光束在体材料和周期性微结构材料中的传播及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从理论和实验上对光束在体材料、光子带隙材料和Metamaterials(MMs)中的传播及应用进行了系统地分析和研究。我们分两条主线撰写,第一条主线是从体材料、光子带隙材料到MMs材料角度发展;第二条主线是从Z扫描、光限制/全光开关到局域场增强和电磁谐振的应用角度发展;其中第四章光子带隙材料的Z扫描及应用是这两条主线的交点。主要研究内容包括:
     1.我们应用高斯分解法对由脉冲电场诱导的大非线性相移下的Z扫描进行了研究。证明了高斯分解法仍然可以用来分析大非线性相移下的Z扫描理论,并且优于其它方法。我们对入射激光分别为连续和脉冲情况下的大非线性相移Z扫描曲线的峰谷结构进行了比较,发现在大非线性相移的情况下,Z扫描曲线的峰和谷随透过光阑或光强的变化表现出来某些新的特性。采用皮秒脉冲激光下的纯二硫化碳实验对理论分析加以验证。
     2.基于测量三阶非线性系数的Z扫描测量方法,我们提出了二阶Z扫描的理论,讨论了线性吸收系数对Z扫描曲线的影响。应用这种方法,我们测量了在1064 nm下,5%MgO:LiNbO_3的二阶非线性系数d_(31)=4.50×10~(-12)m/v,这一结果同先前用不同测量方法得到的结果符合得很好。
     3.我们提出了一种理想的一维非线性光子带隙材料的Z扫描理论。分析了一维周期性非线性光子带隙材料Z扫描曲线特征,结果表明只含非线性折射的一维非线性光子带隙材料的Z扫描曲线与同时包含非线性折射和非线性吸收的体材料Z扫描曲线相似。同时,分析了光学增益和诱导吸收对开孔和闭孔Z扫描曲线的影响。最后,我们还分析了具有缺陷的一维非线性光子带隙材料Z扫描结果,在缺陷模频率处,缺陷材料的非线性光学性质对Z扫描结果起决定作用。
     4.基于Pade近似和多步法,我们提出了一种无条件稳定隐格式高阶复包络算法求解时间依靠的Maxwell方程。无条件稳定和时间上高阶精度可以同时达到。由于我们采用复包络Maxwell方程,即使在相当大的时间步长下,数值色散和耗散都非常小。为了验证这种无条件稳定时域有限差分法的兼容性,我们比较了提出算法同准确解的结果。
     5.应用时域有限差分法,我们研究了在光纤末端具有棋盘状微结构的表面增强拉曼探测器。覆盖在微结构光纤端面金属上的表面等离子体可以被有效地激发,并且可以得到强烈的局域电场增强。对激发光偏振影响的研究表明,局域场增强因子对激发光偏振具有很强的依靠性,但是偏振效应对等离子体谐振波长几乎没有影响。
     6.我们提出了两种由亚波长小孔构成的MMs周期性结构——单侧双孔MM和双侧双孔MM。应用时域有限差分法和有限元法,我们研究了结构参数对这两种MMs的电磁谐振和局域场强度增强的影响。结果表明双孔结构的中臂强烈地影响着低频和高频谐振的频率和局域场强度。通过改变中臂的宽度,在高频谐振处可以得到非常强的局域场增强,并且很容易地控制局域场的分布。双侧双孔MM可以进一步用来增强高频谐振,同时削弱低频谐振。
In this dissertation, we investigate the beam propagation in bulk materials, photonic band gap materials, and metamaterials, as well as their applications from theoretical and experimental aspects. We organize them by two clues. One focuses on materials, and developes from bulk materials, photonic band gap materials to metamaterials. The other pays more attation to their applications, such as, Z-scan, optical limiting/all-optical switching, local electric field enhancement and electromagnetic resonance. Chapter 4 is the intersection of the two clues. The details are descripted as follows:
     1. Using Gaussian decomposition method, we study the characteristics of Z-scan for a thin nonlinear medium with large nonlinear phase shift induced by a pulsed laser. It has been verified that the Gaussian decomposition method is still valid for analyses of Z-scan measurements with large nonlinear phase shift, and is better than some others. By comparing the peak-valley configuration of Z-scan curves for large nonlinear phase shift induced by pulsed with that by CW laser, we find that some peak-valley features of Z-scan curves appear as aperture size or light intensity increases in the case of large nonlinear phase shift. Meanwhile, we carry out the Z-scan experiments of pure CS_2 by a picosecond pulsed laser to verify the theoretical calculations in the case of large nonlinear phase shift.
     2. The method for measuring second-order nonlinear optical coefficients based on well-known Z-scan is presented. The influence of linear absorption coefficients on normalized transmittance is discussed. Using this method, we obtain the second-order nonlinear coefficient d_(31)(5%MgO:LiNbO_3) =4.50×10~(-12)m/v at 1064 nm, which agrees well with theoretical calculations and previous well-known values.
     3. We propose a novel Z-scan theory for one-dimensional nonlinear photonic band gap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic band gap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effect of optical gain and induced absorption on Z-scan results is also discussed. Finally, we discuss the Z-scan results for photonic band gap material with defected mode. The nonlinear optical properties of the defect material are the main contribution to the Z-scan results near the defect mode frequency.
     4. Based on the Pade approximation and multistep method, we propose an implicit high-order unconditionally stable complex envelope algorithm to solve the time-dependent Maxwell's equations. Unconditional numerical stability can be achieved simultaneously with a high-order accuracy in time. As we adopt the complex envelope Maxwell's equations, numerical dispersion and dissipation are very small even at comparatively large time steps. To verify the capability of our algorithm, we compare the results of the proposed method with the exact solutions.
     5. A surface-enhanced Raman scattering fiber sensor with chessboard nanostructure on a cleaved fiber facet is studied by finite-difference time-domain method. Surface plasmons at the metal coated nanostructured fiber facet can be effectively excited and strong local electric field enhancement is obtained. Studies on the influence of light polarization demonstrate a large polarization dependence of the field enhancement factor while the polarization effects on the plasmon resonance wavelength are relatively small.
     6. We propose two metamaterials with sub-wavelength double-slots -single-side double-slot metamaterial and double-side double-slot metamaterial. The dependence of the electromagnetic resonances and local intensity enhancements on the structural parameters is studied by the finite-difference time-domain method and the finite element method. Results show that the central-arm of a double-slot structure strongly influences frequency and local intensities at both high- and low-frequency resonances. Very strong field localization can be achieved at the high-frequency resonance and its particular distribution can be well controlled by the width of the central-arm. A double-side double-slot structure can be utilized to further enhance the high-frequency resonance, while suppressing the low-frequency resonance.
引文
[1] I. Freestone, N. Meeks, M. Sax, et al. The Lycurgus Cup-A Roman Nanotechnology. Gold Bulletin, 2007, 40: 270-277.
    
    [2] R. W. Boyd. Nonlinear Optics. 2nd ed. Boston: Academic Press (2003).
    [3] Y. R. Shen. The Principles of Nonlinear Optics. New York: John Wiley & Sons (1984)
    [4] N. Bloembergen. Nonlinear Optics. 4th ed. Singapore: River Edge (1996).
    [5] R. L. Sutherland. Handbook of Nonlinear Optics. 2nd ed. New York: Marcel Dekker (2003)
    [6] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals. 2nd ed. Berlin: Springer (1997)
    
    [7] J. V. Moloney. Nonlinear Optical Materials. New York: Springer (1998)
    [8] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 1960, 187: 493-494.
    [9] P. A. Franken, A. E. Hill, C. W. Peters, et.al. Generation of Optical Harmonics. Phys. Rev.Lett., 1961,7: 118-121.
    [10] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 1987, 58: 2059-2062.
    [11] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58: 2486-2489.
    
    [12] E. Yablonovitch. Photonic band-gap structures. J. Opt. Soc. Am. B, 1993, 10: 283-295.
    [13] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-sillica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21: 1547-1549.
    [14] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance in optical fibers. Science, 1998,282: 1476-1478.
    
    [15] H. Kosaka, T. Kawashima, A. Tomita, et al. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering. Appl. Phys. Lett., 1999, 74:1370-1372.
    
    [16] G. J. Steven, S. Fan, A. Mekis, et al. Multipole-cancellation mechanism for hight-Q cavities in the absence of a complete Photonic band gap. Appl. Phys. Lett., 2001, 78:3388-3390.
    [17] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ε and μ Soviet Phys. Uspekhi, 1968, 10: 509-514.
    [18] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 1999, 47: 2075-2084.
    [19] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.
    [20] D. R. Smith and N. Kroll. Negative Refractive Index in Left-Handed Materials. Phys. Rev. Lett., 2000, 85: 2933-2936.
    [21] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett., 1996, 76: 4773-4776.
    [22] R. A. Shelby, D. R. Smith and S. Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79.
    [23] L. D. Landau and E. M. Lifshitz. Electrodynamics of Continuous Media. Oxford: Pergamon Press (1960).
    [24] C. Enkrich, M. Wegener, S. Linden, et al. Magnetic Metamaterials at Telecommunication and Visible Frequencies. Phys. Rev. Lett., 2005, 95: 203901-203904.
    [25] A. N. Grigorenko, K. Geim, H. F. Gleeson, et al. Nanofabricated media with negative permeability at visible frequencies. Nature, 2005, 438: 335-338.
    [26] T. Decoopman, G. Tayeb, S. Enoch, et al. Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability. Phys. Rev. Lett., 2006, 97: 073905-073908.
    [27] N. Fang, H. Lee, C. Sun, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science, 2005, 308: 534-537.
    [28] A. Ourir, A. De Lustrac, and J. M. Lourtioz. All-metamaterial-based subwavelength cavities (A/60) for ultrathin directive antennas. Appl. Phys. Lett., 2006, 88: 084103.
    [29] J. Pendry, D. Schurig and D.R. Smith. Controlling Electromagnetic Fields. Science, 2006, 312: 1780-1782.
    [30] D. Schurig, J. J. Mock, B. J. Justice, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006, 314: 977-980.
    [31] W. Cai, U. K. Chettiar, A. V. Kildishev, et al. Optical cloaking with metamaterials. Nature Photonics, 2007, 1: 224-227.
    [32] S. A. Maier. Plasmonics: Fundamentals and Applications, New York: Springer-Verlag (2007).
    
    [33] R. W. Boyd. Nonlinear Optics. 2nd ed. Boston: Academic Press (2003).
    [34] F. Zernike, J. E. Midwinter. Applied nonlinear optics. New York: Wiley (1973).
    [35] R. L. Sutherland. Handbook of Nonlinear Optics. 2nd ed. New York: CRC Press (2003)
    [36] G J. Dixon. Time-resolved spectroscopy probes dynamic processed. Laser Focus World, 1998, 10: 81-86.
    [37] S. D. Brorson, M. K. Kelly, U. Wenschuh, et al. Femtosecond pump probe invesgigation of electron dynamics in solid C_(60) film. Phys. Rev. B, 1992, 46: 7329-7332.
    [38] M. J. Moran, C. She, R. L. Carman. Interferometric measurements of the nonlinear refractive-index coefficient relative to CS_2 in laser-system-related materials. IEE)E J. Quantum Electron., 1975, QE-11: 259-264.
    [39] M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, High-sensitivity, single-beam n_2 measurements, Opt. Lett., 1989, 14: 955-958.
    [40] M. Sheik-Bahae, A. A. Said, T. H. Wei, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.
    [41] Q. Chen, L. Kuang, and E. H. Sargent. Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths, Appl. Phys. Lett., 2003, 83: 2115-2117.
    [42] Y. Z. Gu, W. F. Zhang, D. H. Gu, et al. Nonlinear response and optical limiting in SrBi_2Ta_2O_9 thin films, Opt. Lett., 2001, 26: 1788-1790.
    
    [43] A. Hache and M. Bourgeois. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett., 2000, 77: 4089-4091.
    [44] N. N. Lepeshkin, A. Schweinsberg, G. Piredda, et al. Enhanced Nonlinear Optical Response of One-Dimensional Metal-Dielectric Photonic Crystals. Phys. Rev. Lett., 2004,93: 123902-123905.
    [45] J. Hwang and J. W. Wu. Determination of optical Kerr nonlinearity of a photonic bandgap structure by Z-scan measurement. Opt. Lett., 2005, 30: 875-877.
    [46] S. J. Lee, Y. L. Lee, S. Y. Woo, W. Hwang, et al. Simple method for determining Gaussian beam waist using lens Z-scan, Lasers and Electro-Optics, 2003, 1: 246.
    [47] M. J. Paz-Alonso, H. Michinel, S. Bara, Nonlinear refractive index of a glass plate used for beam transformation and its application to Z scans. J. Opt. Soc. Am B, 2003, 20:2484-2491.
    [48] P. B. Chappie, J. Staromlynska, J. A. Hermann, et al. Single-beam Z-scan: measurement techniques and analysis, J. Nonlin. Opt. Phys. Mat., 1997, 6: 251-293.
    [49] D. Weaire, B. S. Wherrett, D. A. B. Miller, et al. Effect of low-power nonlinear refraction on laser beam propagation in InSb. Opt. Lett., 1979, 4: 331-333.
    [50] E. S. Ricardo and D. V. Nilson. Analytical description of Z-scan on-axis intensity based on the Huygens Fresnel principle. J. Opt. Soc. Am B, 1998, 15:2742-2746.
    [51] J. D. Gaskill. Linear System, Fourier Transforms, and Optics. New York: Wiley (1978).
    [52] B. Yao, L. Ren and X. Hou. Z-scan theory based on a diffraction model. J. Opt. Soc. Am B, 2003,20:1290-1294.
    [53] C. H. Kwak, Y. L. Lee, S. G. Kym. Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As_2S_3 thin film. J. Opt. Soc. Am B, 1999, 16: 600-604.
    [54] J. A. Hermann, T. McKay, R. G McDuff. Z-scan with arbitrary aperture transmittance: the strongly nonlinear regime. Opt. Commun., 1998, 154: 225-233.
    
    [55] R. L. Sutherland. Handbook of Nonlinear Optics. New York: Marcel Dekker (1996).
    [56] W. Zang, J. Tian, Z. Liu, et al. Analysis of Z-Scan by Series Expansion. Acta Opt. Sin., 2003,23: 1451-1455.
    [57] S. Chen, Z. Liu, W. Zang, et al. Study on Z-scan characteristics for large optical nonlinear phase shift. Acta. Phys. Sin., 2006, 5: 1211-1217.
    [58] S. Chen, Z. Liu, W. Zang, et al. Study on Z-scan characteristics for a large nonlinear phase shift. J. Opt. Soc. Am. B, 2005, 22:1191-1916.
    [59] P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of Optical Harmonics. Phys. Rev. Lett., 1961,7: 118-119.
    [60] K. R. Parameswaran, J. R. Kurz, R. V. Roussev, et al. Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt. Lett., 2002, 27: 43-45.
    [61] Y. Sasaki and Y. Ohmori. Phase-matched sum-frequency light generation in optical fibers. Appl. Phys. Lett., 1981, 39: 466-468.
    [62] A. Porzio, C. Altucci, M. Autiero, et al. Tunable twin beams generated by a type-I LNB OPO. Appl. Phys. B, 2001, 73: 763-766.
    [63] I. Horn, D. Günther and M. Guillong. Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system. Spectrochimica Acta Part B, 2003, 58: 1837-1346.
    [64] S. I. Pekar. Crystal optics and additional light waves. California: Benjamin/Cummirgs Pub. Co. (1983).
    
    [65] Sutherland. Handbook of Nonlinear Optics. 2nd ed. New York: CRC Press (2003)
    [66] G. D. Boyd, A. Ashkin, J. M. Dziedzic, et al. Second-harmonic generation of light with double refraction. Phys. Rev., 1965, 137: A1305-A1320.
    [67] S. E. Kurtz, Measurement of nonlinear optical susceptibilities. Quantum Electronic;. New York: Academic Press (1975).
    [68] R. L. Byer and S. E. Harris. Power and bandwidth of spontaneous parametric emission. Phys. Rev., 1968, 168: 1064-1068.
    [69] P. D. Maker, R. W. Terhune, M. Nisennoff, et al. Effects of dispersionand focusing on the production of optical harmonics. Phys. Rev. Lett., 1962, 8: 21-22.
    [70] W. N. Herman and L. M. Hayden. Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials. J. Opt. Soc. Am. B, 1995, 12: 416-427.
    [71] J. Jerphagnon and S. E. Kurtz. Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys., 1970,41: 1667-1681.
    [72] S. Chen, W. Zang, Z. Liu, et al. Method for measurements of second-order nonlinear optical coefficient based on Z-scan. Opt. Commun., 2007, 274: 213-217.
    [73] A. Prokhorov, and Y. S. Kuzminov, Physics and Chemistry of Crystaline of Lithium Niobate. California: Adm Hilger (1990).
    [74] U. Schlarb and K. Betzler. Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rew. B, 1994, 50: 751-757.
    [75] I. Shoji, T. Kondo, A. Kitamoto, et al. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 1997, 14: 2268-2294.
    [76] R. C. Eckardt, H. Masuda, Y. X. Fan, et al. Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB_2O_4, LiIO_3, MgO:LiNbO_3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quantum Electron., 1990, 26: 922-933.
    [77] Y. Fink, J. N. Winn, S. Fan, et al. A Dielectric Omnidirectional Reflector. Science 1998, 282: 1679-1682.
    [78] J. P. Dowling. Mirror on the Wall: You're Omnidirectional After All? Science, 1998, 282: 1841-1842.
    [79] J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett., 1998, 23: 1573-1575.
    [80] E. Yablonovitch. Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters. Opt. Lett., 1998, 23: 1648-1649.
    [81] H. Yang, P. Xie, S. K. Chan, et al. Simultaneous Enhancement of the Second- and Third-Harmonic Generations in One-Dimensional Semiconductor Photonic Crystals. IEEE J. Quantum Electron., 2006, 42: 447-452.
    [82] P. Tran. Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect. J. Opt. Soc. Am. B, 1997, 14: 2589-2594.
    [83] M. C. M. Lee, D. Hah, E. K. Lau, et al. MEMS-Actuated Photonic Crystal Switches. IEEE Photonics Technol. Lett., 2006, 18: 358-360.
    [84] M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys. Rev. Lett., 1994,73: 1368-1371.
    [85] H. Y. Liu, S. Lan, L. J. Wu, et al. Self-induced Anderson localization and optical limiting in photonic crystal coupled cavity waveguides with Kerr nonlinearity. Appl. Phys. Lett., 2007,90:213507.
    [86] P. R. Villeneuve, D. S. Abrams, S. Fan, et al. Single-mode waveguide microcavity for fast optical switching. Opt. Lett., 1996,21: 2017-2019.
    [87] S. Lan, A. V. Gopal, K. Kanamoto, et al. Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses. Appl. Phys. Lett., 2004, 84: 5124-5126.
    [88] Y. H. Liu, X. Y. Hu, D. X. Zhang, et al. Subpicosecond optical switching in polystyrene opal. Appl. Phys. Lett., 2005, 86: 151102.
    [89] A. Hache and M. Bourgeois. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett., 2000, 77: 4089-4091.
    [90] X. Y. Hu, Q. Zhang, Y. H. Liu, et al. Ultrafast three-dimensional tunable photonic crystal. Appl. Phys. Lett., 2003, 83: 2518-2520.
    [91] N. S. Zhao, H. Zhou, Q. Guo, et al. Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules. J. Opt. Soc. Am. B, 2006, 23:2434-2440.
    [92] J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic crystals: putting a new twist on light. Nature, 1997,386: 143-149.
    [93] S. Noda, A. Chutinan, and M. Imada. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 2000,407: 608-610.
    [94] J. Danckaert, K. Fobelets, and I. Veretennicoff. Dispersive optical bistability in stratified structures. Phys. Rew. B, 1991, 44: 8214-8225.
    [95] R. S. Bennink, Y. Yoon, R. W. Boyd, et al. Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures. Opt. Lett., 1999, 24: 1416-1418.
    [96] W. Zang, S. Chen, H. Cheng, et al. Fast Time-Domain Beam Propagation Method for One-Dimensional Nonlinear Photonic Crystal. Submitted to Chin. Phys. Lett.
    [97] M. Scalora, J. P. Dowling, C. M. Bowden, et al. Optical limiting and switching of ultrashort Pulses in nonlinear photonic band gap materials. Phys .Rev. Lett., 1994, 73:1368-1370.
    [98] J. P. Dowling, M. Scalora, M. J. Bloemer, et al. The photonic band edge laser: A new approach to gain enhancement. J. App. Phys., 1994, 75: 1896-1899.
    [99] M. Sheik-Bahae, A. A. Said, T. H. Wei, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.
    [100] S. Chen, W. Zang, Z. Liu, et al. Method for measurements of second-order nonlinear optical coefficient based on Z-scan. Opt. Commun., 2007, 274: 213-217.
    [101] Q. Chen, L. Kuang, and E. H. Sargent. Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths. Appl. Phys. Lett., 2003, 83: 2115-2117.
    [102] Y. Z. Gu, W. F. Zhang, D. H. Gu, et al. Nonlinear response and optical limiting in SrBi_2Ta_2O_9 thin films. Opt. Lett., 2001, 26: 1788-1790.
    
    [103] A. Hache and M. Bourgeois. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett., 2000, 77: 4089-4091.
    [104] N. N. Lepeshkin, A. Schweinsberg, G. Piredda, et al. Enhanced Nonlinear Optical Response of One-Dimensional Metal-Dielectric Photonic Crystals. Phys. Rev. Lett., 2004, 93:123902.
    [105] J. Hwang and J. W. Wu. Determination of optical Kerr nonlinearity of a photonic bandgap structure by Z-scan measurement. Opt. Lett., 2005, 30: 875-877.
    [106] P. Tran. Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect. J. Opt. Soc. Am. B, 1997, 14: 2589-2594.
    [107] S. Chen, W. Zang, A. Schulzgen, et al. Study on Z-scan characteristics for one-dimensional nonlinear photonic band gap materials. Submitted to Opt. Lett.
    [108] Z. M. Meng, H. Y. Liu, Q. F. Dai, et al. Dependence of nonlinearity enhancement on power density in photonic crystals characterized by numerical Z-scan experiments based on the finite-difference time-domain technique. J. Opt. Soc. Am. B, 2008, 25: 555-563.
    [109] M. Fleischman, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed ata silver electrode. Chem. Phys. Lett., 1974, 26: 163-166.
    [110] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroscopy. Heterocyclic, amrornatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem., 1977, 84: 1-20.
    [111] M. G. Albrecht, J. A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc, 1977, 99: 5215-5217.
    [112] M. Moskovits. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys., 1978, 69: 4159-4161.
    [113] K. Kneipp, H. Kneipp, I. Itzkan, et al. Surface-enhanced non-linear Raman scattering at the single-molecule level. Chem. Phys., 1999, 247: 155-162.
    [114] K. Kneipp, H. Kneipp, R. Manoharan, et al. Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc, 1998, 52: 1493-1497.
    [115] K. Kneipp, H. Kneipp, V. B. Kartha, et al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E, 1998, 57: R6281-R6284.
    [116] K. Kneipp, Y. Wang, H. Kneipp, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett., 1997, 78: 1667-1670.
    [117] K. Kneipp, Y. Wang, H. Kneipp, et al. Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering. Phys. Rev. Lett., 1996, 76: 2444-2447.
    [118] J. T. Krug, G D. Wang, S. R. Emory, et al. Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals. J. Am. Chem. Soc, 1999, 121,9208-9214.
    [119] S. R. Emory, W. E. Haskins, and S. Nie. Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles. J. Am. Chem. Soc, 1998, 120, 8009-8010.
    [120] S. Nie, S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997,275, 1102-1106.
    [121] D. L. Stokes, Z. H. Chi, and T. Vo-Dinh. Surface-Enhanced-Raman-Scattering-Inducing Nanoprobe for Spectrochemical Analysis. Appl. Spectrosc, 2004, 58: 292-298.
    [122] A. Lucotti and G. Zerbi. Fiber-optic SERS sensor with optimized geometry. Sens. Actuators B 2007, 121: 356-364.
    [123] A. Lucotti, A. Pesapane, and G. Zerbi. Use of a Geometry Optimized Fiber-Optic Surface-Enhanced Raman Scattering Sensor in Trace Detection. Appl. Spectrosc, 2007, 61: 260-268.
    [124] Y. Zhang, C. Gu, A. M. Schwartzberg, et al. Surface-enhanced Raman scattering sensor based on D-shaped fiber. Appl. Phys. Lett., 2005, 87: 123105.
    [125] H. Y. Chu, Y. Liu, Y. Huang, et al. A high sensitive fiber SERS probe based on silver nanorod arrays. Opt. Express, 2007, 15: 12230-12239.
    [126] C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang. Ultra-sensitive Compact Fiber Sensor Based on Nanoparticle Surface Enhanced Raman Scattering. Proc. of SPIE, 2005, 5911:591108.
    [127] S. O. Konorov, C. J. Addison, H. G Schulze, et al. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy. Opt. Lett., 2006, 31, 1911-1913.
    [128] Y. Zhang, C. Shi, C. Gu, et al. Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Appl. Phys. Lett., 2007, 90: 193504.
    [129] F. M. Cox, A. Argyros, M. C. J. Large, et al. Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt. Express, 2007, 15: 13675-13681.
    [130] A. V. Whitney, B. D. Myers, and R. P. V. Duyne. Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography. Nano Lett., 2004, 4: 1507-1511.
    [131] W. Srituravanich, N. Fang, C. Sun, et al. Plasmonic Nanolithography," Nano Lett. 2004, 4: 1085-1088.
    [132] M. Kahl, E. Voges, S. Kostrewa, et al. Periodically structured metallic substrates for SERS. Sens. Actuators B, 1998, 51: 285-291.
    [133] A. Dhawan and J. F. Muth. Engineering surface plasmon based fiber-optic sensors," Mater. Sci. Eng. B, 2008, 149: 237-241.
    [134] D. J. White and P. R. Stoddart. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt. Lett., 2005, 30: 598-600.
    [135] D. J. White, A. P. Mazzolini and P. R. Stoddart. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J. Raman Spectrosc., 2007,38: 377-382.
    [136] V. Guieu, F. Lagugne-Labarthet, L. Servant, et al. Ultrasharp Optical-Fiber Nanoprobe Array for Raman Local-Enhancement Imaging. Nanoprobes, 2008, 4: 96-99.
    [137] J. I. Gersten. The effect of surface roughness on surface enhanced Raman scattering J. Chem. Phys., 1980, 72: 5779-5780.
    [138] S. L. McCall, P. M. Platzman. Raman scattering from chemisorbed molecules at surfaces. Phys. Rev. B, 1980, 22: 1660-1662.
    [139] M. Kerker. Resonances in electromagnetic scattering by objects with negative absorption. Appl. Opt, 1979, 18: 1180-1189.
    [140] M. Moskovits. Surface-Enhanced Raman Spectroscopy: a Brief Perspective. In Surface-Enhanced Raman Scattering Physics and Applications, 2006, 1-18.
    [141] A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998,27:241-250.
    [142] J. R. Lombardi, R. L. Birke, T. Lu, et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J. Chem. Phys., 1986, 84: 4174-4180.
    [143] K. S. Yee. Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propag., 1966, 14: 302-307.
    [144] A. Taflove and S. C. Hagness. Computational Electrodynamics-The Finite-Difference Time-Domain Method. Boston: Artech House (2005).
    [145] J. S. Kole, M. T. Figge, and H. De Raedt. Unconditionally stable algorithms to solve the time-dependent Maxwell equations. Phys. Rev. E, 2001, 64: 066705.
    [146] J. S. Kole, M. T. Figge, and H. D. Raedt. Higher-order unconditionally stable algoritlims to solve the time-dependent Maxwell equations. Phys. Rev. E, 2002, 65: 066705.
    [147] H. D. Raedt, K. Michielsen, J. S. Kole, et al. One-step finite-difference time-domain algorithm to solve the Maxwell equations. 2003, Phys. Rev. E, 67: 056706.
    [148] S. Chen, W. Zang, A. Schülzgen, et al. Implicit high-order unconditionally stable complex envelope algorithm for the time-dependent Maxwell's equations. Opt. Lett., 2008, 33: 2755-2757.
    [149] G. A. Baker and P. Graves-Morris. Pade Approximants. Cambridge University: Cambridge (1996).
    [150] G. R. Hadley. Multistep method for wide-angle beam propagation. Opt. Lett., 1992, 17: 1743-1745.
    [151] S. D. Conte and C. E. Boor. Elementary Numerical Analysis. New York: McGraw-Hill (1972).
    [152] K. Kneipp, Y. Wang, H. Kneipp, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett., 1997, 78: 1667-1670.
    [153] S. M. Nie and S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997,275: 1102-1106.
    [154] H. X. Xu, E. J. Bjerneld, M. Kall, et al. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett., 1999, 83: 4357-4360.
    [155] V. P. Safanov, V. M. Shalaev, V. A. Markel, et al. Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles. Phys. Rev. Lett., 1998, 80: 1102-1105.
    [156] K. Kneipp, H. Kneipp, P. Corio, et al. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes. Phys. Rev. Lett., 2000, 84: 3470-3473.
    [157] D. H. Murgida and P. Hildebrandt. Proton-Coupled Electron Transfer of Cytochrome c. J. Am. Chem. Soc, 2001, 123: 4062-4068.
    [158] A. Dhawan and J. F. Muth. Engineering surface plasmon based fiber-optic sensors. Mater. Sci. Eng. B, 2008, 149: 237-241.
    [159] A. Dhawan and J. F. Muth. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix. Nanotechnology, 2006, 17: 2504-2511.
    [160] A. Dhawana, Y. Zhang, F. Yan, et al. Nano-engineered surface-enhanced Raman scattering (SERS) substrates with patterned structures on the distal end of optical fibers. Proc. of SPIE, 2008, 6869: 68690G.
    [161] D. J. White and P. R. Stoddart. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt. Lett., 2005, 30: 598-600.
    [162] M. Moskovit. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc, 2005, 36: 485-496.
    [163] Y. Liu, J. Fan, Y. P. Zhao, et al. Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate. Appl. Phys. Lett., 2006, 89: 173134.
    [164] T. Itoh, K. Hashimoto, and Y. Ozaki. Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles. Appl. Phys. Lett., 2003, 83: 2274-2276.
    [165] J. M. McLellan, Z. Y. Li, A. R. Siekkinen, et al. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization. Nano Lett., 2007,7: 1013-1017.
    [166] F. J. Garcia-Vidal and J. B. Pendry. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett., 1996, 77: 1163-1166.
    [167] S. Chen, L. Han, A. Schulzgen, et al. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Optics Express, 2008, 16: 13016-13023.
    [168] L. D. Landau and E. M. Lifshitz. Electrodynamics of Continuous Media. New York: Pergamon Press (1982).
    [169] J. D. Joannopoulos. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press (2008).
    [170] V. M. Shalaev, W. Cai, U. K. Chettiar, et al. Negative index of refraction in optical metamaterials. Opt. Lett., 2005, 30: 3356-3358.
    [171] G Dolling, C. Enkrich, M. Wegener, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett., 2005, 30: 3198-3200.
    [172] S. Zhang, W. Fan, N. C. Panoiu, et al. Experimental Demonstration of Near-Infrared Negative-Index Metamaterials. Phys. Rev. Lett., 2005, 95: 137404.
    [173] N. Katsarakis, T. Koschny, M, Kafesaki, et al. Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett., 2004, 84: 2943-2943.
    [174] N. Katsarakis, G Konstantinidis, A. Kostopoulos, et al. Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett., 2005, 30: 1348-1350.
    [175] S. Linden, C. Enkrich, M. Wegener, et al. Magnetic Response of Metamaterials at 100 Terahertz. Science, 2004, 306: 1351-1353.
    [176] D. R. Smith, J. B. Pendry and M. C. K. Wiltshire. Metamaterials and Negative Refractive Index. Science, 2004, 305: 788-792.
    [177] A. A. Houck, J. B. Brock and I. L. Chuang. Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett., 2003, 90: 137401.
    [178] N. Seddon and T. Bearpark. Observation of the inverse Doppler effect. Science, 2003, 302: 1537-1540.
    [179] J. Lu, T. M. Grzegorczyk, Y. Zhang, et al. Cerenkov radiation in materials with negative permittivity and permeability. Opt. Express, 2003, 11: 723-734.
    [180] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 2000, 85: 3966-3969.
    [181] A. Zharov, I. V. Shadrivov and Y. S. Kivshar. Nonlinear Properties of Left-Handed Metamaterials. Phys. Rev. Lett., 2003, 91: 037401.
    [182] Y. Liu, G. Bartal, D. A. Genov, et al. Subwavelength Discrete Solitons in Nonlinear Metamaterials. Phys. Rev. Lett., 2007,99: 153901.
    [183] S. Chen, L. Han, A. Schulzgen, et al. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt. Express, 2008, 16: 13016-13023.
    [184] M. W. Klein, C. Enkrich, M. Wegener, et al. Second-Harmonic Generation from Magnetic Metamaterials. Science, 2006, 313: 502-504.
    [185] L. Han, S. Chen, A. Schulzgen, et al. Electromagnetic resonances and local intensity enhancement in plasmonic metamaterials with sub-wavelength double-slots. Submitted to Phys. Rev. E.
    [186] A. Taflove and S. C. Hagness. Computational Electrodynamics-The Finite-Difference Time-Domain Method. Boston: Artech House (2005).
    [187] C. Rockstuhl, T. Zentgraf, H. Guo, et al. Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B, 2006, 84: 219-227.
    [188] H. Ditlbacher, A. Hohenau, D. Wagner, et al. Silver Nanowires as Surface Plasmon Resonators. Phys. Rev. Lett., 2005,95: 257403.
    [189] C. Rockstuhl, F. Lederer, C. Etrich, et al. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt. Express, 2006, 14: 8827-8836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700