate power control strategy forpower-electronics-interfaced distributed generation units operating in alow-voltage multibus microgrid[J].IEEE Transactions on Power Electronics,2009,24(12):2977-2988.
    [38] JAYAWARNA N,BARNES M,JONES C,et al.Operating MicroGrid EnergyStorage Control during Network Faults[C].IEEE International Conference onSystem of Systems Engineering,USA,2007:479-485.
    [39] SAO C K,LEHN P W.Intentional islanded operation of converter fedmicrogrids[C].IEEE Power Engineering Society General Meeting, Canada,2006:1-6.
    [40] Task Force on Terms&Definitions, System DynamicPerformanceSub-committee, Power System Engineering Committee,“Proposed Terms and Definitions for Power System Stability” IEEETransactions on Power Apparatusand Systems,Jul.1982,Vol.PAS-101,No.7,pp.1894-1897.
    [41]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.135-180.
    [42]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [43]吴复霞,吴浩,韩祯祥,等.电力系统非线性模式分析方法的比较[J].中国电机工程学报,2007,27(34):19-25.
    [44]余贻鑫,贾宏杰,王成山.电力系统中的混沌现象与小扰动稳定域[J].中国科学E辑,2001,31(5):431-441.
    [45]贾宏杰.电力系统小扰动稳定域的研究[D].天津:天津大学,2001.
    [46]孙强.电力系统小扰动稳定域及低频振荡[D].天津,天津大学,2007.
    [47] KUNDUR P.电力系统稳定与控制[M].北京:中国电力出版社,2001.
    [48] UCHIDA,NAOYUKI.Development of an Eigenvalue Estimation Method(Mode Coupling Method) for Small Signal Stability Analysis of PowerSystem[J].IEEJ Transactions on Power and Energy,2008,128(11):1359-1363.
    [49] WANG Y,LU Z X,MIN Y,et al.Small signal analysis of microgrid withmultiple micro sources based on reduced order model in islandingoperation[C].2011IEEE Power and Energy Society General Meeting,Detroit,MI,USA,2011:1-9.
    [50] MIAO Z X,DOMIJAN A,FAN L L.Investigation of microgrids with bothinverter interfaced and direct ac-connected distributed energyresources[J].IEEE Transactions on Power Delivery,2011,26(3):1634-1642.
    [51] SUN Y Z,WANG L X.LI G J,et al.A review on analysis and control of smallsignal stability of power systems with large scale integration of windpower[C].2010International Conference on Power System Technology,October,2010,1(6):24-28.
    [52] COELHO E A A,CORTIZO P,GRACIA P F D.Small signal stability forparallel-connected inverters in stand-alone ac supply systems[J]. IEEETransactions on Industry Applications,2002,38(2):533-542.
    [53] JEROSOLIMSKI M,LEVACHER L.A new method for fast calculation ofJacobin matrices: automatic differentiation for power systemsimulation[J].IEEE Transactions on Power Apparatus and Systems,1994,9(2):700-706.
    [54]王丹.分布式发电系统建模及稳定性仿真[D].天津大学,2009.
    [55] KIM J,GUERRERO J M,RODRIGUEZ P,et al.Mode Adaptive DroopControl With Virtual Output Impedances for an Inverter-Based Flexible ACMicrogrid[J].IEEE Transactions on Power Electronics,2011,26(3):289-701.
    [56] GUERRERO J M,VICU A L G,MATAS J,et al.A Wireless Controller toEnhance Dynamic Performance of Parallel Inverters in Distributed GenerationSystems[J]. IEEE Transactions on Power Electronics,2004,19(5):12055-1213.
    [57] VASQUEZ J C,GUERRERO J M,LUNA A,et al.Adaptive Droop ControlApplied to Voltage-Source Inverters Operating in Grid-Connected andIslanded Modes[J].IEEE Transactions on Industrial Electronics,2009,56(1):4088-4096.
    [58] MAJUMDER R,CHAUDHURI B,GHOSH A,et al.Improvement ofStability and Load Sharing in an Autonomous Microgrid UsingSupplementary Droop Control Loop[J]. IEEE Transactions on PowerSystems,2010,25(2):796-808.
    [59] MOHAMED Y A-R I,RADWAN A A.Hierarchical Control System forRobust Microgrid Operation and Seamless Mode Transfer in ActiveDistribution Systems[J].IEEE Transactions on Smart Grid,2011,2(2):352-362.
    [60] MOHAMED Y A-R I,EL-SAADANY E F.Adaptive Decentralized DroopController to Preserve Power Sharing Stability of Paralleled Inverters inDistributed Generation Microgrids[J]. IEEE Transactions on PowerElectronics,2008,23(6):2806-2816.
    [61] BARKLUND E,POGAKU N,PRODANOVIC M,et al.Energy Managementin Autonomous Microgrid Using Stability-Constrained Droop Control ofInverters[J]. IEEE Transactions on Power Electronics,2008,23(5):2346-2352.
    [62] DIAZ G, GONZALEZ-MORAN C, GOMEZ-ALEIXANDRE J, etal.Scheduling of droop coefficients for frequency and voltage regulation inisolated microgrids[J].IEEE Transactions on Power Systems,2010,25(1):489-496.
    [63] TIMBUS A,LISERRE M,TEODORESCU R,et al.Evaluation of CurrentControllers for Distributed Power Generation Systems[J].IEEE Transactionson Power Electronics,2009,24(3):654-664.
    [64] KATIRAEI F,IRAVANI M R.Power Management Strategies for a MicrogridWith Multiple Distributed Generation Units[J].IEEE Transactions on PowerSystems,2006,21(4):1821-1831.
    [65] CHUNG IL-Y,LIU W X,CARTES D A,et al.Control methods ofinverter-interfaced distributed generators in a microgrid system[J].IEEETransactions on Industry Applications,2010,46(3):1078-1088.
    [66] HASSAN M A,ABIDO M A.Optimal Design of Microgrids in Autonomousand Grid-Connected Modes Using Particle Swarm Optimization[J].IEEETransactions on Power Electronics,2011,26(3):755-769.
    [67]林今,李国杰,孙元章,等.双馈风电机组的小信号分析及其控制系统的参数优化电力系统自动化[J].电力系统自动化,2009,33(5):86-95.
    [68]王中,孙元章,李国杰,等.双馈风力发电矢量控制电流环参数特性分析电力系统自动化[J].电力系统自动化,2008,32(21):91-96.
    [69] HUGHES F M,ANAYA-LARA O,JENKINS N,et al.A power systemstabilizer for DFIG-based wind generation[C].IEEE Transactions on PowerSystems,2006,21(2):763-772.
    [70] VENKATARAMANAN G,ILLINDALA M.Small Signal Dynamics ofInverter Interfaced Distributed Generation in a Chain-Microgrid[C].IEEEPower Engineering Society General Meeting,June,2007,1(6):24-28.
    [71] GUERRERO J M, HANG L J, UCEDA J. Control of distributeduninterruptible power supply systems[J].IEEE Transactions on IndustrialElectronics,2008,55(8):2845-2859.
    [72] MAJUMDER R,CHAUDHURI B,GHOSH A,et al.Improvement of stabilityand load sharing in an autonomous microgrid using supplementary droopcontrol loop[J].IEEE Transactions on Power Systems,2010,25(2):796-808.
    [73] CHENGSHAN W,YAN L,KE P,BOWEN H,ZHEN W,CHONGBOS.Coordinated optimal design of inverter controllers in a microgrid withmultiple distributed generation units[J]. IEEE Transactions on PowerSystems.
    [74]肖朝霞.微网控制及运行特性分析[D].天津大学,2009.
    [75] GüNEL S,ZORAL E Y.Parametric history analysis of resonance problemsvia step-by-step eigenvalue perturbation technique[J].IET Microwaves,Antennas&Propagation,2010,4(4):466-476.
    [76] CHEN S H. Matrix Perturbation Theory in Structural DynamicDesign[D].Beijin:Science Press,2007,132-137.
    [77] ASSEM S D.Advanced Matrix Theory for Scientists and Engineers[D].Kent:Abacus Press,1982,205-215.
    [78] WILKINSON J H.The Algebraic Eigenvalue Problem[D].Landon:OxfordUniversity Press,1965,68-70.
    [79] RAYLEIGH B.Theory of Sound.New York:Dover,1945.
    [80] BALDWIN J F,HUTTON S G.Natural modes of modified structures.AIAAJournal,1984,23(11):1737-1743.
    [81] SUTTER T R.Comparison of several methods for calculating vibration modeshape derivatives.AIAA Journal,1988,26(11):1506-1511.
    [82] LIU J J, FENG X G,LEE F C,et al.Stability margin monitoring for DCdistributed power systems via perturbation approaches[J]. IEEE Transactionson Power Electronics,2003,18(6):1254-1261.
    [83] CHEN J,FU P L,NICULESCU S-I.An eigenvalue perturbation stabilityanalysis approach with applications to time-delay and polynomially dependentsystems[C].WCICA2008.7th World Congress on Intelligent Control andAutomation,June,2008,307(312):25-27.
    [84] MIRMOMENI M,LUCAS C,ARAABI B N,et al.Recursive spectralanalysis of natural time series based on eigenvector matrix perturbation foronline applications[C].IET Signal Processing,September,2011,5(6):515-526.
    [85] JETTO L,ORSINI V.An eigenvalue perturbation result for stability boundwith respect to biased structured perturbations[C]. MED '06.14thMediterranean Conference on Control and Automation,June,2006,1(6):28-30.
    [86] GUSTAVSEN B.Fast Passivity Enforcement for Pole-Residue Models byPerturbation of Residue Matrix Eigenvalues[C].IEEE Transactions on PowerDelivery,October,2008,23(4):2278-2285.
    [87] GUSTAVSEN B.Fast Passivity Enforcement for S-Parameter Models byPerturbation of Residue Matrix Eigenvalues[J]. IEEE Transactions onAdvanced Packaging,2010,33(1):257-265.
    [88] SMITH R S.Eigenvalue perturbation models for robust control[J].IEEETransactions on Automatic Control,1995,40(6):1063-1066.
    [89] DARREN M, BAGNALL, BORELAND M. Photovoltaictechnologies[J].Energy Policy,2008,36:4390-4396.
    [90] GOW J A,MANNING C D.Development of a photovoltaic array model foruse in power-electronics simulation studies[J]. IEE Proceedings-ElectricPower Applications,1999,146(2):193-200.
    [91] CHEKNANE A,HILAL H S,DJEFFAL F,et al.An equivalent circuitapproach to organic solar cell modeling[J].Microelectronics Journal,2008,39:1173-1180.
    [92] MOLINA M G,MERCADO P E.Modeling and Control of Grid-connectedPhotovoltaic Energy Conversion System used as a DispersedGenerator[C].Transmission and Distribution Conference and Exposition,Latin America,2008:1-8.
    [93] KIM S-K,JEON J-H,CHO C-H,et al.Modeling and simulation of agrid-connected PV generation system for electromagnetic transientanalysis[J].Solar Energy,2009,83(5):664-678.
    [94]赵争鸣,刘政建,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [95] CHENNI R,MAKHLOUF M,KERBACHE T,et al.A detailed modelingmethod for photovoltaic cells[J].Energy,2007,32:1724-1730.
    [96] ESRAM T,CHAPMAN P L.Comparison of Photovoltaic Array MaximumPower Point Tracking Techniques[J]. IEEE Transaction on EnergyConversion,2007,22(2):439-499.
    [97] KANELLOS F D, TSOUCHNIKAS A I, HATZIARGYRIOU ND. Micro-grid simulation during grid-connected and islanded modes ofoperation[C].International Conference on Power Systems Transients,Canada,June,19-23,2005.
    [98] PARK M,YU I-K.A novel real-time simulation technique of photovoltaicgeneration systems using RTDs[J].IEEE Transactions on Energy Conversion,2009,19(1):164-169.
    [99]吴理博,赵争鸣,刘建政,等.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报,2006,26(6):73-77.
    [100] MEZA C,BIEL D,NEGRONI J,et al.Boost-buck inverter variable structurecontrol for grid-connected photovoltaic systems with sensorlessMPPT[C].Proceedings of the IEEE International Symposium on IndustrialElectronics,Barcelona,Spain, June,20-23,2005:657-662.
    [101]刘凤君.现代逆变技术及应用.北京:电子工业出版社,2006:1-171.
    [102]刘凤君.正弦波逆变器.北京:科学出版社,2002:1-134.
    [103] TIMBUS A, TEODORESCU R, BLAABJERG F, et al. Linear andnonlinear control of distributed power generation systems[C]. Proceedings of2006IEEE Industry Applications Conference,Oct8-12,Tampa,USA,2006:1015-1023.
    [104] FREDE B,REMUS T,MARCO L,et al. Overview of control and gridsynchronization for distributed power generation systems[J]. IEEETransactions on Industrial Electronics,2006,53(5):1398-1409.
    [105] TIMBUS A, TEODORESCU R, BLAABJERG F, et al. Independentsynchronization and control of three phase grid converters[J]. PowerElectronics,Electrical Drives,Automation and Motion,2006,23(26):1246-1251.
    [106] KARIMI M, IRAVANI M. A method for synchronization of powerelectronic converters[J]. IEEE Transactions on Power Systems,2004,19(3):1263-1270.
    [107] ESRAM T,CHAPMAN P L.Comparison of Photovoltaic Array MaximumPower Point Tracking Techniques[J]. IEEE Transaction on EnergyConversion,2007,22(2):439-499.
    [108] CIOBOTARU M, TEODORESCU R, BLAABJERG F. Control ofsingle-stage single-phase PV inverter[C], European Conference on PowerElectronics and Applications,Dresden,Germany,2005:1-10.
    [109] ERIKA T,HOLMES D. Grid current regulation of a three-phase voltagesource inverter with an LCL input filter[J]. IEEE Transactions on PowerElectronics,2003,18(3):888-895.
    [110] HORNIK T,ZHONG Q. Control of grid-connected DC-AC converters indistributed generation experimental comparison of different schemes[J].Compatibility and Power Electronics,2009,20(22):271-278.
    [111]王成山,李琰,彭克,分布式电源并网逆变器典型控制方法综述,电力系统及其自动化学报,2012,24(2):12-20.
    [112]梁有伟,胡志坚,陈允平,等.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75,88.
    [113] KRAMER W,CHAKRABORTY S,KROPOSKI B,et al.Advancedpower electronic interfaces for distributed energy systems[M]. USA:National Renewable Energy Laboratory,2008.
    [114] WINGELAAR P J H,DUARTE J L,HENDRIX M A M.Dynamiccharacteristics of PEM fuel cells[C].IEEE Power Electronics SpecialistsConference,June,16,2005:1635-1641.
    [115] KONG X,KHAMBADKONE A M,THUM S K.A hybrid model withcombined steady-state and dynamic characteristics of PEMFC fuel Cellstack[J].Digital Object Identifier,2005,3(2-6):1618-1625.
    [116] SEDGHISIGARCHI K,FELIACHI A.Dynamic and transient analysis ofpower distribution systems with fuel Cells-part I fuel-cell dynamicmodel[J]. IEEE Transactions on Energy Conversion,2004,19(2):423-428.
    [117] LI Y,CHOI S,RAJAKARUNA S.An analysis of the control and operationof a solid oxide fuel-cell power plant in an isolated system[J]. IEEETransactions on Energy Conversion,2005,20(2):381-387.
    [118] KHAN M J,LQBAL M T.Modeling and analysis of electro-chemical,thermaland reactant flow dynamics for a PEM fuel cell system[J].Fuel Cells,2005,5(4):463-475.
    [119] NA W,GOU B.A thermal equivalent circuit for PEM fuel cell temperaturecontrol design[C].IEEE International Symposium on Circuits and Systems,May,18-26,2008:2825-2828.
    [120] WANG C,NEHRIR M H.A physically based dynamic model for solid oxidefuel cells[J].IEEE Transactions on Energy Conversion,2007,22(4):887-897.
    [121] JURADO F,VALVERDE M,CANO A.Effect of a SOFC plant on distributionsystem stability[J].Journal of Power Sources,2004,129(1):170-179.
    [122] MIAO Z,CHOUDHRY M A,KLEIN R L,et al.Study of a fuel cell powerplant in power distribution system-Part I:dynamic model[C], PowerEngineering Society General Meeting,America,June,10,2004,6(2):2220-2225.
    [123] PADULLES J,AULT G.W,MCDONALD J R.An integrated SOFC plantdynamic model for power systems simulation[J].Journal of Power Sources,2000,86(1-2):495-500.
    [124] MANN R F,AMPHLETT J C,HOOPER M A I,et al.Development andapplication of a generalised steady-state electrochemical model for a PEM fuelcell[J].Journal of Power Sources,2000,86(1-2):173-180.
    [125] MENG N,LEUNG M K H,LEUNG D Y C.Parametric study of solid oxidefuel cell performance[J].Energy Conversion and Management,2007,48(5):1525-1535.
    [126] LI Y H,RAJAKARUNA S,CHOI S S.Control of a solid oxide fuel cellpower plant in a grid-connected system[J].IEEE Transactions on EnergyConversion,2007,22(2):405-413.
    [127] SALAMEH Z M,CASACCA M A,LYNCH W A.A Mathematical Model forLead-Acid Batteries[J].IEEE Transactions on Energy Conversions,1992,7(1):93-97.
    [128] CHAN H L,SUTANTO D.A new battery model for use with battery energystorage systems and electric vehicles power systems[C].Power EngineeringSociety Winter Meeting,2000,1:470-475.
    [129] TREMBLAY O,DESSAINT L-A,DEKKICHE A-I.A Generic Battery Modelfor the Dynamic Simulation of Hybrid Electric Vehicles[C].Vehicle Powerand Propulsion Conference,Canada,September,9-12,2007:284-289.
    [130] SOORI P K,SHETTY S C,CHACKO S.Application of super capacitorenergy storage in microgrid system[C].2011IEEE GCC Conference andExhibition,United Arab Emirates, February,19-22,2011:581-584.
    [131] PEAS LOPES J A,MOREIRA C L,MADUREIRA A G.Defining controlstrategies for MicroGrids islanded operation[J].IEEE Transactions on PowerSystems,2006,21(2):916-924.
    [132] BRABANDERE K,VANTHOURNOUT K,DRIESEN J,et al. Control ofMicroGrids[C]. Proceedings of2007IEEE Power Engineering SocietyGeneral Meeting,Jun24-28,Tampa,USA,2007:1-7.
    [133] IOV F,HANSENA D,S RENSENP,et al.Wind Turbine Blockset inMatlab/Simulink[D].Aalborg University,March,2004.
    [134]刁瑞盛,徐政,常勇.几种常见风力发电系统的技术比较[J].能源工程,2006,(2):20-25.
    [135] ULLAH N R,THIRINGER T.Variable speed wind turbines for powersystem stability enhancement[J].IEEE Transactions on Energy Conversion,2007,22(1):52-60.
    [136] NICHOLAS W,MILLER,WILLIAM W,et al.Dynamic Modeling Of GE1.5And3.6Mw Wind Turbine-Generators For Stability Simulations[C].IEEEPower Engineering Society General Meeting,July,13-17,2003:1977-1983.
    [137] MILLER N W,PRICE W W,SANCHEZ-GASCA J J.Dynamic modeling ofge1.5and3.6wind turbine-generators [C].IEEE Power Engineering SocietyGeneral Meeting,October,27,2003.
    [138] DIgSILENT GmbH,Manuals,Version14.0,DIgSILENT PowerFactory,2008.
    [139]高毅,王成山,李继平.改进十字链表的稀疏矩阵技术及其在电力系统仿真中的应用[J].电网技术,2011,(05):33-39.
    [140]王成山,王丹,郭金川,等.基于网式链表-双层结构的电力系统时域仿真算法[J].电力系统自动化,2008,32(16):6-10.
    [141]高速缓冲存储器的作用和工作原理
    [EB/OL].[2009-07-30]. http://tech.watchstor.com/storage-systems-114478.htm.
    [142] LASSETER R H. Control and design of microgrid components[R]. PSERC,2006.
    [143] CHENGSHAN W,YAN L,KE P,ZHEN W,CHONGBO S,KAI Y.Matrixperturbation based approach for sensitivity analysis of eigen-solutions in amicrogrid, Science China Technological Sciences.2013,56(1):237-244.
    [144]罗键.系统灵敏度理论导论.北京:科学出版社,1990.
    [145]苗峰显,郭志忠.灵敏度方法在电力系统分析与控制中的应用综述.继电器,2007,35(15):72-76.
    [146]陈小山.矩阵扰动若干问题研究[D].华南师范大学,2002.
    [147]刘济科,徐伟华,蔡承武.一种通用的复模态矩阵摄动法[J].应用数学和力学,2001,(03):314-320.
    [148]徐伟华,刘济科.阻尼系统振动分析的复模态矩阵摄动法[J].中山大学学报(自然科学版),1998,(04):51-55.
    [149]刘济科,张宪民.广义特征值摄动问题的一种通用方法[J].西北工业大学学报,1995,(03):336-339.
    [150]盛集明,官东,刘于敏.摄动矩阵特征值的近似计算[J].荆门职业技术学院学报,2000,14(06):5-7,94.
    [151]吕振华,冯振东,方传流.线性特征值问题的高精度矩阵摄动法[J].振动工程学报,1990,3(1):40-46.
    [152]吕振华.重特征值及其特征向量摄动重分析方法探讨[J].振动工程学报,1993,04:327-335.
    [153]赵猛,李平,张远志.摄动矩阵中摄动元素的最大摄动界研究[J].甘肃科学学报,2003,(1):81-84.
    [154]张义民,陈力奋,闻邦椿.振动系统特征值问题的矩阵灵敏度分析[J].振动、测试与诊断,2002,(1):26-30,71.
    [155]彭克,王成山,李琰等.典型中低压微电网算例系统设计[J].电力系统自动化,2011,35(18):31-35.
    [156] XUE Q,WANG H X. Local reconstruction method for low-energy gammaraycomputed tomography system. Journal of Instrumentation,2011,6:1-12.
    [157] L. Yang, Z. Xu, J. stergaard, Z. Y. Dong, K. P. Wong and X. Ma,“Oscillatory stability and eigenvalue sensitivity analysis of a DFIG windturbine system,” IEEE Trans. Energy Conversion, vol.26, no.1, pp.328–339,Mar.2011.
    [158] ANTONIOU A,LU W S.Practical optimization:algorithms and engineeringapplications[D].New York:Springer Science+Business Media,2007:506-508.
    [159] PAPATHANASSIOU S, HATZIARGYRIOU N, STRUNZ K. Abenchmark low voltage microgrid network.2005CIGRE Symposium PowerSystems with Dispersed Generation,2005:1-8.
    [160] TULADHAR A,JIN H,UNGER T,et al.Control of parallel inverters indistributed AC power systems with consideration of line impedanceeffect[J].IEEE Transactions on Industry Applications,2000,36(1):131-138.
    [161] IEEE Standard for Interconnecting Distributed Resources with Electric PowerSystems,IEEE Standard1547-2003,Jul,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700