管线型高剪切混合器流体力学与返混特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高剪切混合器是一种新型过程强化设备,局部超高的湍动和剪切作用使其具有强化传递限制的快速化学反应过程的巨大潜质。本文对中试规格管线型高剪切混合器流体力学性能及返混特性进行了实验测定和计算流体力学模拟,对于该类新型化学反应器的设计、选型和优化具有指导意义。
     首先,利用激光多普勒测速仪测定了中试规格、双圈超细齿管线型高剪切混合器(定子后弯斜齿)外圈定子射流区的径向和切向速度分量。采用扭矩-转速传感器测定了高剪切混合器的功率消耗。对混合器内单相流动过程进行了计算流体力学模拟,考察了不同湍流模型和差分格式对预测精度的影响。对于高剪切混合器内高度三维化、强烈旋转、壁面约束和各向异性流动,大涡模拟比标准k-ε模型能更准确其内部平均流场和二次流动特征。在混合器的定-转子区域、外圈定子射流区以及转子紧固螺母附近的射流区,流动都明显偏离各向同性湍流。
     其次,基于非理想脉冲示踪-响应实验与去卷积算法得到超细齿管线型高剪切混合器的本征停留时间分布,并采用大涡模拟与组分输运相结合的方法对其进行了预测。实验与模拟的停留时间分布曲线在响应峰出峰位置以及肩峰等主体特征上相似,各操作条件下平均停留时间吻合良好,表明大涡模拟与组分输运相结合的方法准确可靠。高剪切混合器接近于全混流,其内部存在明显的滞留区。增加转速或流量都有助于提高混合度并能消除微弱的沟流,但是可能产生增强的内部环流。齿合管线型高剪切混合器的几何参数对其返混特性有重要影响。具有较大剪切间隙宽度、较大齿尖-基座间距、单圈定-转子或者直齿型定子的高剪切混合器,可能会存在沟流、短路和/或流体夹带的弊端。
     最后,实验测定了不同操作模式下定-转子齿合型与叶片-网孔型高剪切混合器在不同转速、流量和流体粘度下的扬程、泵效率、输入轴功及功率曲线,建立了弗鲁德数校正的Kowalski功耗预测模型。两种混合器在低转速下泵送能力均较差,增加转速后叶片-网孔型高剪切混合器的泵送性能优于齿合型。无转子时,流体流经两种混合器均产生压力降;处理不同粘度的工作流体时,两种混合器中定子的局部阻力相近。在湍流区相同流量准数下,超细齿高剪切混合器比类似规格的双圈细网孔Silverson能多输出超过50%的净功率。泵送模式单圈叶片-网孔型高剪切混合器与双圈标准网孔Silverson的湍流功耗相近;完全自吸模式单圈叶片-网孔型与双圈细网孔Silverson的湍流功耗相近。
As a novel type of process intensification equipment, high shear mixers (HSMs)have great potential to intensify chemical reactions with fast inherent reaction ratesbut relatively slow mass transfer, due to their locally intense turbulence and shear.Hydrodynamics and backmixing properties of pilot-scale in-line HSMs, instructive forthe design, selection and optimization of these novel chemical reactors, were bothexperimentally and numerically investigated in this thesis.
     Firstly, the radial and tangential velocities in the jet flow region of a pilot-scalein-line HSM with single stage, double rows of ultra-fine teeth (backward inclinedstator teeth) were measured using LDA. Power consumptions of the mixer wereinvestigated by the torque based method. The single phase flow field in the HSM wasestimated through CFD simulations for the assessments of the predictive capabilitiesof different turbulence models and discretization schemes. It is found that, for thehighly three-dimensional, strongly rotating, wall-bounded and anisotropic turbulentflow in the HSM, LES captures more accurately the mean and secondary flowcharacteristics than the standard k-ε turbulence model. Obvious deviation fromisotropic turbulence is observed in the rotor-stator region, as well as the jet regionsnear the outer stator and the clamp nut.
     Secondly, the intrinsic RTDs of the ultra-fine teethed in-line HSM were obtained bythe stimulus-response experiments with imperfect tracer pulse and a deconvolutiontechnique. The LES and combined species transport method was adopted for the RTDpredictions. The experimental and simulated RTD curves share overall features in theresponse peaks, and the predicted mean residence times approximate to the measuredvalues, indicating reliable CFD predictions of the RTDs. Results show that the teethedin-line HSM behaves like a mixed flow reactor with stagnant regions. The increase ofeither the rotor speed or the flowrate leads to improvement of the mixedness andelimination of the trivial channeling defect, but also increase of internal recirculation.Geometric parameters of the teethed in-line HSM have significant influences on theRTDs. The defects of channeling, short circuiting and fluid re-entrainment are resultedfrom inefficient geometric designs of HSMs, such as those with large shear gapwidths, large tip-to-base clearances, single rows of rotor and stator teeth, or axiallystraight stator teeth.
     Lastly, the pumping heads, pumping efficiencies, input shaft powers and powercurves were measured under both the pump-fed and free-pumping modes for therotor-stator teethed and blade-screen in-line HSMs under different rotor speeds,flowrates and fluid viscosities. The power number of both units with the bearing losssubtracted can be correlated by the Froude number modified Kowalski’s powerconsumption model. Both HSMs do not pump well at lower rotor speeds. While athigher rotor speeds, better pumping capacity is observed for the blade-screen unitover the teethed unit. Both units demonstrate pressure drops when operated withoutthe rotors attached. Local resistances from the teethed and screen stators areapproximate at different fluid viscosities. In the fully turbulent flow region with thesame flow number, the dual-row ultra-fine teethed HSM draws over50%net power tofluid than the Silverson with dual fine screens. The single-row blade-screen HSM hasapproximate turbulent power draw to the dual standard Silverson under the pump-fedmode, and to the dual fine Silverson when operated under the free-pumping mode.
引文
[1] V.A. Atiemo-Obeng and R.V. Calabrese, Rotor-stator mixing devices, in: E.L. Paul,V.A. Atiemo-Obeng, and S.M. Kresta, Editors, Handbook of industrial mixing:Science and practice, John Wiley&Sons, New Jersey,2004, pp.479-505.
    [2] N.G. zcan-Ta kin, D. Kubicki, and G. Padron, Power and flow characteristics ofthree rotor-stator heads, The Canadian Journal of Chemical Engineering,89(2011)1005-1017.
    [3] S. Hall, M. Cooke, A. El-Hamouz, and A.J. Kowalski, Droplet break-up by in-lineSilverson rotor–stator mixer, Chemical Engineering Science,66(2011)2068-2079.
    [4] L. Doucet, G. Ascanio, and P. Tanguy, Hydrodynamics characterization ofrotor-stator mixer with viscous fluids, Chemical Engineering Research andDesign,83(2005)1186-1195.
    [5] K.J. Myers, M.F. Reeder, and D. Ryan, Power draw of a high-shear homogenizer,The Canadian Journal of Chemical Engineering,79(2001)94-99.
    [6] T. Sparks, Fluid mixing in rotor-stator mixers, Ph.D. Dissertation, CranfieldUniversity, Cranfield Bedfordshire,1996.
    [7] R.V. Calabrese, M.K. Francis, V.P. Mishra, and S. Phongikaroon, Measurementand analysis of drop size in a batch rotor-stator mixer, in: Proc.10th EuropeanConference on Mixing, Delft, The Netherlands,2000.
    [8] G.A. Padron, Effect of surfactants on drop size distributions in a batch, rotor-statormixer, Ph.D. Dissertation, University of Maryland, College Park, Maryland,2005.
    [9] J. Adler-Nissen, S.L. Mason, and C. Jacobsen, Apparatus for emulsion productionin small scale and under controlled shear conditions, Food and BioproductsProcessing,82(2004)311-319.
    [10] Y.-F. Maa and C. Hsu, Liquid-liquid emulsification by rotor/statorhomogenization, Journal of Controlled Release,38(1996)219-228.
    [11] K. Ouzineb, C. Lord, N. Lesauze, C. Graillat, P.A. Tanguy, and T. McKenna,Homogenisation devices for the production of miniemulsions, ChemicalEngineering Science,61(2006)2994-3000.
    [12] U. El-Jaby, M. Cunningham, T. Enright, and T.F.L. McKenna, Polymerisableminiemulsions using rotor-stator homogenisers, Macromolecular ReactionEngineering,2(2008)350-360.
    [13] M.K. Francis, The development of a novel probe for the in situ measurement ofparticle size distributions, and application to the measurement of drop size inrotor-stator mixers, Ph.D. Dissertation, University of Maryland, College Park,Maryland,1999.
    [14] S. Phongikaroon, Drop size distribution for liquid-liquid dispersions produced byrotor-stator mixers, Ph.D. Dissertation, University of Maryland, College Park,MD,2001.
    [15] R.V. Calabrese, M.K. Francis, K.R. Kevala, V.P. Mishra, G.A. Padron, and S.Phongikaroon, Fluid dynamics and emulsification in high shear mixers, in: Proc.3rd World Congress on Emulsions, Lyon, France,2002.
    [16] S. Phongikaroon, R.V. Calabrese, and K. Carpenter, Elucidation of polyurethanedispersions in a batch rotor-stator mixer, Journal of Coatings Technology andResearch,1(2004)329-335.
    [17] J.T. Davies, Drop sizes of emulsions related to turbulent energy dissipation rates,Chemical Engineering Science,40(1985)839-842.
    [18] A.R. Khopkar, L. Fradette, and P.A. Tanguy, Emulsification capability of a dualshaft mixer, Chemical Engineering Research and Design,87(2009)1631-1639.
    [19] J.-P. Gingras, P.A. Tanguy, S. Mariotti, and P. Chaverot, Effect of processparameters on bitumen emulsions, Chemical Engineering and Processing:Process Intensification,44(2005)979-986.
    [20] Y.N. Averbukh, A.O. Nikoforov, N.M. Kostin, and A.V. Korshakov, Computationof dispersion for emulsions formed in a rotor-stator unit, Journal of AppliedChemistry of the USSR,61(1988)396-397.
    [21] N. Thapar, Liquid-liquid dispersions from in-line rotor-stator mixers, Ph.D.Dissertation, Cranfield University, Cranfield Bedfordshire,2004.
    [22] K.R. Kevala, K.T. Kiger, and R.V. Calabrese, Single pass drop size distributionsin an inline rotor-stator mixer, in: APS Division of Fluid Dynamics58th AnnualMeeting (DFD05), Chicago, IL,2005.
    [23] S. Hall, M. Cooke, A.W. Pacek, A.J. Kowalski, and D. Rothman, Scaling up ofSilverson rotor-stator mixers, The Canadian Journal of Chemical Engineering,89(2011)1040-1050.
    [24] A.W. Pacek, C.C. Man, and A.W. Nienow, On the Sauter mean diameter and sizedistributions in turbulent liquid/liquid dispersions in a stirred vessel, ChemicalEngineering Science,53(1998)2005-2011.
    [25] C. Angle and H. Hamza, Predicting the sizes of toluene-diluted heavy oilemulsions in turbulent flow Part2: Hinze–Kolmogorov based model adapted forincreased oil fractions and energy dissipation in a stirred tank, ChemicalEngineering Science,61(2006)7325-7335.
    [26] G.W. Zhou and S.M. Kresta, Correlation of mean drop size and minimum dropsize with the turbulence energy dissipation and the flow in an agitated tank,Chemical Engineering Science,53(1998)2063-2079.
    [27] R.V. Calabrese, T.P.K. Chang, and P.T. Dang, Drop breakup in turbulentstirred-tank contactors Part I: Effect of dispersed-phase viscostiy, AIChE Journal,32(1986)657-666.
    [28] R. Shinnar, On the behaviour of liquid dispersions in mixing vessels, Journal ofFluid Mechanics,10(1961)259-275.
    [29] D.E. Leng and R.V. Calabrese, Immiscible liquid-liquid systems, in: E.L. Paul,V.A. Atiemo-Obeng, and S.M. Kresta, Editors, Handbook of industrial mixing:Science and practice, John Wiley&Sons, New Jersey,2004, pp.639-746.
    [30] M. Nishikawa, F. Mori, and S. Fujieda, Average drop size in a liquid-liquid phasemixing vessel, Journal of Chemical Engineering of Japan,20(1987)82-88.
    [31] F. Theron, N.L. Sauze, and A. Ricard, Turbulent liquid liquid dispersion inSulzer SMX mixer, Industrial&Engineering Chemistry Research,49(2010)623-632.
    [32] T. Lemenand, Droplets formation in turbulent mixing of two immiscible fluids ina new type of static mixer, International Journal of Multiphase Flow,29(2003)813-840.
    [33] G. Farzi, M. Mortezaei, and A. Badiei, Relationship between droplet size andfluid flow characteristics in miniemulsion polymerization of methyl methacrylate,Journal of Applied Polymer Science,120(2011)1591-1596.
    [34] J.-P. Gingras, L. Fradette, P. Tanguy, and J. Bousquet, Inline bitumenemulsification using static mixers, Industrial&Engineering Chemistry Research,46(2007)2618-2627.
    [35] R. Thakur, C. Vial, K. Nigam, E. Nauman, and G. Djelveh, Static mixers in theprocess industries-A review, Chemical Engineering Research and Design,81(2003)787-826.
    [36] P.D. Berkman and R.V. Calabrese, Dispersion of viscous liquids by turbulentflow in a static mixer, AIChE Journal,34(1988)602-609.
    [37] A.N. Kolmogoroff, The breakup of droplets in a turbulent stream, DokladyAkademii Nauk,66(1949)825-828.
    [38] J.O. Hinze, Fundamentals of the hydrodynamics mechanism of splitting indispersion processes, AIChE Journal,1(1955)289-295.
    [39] C.Desnoyer, O.Masbernat, and C.Gourdon, Experimental study of drop sizedistributions at high phase ratio in liquid-liquid dispersions, ChemicalEngineering Science,58(2003)1353-1363.
    [40] A. Zaccone, A. Gabler, S. Maass, D. Marchisio, and M. Kraume, Drop breakagein liquid-liquid stirred dispersions: Modelling of single drop breakage, ChemicalEngineering Science,62(2007)6297-6307.
    [41] H. Karbstein and H. Schubert, Developments in the continuous mechanicalproduction of oil-in-water macro-emulsions, Chemical Engineering andProcessing,34(1995)205-211.
    [42] N.G. zcan-Ta kin, G. Padron, and A. Voelkel, Effect of particle type on themechanisms of break up of nanoscale particle clusters, Chemical EngineeringResearch and Design,87(2009)468-473.
    [43] S. Shelley, High-shear mixers: still widely misunderstood, Chemical EngineeringProgress,103(2007)7-12.
    [44] E. Lo, E. Mattas, C. Wei, D. Kacsur, and C.-K. Chen, Simultaneous API particlesize reduction and polymorph transformation using high shear, Organic ProcessResearch and Development,16(2012)102-108.
    [45] T. Kamahara, M. Takasuga, H.H. Tung, K. Hanaki, T. Fukunaka, B. Izzo, J.Nakada, Y. Yabuki, and Y. Kato, Generation of fine pharmaceutical particles viacontrolled secondary nucleation under high shear environment duringcrystallization—Process development and scale-up, Organic Process Researchand Development,11(2007)699-703.
    [46] C. Wei and B.-S. Yang, Crystallization via high-shear transformation, US20060160841A1, Louis J. Wille Bristol-Myers Squibb Company,2006.
    [47] G.K. Patterson, E.L. Paul, S.M. Kresta, and A.W. Etchells, Mixing and chemicalreactions, in: E.L. Paul, V.A. Atiemo-Obeng, and S.M. Kresta, Editors,Handbook of industrial mixing: Science and practice, John Wiley&Sons, NewJersey,2004, pp.755-867.
    [48] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Highshear system for the production of chlorobenzene, US20100183486A1, H.R.D.Corporation,2010.
    [49] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Systemfor making linear alkylbenzenes, US20100266465A1, H.R.D. Corporation,2010.
    [50] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Systemand process for production of toluene diisocyanate, PCT/US2008067835, H.R.D.Corporation,2008.
    [51] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Systemand process for production of toluene diisocyanate, US20110027147A1, H.R.D.Corporation,2011.
    [52] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Systemand process for the production of aniline and toluenediamine, US007750188B2,H.R.D. Corporation,2010.
    [53] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Highshear process for the production of chloral, US007884250B2, H.R.D.Corporation,2011.
    [54] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Highshear system and process for the production of acetic anhydride, US007919645B2, H.R.D Corporation,2011.
    [55] A. Hassan, E. Bagherzadeh, R.G. Anthony, G. Borsinger, and A. Hassan, Methodof making alcohols, US007910068B2, H.R.D. Corporation,2011.
    [56] A. Hassan, A. Hassan, R.G. Anthony, and G. Borsinger, High shear system andmethod for the production of acids, US20100324308A1, H.R.D. Corporation,2010.
    [57] G. Chu, Y. Song, J. Chen, and H. Chen, Preparation of nano-CaCO3byrotor-stator reactor (In Chinese), Chemical Industry and Engineering Progress,24(2005)545-549.
    [58] Y. Song, J. Li, J. Chen, and J. Yin, Preparation of basic magnesium sulfatewhiskers by rotor-stator reactor and hydrothermal method (In Chinese), CIESCJournal60(2009)756-761.
    [59] J.R. Bourne and J. Garcia-Rosas, Rotor-stator mixers for rapid micromixing,Chemical Engineering Research and Design,64(1986)11-17.
    [60] J.R. Bourne and M. Studer, Fast reactions in rotor-stator mixers of different size,Chemical Engineering and Processing: Process Intensification,31(1992)285-296.
    [61] G. Chu, Y. Song, H. Yang, J. Chen, and H. Chen, Micromixing efficiency of anovel rotor-stator reactor, Chemical Engineering Journal,128(2007)191-196.
    [62] Z. Zhang, J. Min, and Z. Gao, Micromixing characteristics of a continuousrotor-stator mixer (In Chinese), Journal of Beijing University of ChemicalTechnology,35(2008)4-7.
    [63] L. Yang, Z. Li, and Z. Gao, Micromixing characteristics in a continuousrotor-stator mixer (In Chinese), Journal of Beijing University of ChemicalTechnology,37(2010)1-4.
    [64] J. Lv, Mixcromixing characteristics and application in rotor-stator reactor (InChinese), M.E. Thesis, Beijing University of Chemical Technology, Beijing,2008.
    [65] D.A.R. Brown, P.N. Jones, J.C. Middleton, G. Papadopoulos, and E.B. Arik,Experimental methods, in: E.L. Paul, V.A. Atiemo-Obeng, and S.M. Kresta,Editors, Handbook of industrial mixing: Science and practice, John Wiley&Sons, New Jersey,2004, pp.145-250.
    [66] G. Ascanio, B. Castro, and E. Galindo, Measurement of power consumption instirred vessels-A review, Chemical Engineering Research and Design,82(2004)1282-1290.
    [67] M.F. Edwards, M.R. Baker, and J.C. Godfrey, Mixing of liquids in stirred tanks,in: N. Harnby, M.F. Edwards, and A.W. Nienow, Editors, Mixing in the processindustries (second edition), Butterworth-Heinemann Ltd, Oxford,1992, pp.137-159.
    [68] G.A. Padron, Measurement and comparison of power draw in batch rotor-statormixers, M.S. thesis, University of Maryland, College Park, Maryland,2001.
    [69] A. Khopkar, L. Fradette, and P. Tanguy, Hydrodynamics of a dual shaft mixerwith Newtonian and non-Newtonian fluids, Chemical Engineering Research andDesign,85(2007)863-871.
    [70] S. Kohler, H. Bord, and P. Walzel, The blending efficiency of an intermeshinghelical ribbon and screw impeller combination, in: Proceedings of12th EuropeanConference on Mixing, Bologna, Italy,2006.
    [71] A.B. Merzner and R.E. Otto, Agitation of non-Newtonian fluids, AIChE Journal,3(1957)3-10.
    [72] F. Rieger and V. Novák, Power consumption of agitators in highly viscousnon-Newtonian liquids, Chemical Engineering Research and Design,51(1973)105-111.
    [73] K. Guerinik, Agitation and aeration of viscoelastic fermentation broths, Ph.D.Dissertation, University of Laval, Quebec, Canada,1990.
    [74] E. Brito de La Fuente, Mixing of rheological complex fluids with helical ribbonand helical screw ribbon impellers, Ph.D. Dissertation, University of Laval,Quebec, Canada,1992.
    [75] M. Cooke, J. Naughton, and A.J. Kowalski, A simple measurement method fordetermining the constants for the prediction of turbulent power in a Silverson MS150/250in-line rotor-stator mixer, in:6th International Symposium on Mixing inIndustrial Process Industries-ISMIP VI, Ontario, Canada,2008.
    [76] A. Kowalski, An expression for the power consumption of in-line rotor-statordevices, Chemical Engineering and Processing: Process Intensification,48(2009)581-585.
    [77] A.J. Kowalski, M. Cooke, and S. Hall, Expression for turbulent power draw of anin-line Silverson high shear mixer, Chemical Engineering Science,66(2011)241-249.
    [78] M. Cooke, T.L. Rodgers, and A.J. Kowalski, Power consumption characteristicsof an in-line Silverson high shear mixer, AIChE Journal,58(2012)1683-1692.
    [79] A.T. Utomo, M. Baker, and A.W. Pacek, Flow pattern, periodicity and energydissipation in a batch rotor-stator mixer, Chemical Engineering Research andDesign,86(2008)1397-1409.
    [80] Fluent, User's Manual to Fluent6.3,2006, Fluent Inc., Central Resource Park,10Cavendish Court, Lebanon, USA.
    [81] E.M. Marshall and A. Bakker, Computational fluid mixing, in: E.L. Paul, V.A.Atiemo-Obeng, and S.M. Kresta, Editors, Handbook of Industrial Mixing:Science and Practice, John Wiley&Sons, New Jersey,2004, pp.257-341.
    [82] K. Ng, N. Fentiman, K. Lee, and M. Yianneskis, Assessment of sliding meshCFD predictions and LDA measurements of the flow in a tank stirred by aRushton impeller, Chemical Engineering Research and Design,76(1998)737-747.
    [83] K. Ng and M. Yianneskis, Observations on the distribution of energy dissipationin stirred vessels, Chemical Engineering Research and Design,78(2000)334-341.
    [84] Z. Jaworski and B. Zakrzewska, Modelling of the turbulent wall jet generated bya pitched blade turbine impeller: the effect of turbulence model, ChemicalEngineering Research and Design,80(2002)846-854.
    [85] B. Murthy and J. Joshi, Assessment of standard k-ε, RSM and LES turbulencemodels in a baffled stirred vessel agitated by various impeller designs, ChemicalEngineering Science,63(2008)5468-5495.
    [86] S.L. Yeoh, G. Papadakis, and M. Yianneskis, Numerical simulation of turbulentflow characteristics in a stirred vessel using the LES and RANS approaches withthe sliding/deforming mesh methodology, Chemical Engineering Research andDesign,82(2004)834-848.
    [87] J. Derksen and H.E.A. Van den Akker, Large eddy simulation on the flow drivenby a Rushton turbine, AIChE Journal,45(1999)209-221.
    [88] V. Roussinova, S.M. Kresta, and R. Weetman, Low frequency macroinstabilitiesin a stirred tank: scale-up and prediction based on large eddy simulations,Chemical Engineering Science,58(2003)2297-2311.
    [89] H. Hartmann, J.J. Derksen, C. Montavon, J. Pearson, I.S. Hamill, and H.E.A. vanden Akker, Assessment of large eddy and RANS stirred tank simulations bymeans of LDA, Chemical Engineering Science,59(2004)2419-2432.
    [90] H. Hartmann, J.J. Derksen, and H.E.A. Van den Akker, Macroinstabilityuncovered in a Rushton turbine stirred tank by means of LES, AIChE Journal,50(2004)2383-2393.
    [91] R. Alcamo, G. Micale, F. Grisafi, A. Brucato, and M. Ciofalo, Large-eddysimulation of turbulent flow in an unbaffled stirred tank driven by a Rushtonturbine, Chemical Engineering Science,60(2005)2303-2316.
    [92] S.L. Yeoh, G. Papadakis, and M. Yianneskis, Determination of mixing time anddegree of homogeneity in stirred vessels with large eddy simulation, ChemicalEngineering Science,60(2005)2293-2302.
    [93] J.J. Derksen, K. Kontomaris, J.B. McLaughlin, and H.E.A. Van den Akker,Large-eddy simulation of single-phase flow dynamics and mixing in an industrialcrystallizer, Chemical Engineering Research and Design,85(2007)169-179.
    [94] C. Kato, H. Mukai, and A. Manabe, Large-eddy simulation of unsteady flow in amixed-flow pump, International Journal of Rotating Machinery,9(2003)345-351.
    [95] M. Sinha, J. Katz, and C. Meneveau, Quantitative visualization of the flow in acentrifugal pump with diffuser vanes—II: Addressing passage-averaged andlarge-eddy simulation modeling issues in turbomachinery flows, Journal ofFluids Engineering,122(2000)108-116.
    [96] R.K. Byskov, C.B. Jacobsen, and N. Pedersen, Flow in a centrifugal pumpimpeller at design and off-design conditions—Part II: Large eddy simulations,Journal of Fluids Engineering,125(2003)73-83.
    [97] T.E. Tokyay and S.G. Constantinescu, Validation of a large-eddy simulationmodel to simulate flow in pump intakes of realistic geometry, Journal ofHydraulic Engineering,132(2006)1303-1315.
    [98] M.D. Slack, R.O. Prasad, A. Bakker, and F. Boysan, Advances in cyclonemodeling using unstructured grids, Chemical Engineering Research and Design,78(2000)1098-1104.
    [99] J. Delgadillo and R. Rajamani, A comparative study of three turbulence-closuremodels for the hydrocyclone problem, International Journal of MineralProcessing,77(2005)217-230.
    [100] M. Brennan, CFD simulations of hydrocyclones with an air core: Comparisonbetween large eddy simulations and a second moment closure, ChemicalEngineering Research and Design,84(2006)495-505.
    [101] M. Narasimha, M. Brennan, and P. Holtham, Large eddy simulation ofhydrocyclone—prediction of air-core diameter and shape, International Journalof Mineral Processing,80(2006)1-14.
    [102] K.R. Kevala, Sliding mesh simulation of a wide and narrow gap inlinerotor-stator mixer, M.S. Thesis, University of Maryland, College Park, MD,2001.
    [103] A.W. Pacek, M. Baker, and A.T. Utomo, Characterisation of flow pattern in arotor stator high shear mixer, in: Proc.6th European Congress on ChemicalEngineering (ECCE-6), Copenhagen,2007.
    [104] A.T. Utomo, M. Baker, and A.W. Pacek, The effect of stator geometry on theflow pattern and energy dissipation rate in a rotor-stator mixer, ChemicalEngineering Research and Design,87(2009)533-542.
    [105] A.T. Utomo, Flow pattern and energy dissipation rates in batch rotor-statormixers, Ph.D. Dissertation, The University of Birmingham, Edgbaston,Birmingham B152TT,2009.
    [106] A. Utomo, M. Baker, and A.W. Pacek, The effect of stator geometry in the flowpattern and energy dissipation rate in a rotor-stator mixer, in:13th EuropeanConference on Mixing, London, U.K.,2009.
    [107] A. Bakker and H.E.A. Van den Akker, The use of profiled axial flow impellersin gas-liquid reactors, in: Fluid Mixing IV, IChemE, Bradford, U.K.,1990.
    [108] A.W. Nienow, On impeller circulation and mixing effectiveness in the turbulentflow regime, Chemical Engineering Science,52(1997)2557-2565.
    [109] F. Barailler, M. Heniche, and P. Tanguy, CFD analysis of a rotor-stator mixerwith viscous fluids, Chemical Engineering Science,61(2006)2888-2894.
    [110] H.H. Mortensen, R.V. Calabrese, F. Innings, and L. Rosendahl, Characteristicsof batch rotor-stator mixer performance elucidated by shaft torque and angleresolved PIV measurements, The Canadian Journal of Chemical Engineering,89(2011)1076-1095.
    [111] M. Meeuwse, E. Hamming, J. van der Schaaf, and J.C. Schouten, Effect ofrotor-stator distance and rotor radius on the rate of gas-liquid mass transfer in arotor-stator spinning disc reactor, Chemical Engineering and Processing: ProcessIntensification,50(2011)1095-1107.
    [112] H. Lin, Y. Song, G. Chu, and J. Chen, Experimental investigation on gas-liquidmass transfer characteristics of rotor-stator reactor (In Chinese), Journal ofChemical Engineering of Chinese Universities,21(2007)882-886.
    [113] H. Lin, Studies on gas-liquid mass transfer and pressure drop characteristics ofrotor-stator reactor (In Chinese), M.E. Thesis, Beijing University of ChemicalTechnology, Beijing,2007.
    [114] X. Niu, Y. Song, J. Chen, G. Chu, and X. Zhao, Gas-liquid mass transfercharacteristics of rotor-stator reactor with different inner structures (In Chinese),Journal of Chemical Engineering of Chinese Universities,23(2009)381-386.
    [115] Z. Li, Y. Song, G. Chu, J. Chen, S. Chen, and K. Fei, Heat transfercharacteristics of rotor-stator reactor (In Chinese), CIESC Journal,60(2009)560-566.
    [116] H. Singh, D.F. Fletcher, and J.J. Nijdam, An assessment of different turbulencemodels for predicting flow in a baffled tank stirred with a Rushton turbine,Chemical Engineering Science,66(2011)5976-5988.
    [117] J. Sheng, H. Meng, and R.O. Fox, A large eddy PIV method for turbulencedissipation rate estimation, Chemical Engineering Science,55(2000)4423-4434.
    [118] P. Sagaut, Large eddy simulation for incompressible flows, third ed, Springer,Berlin Heidelberg,2006.
    [119] K.C. Lee and M. Yianneskis, Turbulence properties of the impeller stream of aRushton turbine, AIChE Journal,44(1998)13-24.
    [120] S. Yeoh, G. Papadakis, and M. Yianneskis, Numerical simulation of turbulentflow characteristics in a stirred vessel using the LES and RANS approaches withthe sliding/deforming mesh methodology, Chemical Engineering Research andDesign,82(2004)834-848.
    [121] Z. Li, Y. Bao, and Z. Gao, PIV experiments and large eddy simulations ofsingle-loop flow fields in Rushton turbine stirred tanks, Chemical EngineeringScience,66(2011)1219-1231.
    [122] C. Chew, Characterisation of impeller driven and oscillatory mixing by spatialand temporal shear rate distributions, Chemical Engineering Science,59(2004)1557-1568.
    [123] J.A. Sánchez Pérez, E.M. Rodríguez Porcel, J.L. Casas López, J.M. FernándezSevilla, and Y. Chisti, Shear rate in stirred tank and bubble column bioreactors,Chemical Engineering Journal,124(2006)1-5.
    [124] J. Baldyga, W. Orciuch, L. Makowski, K. Malik, G. zcan-Ta kin, W. Eagles,and G. Padron, Dispersion of nanoparticle clusters in a rotor-stator mixer,Industrial&Engineering Chemistry Research,47(2008)3652-3663.
    [125] U. El-Jaby, M. Cunningham, and T.F.L. Mckenna, Comparison ofemulsification devices for the production of miniemulsions, Industrial&Engineering Chemistry Research,48(2009)10147-10151.
    [126] J. Baldyga, L. Makowski, W. Orciuch, C. Sauter, and H. Schuchmann,Deagglomeration processes in high-shear devices, Chemical EngineeringResearch and Design,86(2008)1369-1381.
    [127] J. Baldyga, W. Orciuch, L. Makowski, M. Malskibrodzicki, and K. Malik,Break up of nano-particle clusters in high-shear devices, Chemical Engineeringand Processing: Process Intensification,46(2007)851-861.
    [128] A. Hassan and A. Hassan, High shear process for producing micronized waxes,US20100125157A1, H.R.D. Corporation,2010.
    [129] F.P.-H. Lee, R.W.-N. Wong, and S.V. Kao, Process for preparing phase changeinks, US20070030322A1, Xerox Corporation,2007.
    [130] O. Levenspiel, Chemical reaction engineering, Third ed, John Wiley&Sons,New York,1999.
    [131] A.D. Martin, Interpretation of residence time distribution data, ChemicalEngineering Science,55(2000)5907-5917.
    [132] S. Vedantam, J.B. Joshi, and S.B. Koganti, CFD simulation of RTD and mixingin the annular region of a Taylor-Couette contactor, Industrial&EngineeringChemistry Research,45(2006)6360-6367.
    [133] K.K. Singh, S.M. Mahajani, K.T. Shenoy, and S.K. Ghosh, Computational fluiddynamics modeling of a bench-scale pump-mixer: Head, power and residencetime distribution, Industrial&Engineering Chemistry Research,46(2007)2180-2190.
    [134] L. Zhang, Q. Pan, and G.L. Rempel, Residence time distribution in a multistageagitated contactor with Newtonian fluids: CFD prediction and experimentalvalidation, Industrial&Engineering Chemistry Research,46(2007)3538-3546.
    [135] S.S. Deshmukh, M.J. Sathe, J.B. Joshi, and S.B. Koganti, Residence timedistribution and flow patterns in the single-phase annular region of annularcentrifugal extractor, Industrial&Engineering Chemistry Research,48(2009)37-46.
    [136] Z. Hu and Y. Wang, Conductivity measurement technology in engineering (InChinese), First ed, Tianjin University Press, Tianjin,1990.
    [137] S. Cox, Design and analysis of a photocatalytic bubble column reactor, Ph.D.Dissertation, The University of New South Wales, Sydney, Australia,2007.
    [138] A.K. Heibel, P.J.M. Lebens, J.W. Middelhoff, F. Kapteijn, and J. Moulijn,Liquid residence time distribution in the film flow monolith reactor, AIChEJournal,51(2005)122-133.
    [139] D. Boskovic and S. Loebbecke, Modelling of the residence time distribution inmicromixers, Chemical Engineering Journal,135(2008) S138-S146.
    [140] Z. Mao, T. Xiong, and J. Chen, Residence time distribution of liquid flow in atrickle bed evaluated using FFT deconvolution, Chemical EngineeringCommunications,169(1998)223-244.
    [141] S. Lohse, B.T. Kohnen, D. Janasek, P.S. Dittrich, J. Franzke, and D.W. Agar, Anovel method for determining residence time distribution in intricately structuredmicroreactors, Lab on a Chip,8(2008)431.
    [142] E.B. Nauman, Residence time distribution, in: E.L. Paul, V.A. Atiemo-Obeng,and S.M. Kresta, Editors, Handbook of industrial mixing: Science and practice,John Wiley&Sons, New Jersey,2004, pp.1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700