橡胶集料混凝土脆性与延性性能研究及在桥面铺装层上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶集料混凝土作为一种新型节能环保的混凝土材料,因其具有良好的工程性能如弹性模量低、低脆性、抗裂性能好、阻尼系数高等,受到建筑工程领域的广泛关注。橡胶集料混凝土在组成上最大的特点是引入了一种新的材料-橡胶集料作为其第三骨料成分。一方面,橡胶集料的掺入明显改善了混凝土的脆性,从某种意义上说打破了传统上认为混凝土为脆性材料的认识。另一方面,同样是由于橡胶集料的加入,改变了橡胶集料钢筋混凝土梁的延性性能。
     本文采用脆性系数作为橡胶集料混凝土脆性的评价指标,其定义为混凝土抗压强度与抗折强度的比值,脆性系数越小,则混凝土的脆性越低。通过实验研究了橡胶集料混凝土在不同温度环境下的脆性特征。
     同样,本文采用延性系数作为橡胶集料钢筋混凝土梁延性的评价指标,其定义为梁截面的极限曲率和屈服曲率的比值。对于橡胶集料混凝土梁截面的延性系数本文仅作了初步的理论分析,实验方面的研究尚未展开。在理论分析的基础上计算出了不同截面特征梁截面的延性系数,同时,对相同荷载作用下的双筋截面橡胶集料混凝土梁进行了配筋分析。
     鉴于2005年11月,在青(青岛)银(银川)高速公路河北石家庄段入口处建造的世界上第一块橡胶集料混凝土路面实验段取得成功,以及橡胶集料混凝土各方面更卓越的工程特性,我们进行了进一步的探讨,讨论橡胶集料混凝土在桥面铺装层上应用的可行性,并于2006年8月在天津市武清区武香路的二百户东口桥,铺筑了橡胶集料混凝土桥面铺装层的实验段。
As a new kind of concrete material of energy-saving and environment protecting, Crumb of Rubber Concrete (CRC) is paid broad attention to by people of architectural circle because of its good engineering performance such as lower Young’s modulus, lower brittleness, perfect ability of holding back crack and high damp modulus. CRC has a new kind of material-rubber crumb in it as its third bone component which is the most distinct trait of it in composing. One hand, the brittleness of concrete has improved obviously because of the joint of rubber crumb, by which the traditional viewpoint of regarding concrete as brittle has been broken. On the other hand, the ductility of Reinforced Crumb Rubber Concrete (RCRC) beam has also improved greatly just because of the same reason.
     Brittleness modulus has been adopted to measure the brittleness of CRC, which is defined as the ratio of compressive strength to bending strength of CRC. The smaller the brittleness modulus was, the lower brittleness of the concrete was. And the brittleness of CRC has been studied though experiments in different temperature environment.
     Also, ductility modulus has been adopted to measure the ductility of RCRC beam, which was defined as the ratio of ultimate curvature of section to subdued curvature of section of RCRC beam. In this paper, the study of the ductility modulus of RCRC beam has been carried out initially in theory, and the experimental study haven’t been carried out yet. A series of ductility modulus of sections with different trait have been calculated based on the academic analysis above, while, the steel analysis of double–steel section of RCRC beam has also been carried out under the same load.
     With the fact that the first experimental section which is located at the entrance of Shi Jiazhuang in HeBei province in Qing-Yin Highway was paved with CRC successfully in November, 2005 and the variety of advantages in engineering performance of CRC, we studied further, analyzed the feasibility of the application to cover layers of bridges. and the experimental section with CRC applied to cover layers of bridges has been paved on the Dongkou Bridge of 200 doors in the Wuxiang Road in Wuqing District of Tian Jin in August, 2006
引文
[1]朱涵,新型橡胶集料混凝土的研究综述,天津建设科技, 2004,14(2):35-37
    [2]刘春生,朱涵,李志国等,橡胶集料砂浆基本性能研究,混凝土,2005,(7):38-42
    [3]Han Zhu, Adding Crumb Rubber into Exterior Wall Materials .Waste Management and Research,2003,20:407-413
    [4]Han Zhu, Rubber Crumbs in Concrete, Concrete Technology Today, 2003, 135(8): 30-33
    [5]Zhu, H. Crumb Rubber Concrete, Rapra Handbook on Polymers Use in Construction, Rapra Technology, Shawbury, UK, edited Gune Ri AKOVLI, 2004,
    [6]Khatib, Zaher K., & Bayomy, Fouad M. Rubberized Portland Cement Concrete, Journal of Materials in Civil Engineering, August, 1999, 206~213.
    [7]Eldin, Neil N. & Senouci, A. B. Rubber-tired Particles as Concrete Aggregate, Journal of Materials in Civil Engineering. 1993, 5(4): 478 ~ 496.
    [8]Zhu H. Recent development in Crumb Rubber Application in noise reduction and PCC, The Conference of Crumb Rubber in Road Construction, Dallas, Texas, USA. 2002.
    [9]Zhu, H. Slump, Workability, Air content and Compressive Strength of Rubber Concrete, Cement and Concrete Research, submitted. 2003.
    [10]Zhu, H. Rubber Concrete: A Preliminary Engineering and Business Prospective, Scrap Tire News, June, 2001,16-17.
    [11]Zhu H. New Development in Crumb Rubber Research, First International Symposium on Rubberized Asphalt Pavement, Tempe, AZ. USA. 2000.
    [12]Xiao, C. Engineering Characterization and Field Evaluation for Rubber Concrete. Arizona, Arizona State University, 2002.
    [13]Schimizze, R.R., Nelson, J.K., Amirkhanian, S.N., & Murden, J.A. New Materials and Methods of Repair Infrastructure, Proceedings of the Third Material Engineering Conference, San Diego, CA: 1994.367~374.
    [14]Hernandez-Olivares, F., Barluenga, G., Bollati, M. and Witoszek, B. Static and dynamic behavior of recycled tyre rubber-filled concrete, Cement and Concrete Research, 2002, 32 (10):1587~1596.
    [15]Thong-On, N.. Crumb Rubber in Mortar Cement Application, Master, Arizona State University, 2001.
    [16]刘春生,朱涵,李志国,橡胶集料混凝土抗压细观数值模拟,低温建筑技术,2006,(2):1-3
    [17]胡鹏,朱涵,王旻,橡胶集料混凝土渗透性能的研究,天津理工大学学报,2006,22(4):8-12
    [18]欧兴进,朱涵,橡胶集料混凝土氯离子渗透性试验研究,混凝土,2006,(3):46-49
    [19]许静,朱涵,刘春生,师燕超,橡胶集料混凝土阻尼比的初步试验研究,2005,(11):40-42
    [20]袁琳,朱涵,橡胶微粒钢筋混凝土梁受弯性能初探,混凝土,2005,(6):77-81
    [21]张军,朱涵,许静, CRC剪力墙矩形截面墙肢正截面承载力探讨,低温建筑技术,2006,(5)
    [22]亢景付,金秋莲,彭小平,蒋晓鸥,粉煤灰活性矿物激发剂增强效果研究,天津建设科技,2004,14(1),33-35
    [23]宋少民,轲红娟,金树新,橡胶粉改性的高韧性混凝土研究,混凝土与水泥制品,1997, (1): 10-12
    [24]谷新康,田和平,姚新玲.水泥混凝土路面破损的原因及质量控制,工程技术与管理,2005,9:7-8
    [25]李成林,吴长存,王国庆.浅谈水泥混凝土公路路面的质量问题.黑龙江交通科技.2005,06:15-16
    [26]吕志坚,水泥混凝土路面抗折强度的影响因素,工程技术,2002,16:42-42
    [27]孙常成.国高等级公路路面典型结构及发展趋势,山西建筑,2005,31(9):237-239
    [28]王传秋,崔忠英.水泥砼路面抗折强度影响因素的研讨,国市政工程,2002,2:1-3
    [29]张海涛,王宪军,王锡殿.高速公路路面材料的发展及存在的问题,森林工程2001,17(1):55-61
    [30]付书红,赵若鹏.路面水泥混凝土抗折强度的研究,工业建筑,2000,30,(2):40-43
    [31]刘秉京,混凝土技术,北京,人民交通出版社, 2004
    [32]葛兆明,混凝土外加剂,北京,化学工业出版社,2005
    [33]梁乃兴,韩森,屠书荣,现代路面与材料,北京,人民交通出版社,2003
    [34]许强,石华,张华山.粉煤灰高性能德凝圭在高速公路修补中的应用,浙江交通科技,2001,3:10-12
    [35]亢景付,金秋莲.粉煤灰活性矿物激发剂增强效果研究[J ],天津建设科技,2004 ,14 (1) :33 - 35.
    [36]《公路水泥混凝土路面设计规范》(JTG D40—2002)
    [37]中华人民共和国国家标准,混凝土结构设计规范(GB 50010-2002)
    [38]王慧芳,钢筋砼梁截面延性的计算分析,建筑结构,2000,(1):29-31
    [39]马宏旺,赵国潘,钢筋混凝土矩形柱截面曲率延性系数概率分析,大连理工大学学报,41,4,485-490
    [40]宋建夏,钢筋砼T形截面梁的截面延性系数计算,四川建筑科学研究,26,1,4-7
    [41]田野,梁志平,FRP加强混凝土梁延性分析,山西建筑,32,4,66-67
    [42]东南大学,天津大学,同济大学合编,混凝土结构,中国建筑工业出版社,2003
    [43]闫东明,林皋,王哲,张勇强,不同环境下混凝土动态直接拉伸特性研究,大连理工大学学报,2005,45(3):416-421
    [44]刘军,刘润清,刘智,李莉,吴江,低温混凝土抗冻临界强度影响因素的研究,沈阳建筑大学学报,2005,21,(3):228-231
    [45]许贤敏,齐建伟,高强混凝土在低温时的性能,国外技术,2003,(4):36-40
    [46]刘龙,周国锋,张蕾,养护温度对混凝土抗压强度影响的实验研究,林业科技情报,2005,37(2):29-30
    [47]刘喜成,低温条件下混凝土工程的裂缝控制,黑河科技,2003,(2):97-99
    [48]王小柯,谢亚轩,桥面铺装结构的受力特性分析,建筑技术开发,2005,32(10):35-37
    [49]舒国明,马敬坤,林桂銮,桥面铺装破坏综合分析,中外公路,2006,26(1):159-161
    [50]丁庆军,王发洲,黄绍龙,胡曙光,卢哲安桥面铺装层材料设计,武汉理工大学学报,2002,24(4):55-58
    [51]刘数华,方坤河,曾力,降低高强混凝土脆性的试验研究,建筑材料学报2005,8(2):105-153
    [52]刘数华,李正良,赵永巧,降低道路混凝土脆性的试验研究,科学研究,2006,(2):3-4
    [53]陈聪华,混凝土的低应力脆性破坏与防治,福建建筑,2002,(2):72-73
    [54]陈波,张亚梅,陈胜霞,张才华.橡胶混凝土性能的初步研究[J].混凝土,2004,12 37-39
    [55]吕韵舫,王明江,桥面铺装层坏损的原因及解决方法,西部探矿工程,2006.05(121):213-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700